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Introduction
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Introduction

Consider a certain experiment, such as throwing a die;
this experiment can have different results, we call each
result an outcome

The set of all possible outcomes of an experiment is
called the sample space, Q2

An eventis a set of elements or subset of

Probability theory has to do with measuring and
combining the degrees of plausibility of events.
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Interpretations (1)

Classical: probability has to do with equiprobable events;

e if a certain experiment has N possible
outcomes, the probability of each outcome is
1/N.

Logical: probability is a measure of rational belief; that
is, according to the available evidence, a
rational person will have a certain belief
regarding an event, which will define its
probability.

Subjective: probability is a measure of the personal degree
of belief in a certain event; this could be
measured in terms of a betting factor —the
probability of a certain event for an individual is
related to how much that person is willing to bet
on that event.
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Interpretation
of Probability

Frequency:

Propensity:

(INAOE)

Interpretations (2)

probability is a measure of the number of
occurrences of an event given a certain
experiment, when the number of repetitions of
the experiment tends to infinity.

probability is a measure of the number of
occurrences of an event under repeatable
conditions; even if the experiment only occurs
once.
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Interpretation
of Probability
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Main approaches

Objective (classical, frequency, propensity):
probabilities exist in the real world and can be
measured.

Epistemological (logical, subjective): probabilities have
to do with human knowledge, they are measures of
belief.

Both approaches follow the same mathematical axioms
defined below; however there are differences in the
manner in which probability is applied
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Interpretation
of Probability
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Logical Approach

Define probabilities in terms of the degree of plausibility
of a certain proposition given the available evidence —
desiderata:
¢ Representation by real numbers.
¢ Qualitative correspondence with common sense.
o Consistency.
Based on these intuitive principles, we can derive the
three axioms of probability:
@ P(A) is a continuous monotonic function in [0, 1].
® P(AB|C)=P(A|C)P(B|A,C) (product rule).
O P(A|B)+ P(-A| B) =1 (sum rule).
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Basic Rules o
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Sum rule

The probability of the disjunction (logical sum) of two
propositions is given by the sum rule:
PA+B|C)=PA|C)+P(B|C)-P(AB|C)

If propositions A and B are mutually exclusive given C,
we can simplify it to:

P(A+B|C)=P(A|C)+ P(B| C)

Generalized for N mutually exclusive propositions to:
P(A1+ A2+ An | C) = P(Ar | C) + P(Az |
C)+---+P(Av| C)
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Conditional Probabilty

Basic Rules

P(H | B) conditioned only on the background B is called
a prior probability;

Once we incorporate some additional information D we
call it a posterior probability, P(H | D, B)

The conditional probability can be defined as (for

simplicity we omit the background):
P(H | D) = P(H,D)/P(D)
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Bayes Rule

From the product rule we obtain:

Basic Rules

P(D,H|B)=P(D|H,B)P(H|B)=P(H| D,B)P(D| B)
(1)
From which we obtain:
P(H| B)P(D | H,B)

P(H| D,B) = P(D| B)

()

This last equation is known as the Bayes rule
The term P(H | B) is the priorand P(D | H, B) is the
likelihood
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Basic Rules
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Independence

In some cases the probability of H is not influenced by
the knowledge of D, so it is said that H and D are
independent, therefore P(H,D | B) = P(H | B)

The product rule can be simplified to:

P(A,B| C)=P(A| C)P(B| C)
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Conditional Independence

Basic Rules

e If two propositions are independent given only the
background information they are marginally
independent; however if they are independent given
some additional evidence, E, then they are conditionally
independent: P(H,D | B,E) = P(H | B, E)

e Example: A represents the proposition watering the
garden, B the weather forecast and C raining
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Basic Rules
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Chain Rule

The probability of a conjunction of N propositions, that
is P(Ay, Az, ...,An | B), is usually called the joint
probability

If we generalize the product rule to N propositions we
obtain what is known as the chain rule:
P(A1,Ag,...,Ay | B) = P(A1 | A2, As, ..., AN, B)P(A: |
Az, Ag,..., AN, B)--- P(An | B)

Conditional independence relations between the
propositions can be used to simplify this product
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Total Probability

Consider a partition, B = {Bjy, By, ...Bs}, on the sample
B ErlEs space Q, suchthat Q = BiUByU...UBpand BiNnB; =0

A is equal to the union of its intersections with each
event A= (BiNA)U(BoNA)U...U(ByNA)

e Then:
=Y P(A| B)P(B) (3)
i
¢ Given the total probability rule, we obtain Bayes
theorem:
P(B)P(A| B)

P(B|A) = 4
BIN= 5 P@are)PE) @
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Discrete Random Variables

Pandom e Consider a finite set of exhaustive and mutually

Variables

exclusive propositions

¢ |f we assign a numerical value to each proposition Xx;,
then X is a discrete random variable

e The probabilities for all possible values of X, P(X) is the
probability distribution of X
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Probability Distributions

e Uniform: P(x;) =1/N

e Binomial: assume we have an urn with N colored balls,
Fandom red and black, of which M are red, so the fraction of red
Varlables balls is 7 = M/N. We draw a ball at random, record its
color, and return it to the urn, mixing the balls again (so
that, in principle, each draw is independent from the
previous one). The probability of getting r red balls in n
draws is:

P(r | n,m) = < . )7#(1 — ) (5)

n
where( , > :r,(n”ilr),
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Mean and Variance

e The expected value or expectation of a discrete random
variable is the average of the possible values, weighted
according to their probabilities:

Random
Variables N

E(X|B)=) P(x|B)x (6)

i=1

e The variance is defined as the expected value of the
square of the variable minus its expectation:

N
Var(X | B) =3 P(x | B)(xi— E(X)?  (7)
i=1

e The square root of the variance is known as the
standard deviation
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Continuous random variables

¢ If we have a continuous variable X, we can divide it into
a set of mutually exclusive and exhaustive intervals,
Random such that P = (a < X < b) is a proposition, thus the

Variables

rules derived so far apply to it

e A continuous random variable can be defined in terms
of a probability density function, f(X | B), such that:

b
P(a<X§b\B):/f(X]B)dx (8)

e The probability density function must satisfy
Jo (X | B)dx =1
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Normal Distribution

A Normal distribution is denoted as N(u, o?), where p is the
mean (center) and ¢ is the standard deviation (spread); and
it is defined as:

Random 1 1 2
Variables f(X ’ B) = EGXD{—?(X — ,LL) } (9)
Gaussian Distibution
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Exponential Distribution

The exponential distribution is denoted as Exp(/3); it has a
single parameter g > 0, and it is defined as:

Random f(X ‘ B) - ;e—x/ﬂ’x > 0 (10)

Variables

Exponential Distribution

(INAOE) 20/36



Cumulative Distribution

e The cumulative distribution function of a random
variable, X, is the probability that X < x. For a

Random continuous variable, it is defined in terms of the density
function as: .
Fo)= [ 100 (1)

¢ In the case of discrete variables, the cumulative
probability, P(X < x) is defined as:

X=x
P(x)= > P(X) (12)

X=—00
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Cumulative Distribution Properties

Random
Variables

In the interval [0,1]: 0 < F(X) <1
Non-decreasing: F(X1) < F(Xz) if X1 < Xz
Limits: limy_._o = 0 and limy_,o = 1

(INAOE) 22/36



(INAOE)

Two Dimensional Random Variables

2D Random Variables

Given two random variables, X and Y, their joint
probability distribution is defined as
Px,y)=P(X=xAY =y).

For example, X might represent the number of products
completed in one day in product line one, and Y the
number of products completed in one day in product
line two

P(X,Y) must follow the axioms of probability, in
particular: 0 < P(x,y) <1and >_, > P(X,Y) =1
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Two Dimensional Random Variables

2D Example

¢ Two product lines, line one (X) may produce 1, 2 or 3
products per day, and line two (Y), 1 or 2 products.

X=1| X=2 | X=3
Y=1| 01 ] 03| 03
Y=2| 0.2 | 0.1 0
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Two Dimensional Random Variables

Marginal and conditional probabilities

e Given the joint probability distribution, P(X, Y), we can
obtain the distribution for each individual random
variable:

P(x)=> P(X,Y);P(y)=>_P(X,Y) (13)
y X

e From the previous example -
P(X=2)=03+0.1=0.4and
P(Y=1)=01+03+03=0.7.

e Conditional probabilities of X given Y and vice-versa:

P(x|y) = P(x,y)/P(y): P(y | x) = P(x,y)/P(x) (14)
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Two Dimensional Random Variables

Independence

e Two random variables, X, Y are independent if their
joint probability distribution is equal to the product of
their marginal distributions (for all values of X and Y):

P(X,Y)= P(X)P(X) — Independent(X,Y) (15)
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Two Dimensional Random Variables

Correlation

It is a measure of the degree of linear relation between
two random variables, X, Y and is defined as:

p(X,Y) = E{[X - EX)IY — E(Y)]}/(oxoy)  (16)

where E(X) is the expected value of X and oy its
standard deviation.

The correlation is in the interval [-1, 1]; a positive
correlation indicates that as X increases, Y tends to
increase; and a negative correlation that as X
increases, Y tends to decrease.

A correlation of zero does not necessarily imply
independence

27/36



Introduction

¢ Information theory originated in the area of
communications, although it is relevant for many
different fields

Theory e Assume that we are communicating the occurrence of a

certain event. Intuitively we can think that the amount of

information from communicating an event is inverse to

the probability of the event.

Information

(INAOE) 28/36



Formalization

e Assume we have a source of information that can send
q possible messages, my, mo, ...mq; where each
message corresponds to an event with probabilities
Py, Ps,...Pq

e /(m) based on the probability of m - properties:

Theory e The information ranges from zero to infinity: /(m) > 0.

e The information increases as the probability decreases:
I(m;) > I(my) it P(m;) < P(m;).

e The information tends to infinity as the probability tends
to zero: I(m) — oo if P(m) — 0.

¢ The information of two messages is equal to the sum of
that of the individual messages if these are independent:
I(m; + my) = I(my;) + I(my) if m; independent of m;.

Information
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Information
Theory
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Information

A function that satisfies the previous properties is the
logarithm of the inverse of the probability, that is:

I(my) = log(1/P(m)) (17)

It is common to use base two logarithms, so the
information is measured in “bits”:

I(my) = logz(1/P(mg)) (18)

For example, if we assume that the probability of the
message m;, “raining in Puebla” is P(m;) = 0.25, the
corresponding information is I(m,) = log»(1/0.25) = 2
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Entropy

e Given the definition of expected value, the average
information of g message or entropy is defined as:

Information i:q
Theory

=
2
I
m
3
i

> P(m))loge(1/P(m;))  (19)

i=1

¢ This can be interpreted as that on average H bits of
information will be sent
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Max and Min Entropy

e When will H have its maximum and minimum values?

e Consider a binary source such that there are only two

Information messages, my and my; with P(my) = p; and
Theory

P(m,) = p». Given that there are only two possible
messages, p» = 1 — py, so H only depends on one
parameter, p; (or just p)

e For which values of p is H maximum and minimum?

(INAOE)
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Entropy of a Binary Source

Ha

Information
Theory

v
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Conditional and Cross Enropy

e Conditional entropy:

i=q
HIX |y) =) P(Xi| y)log[1/P(Xi | y)]  (20)

i=1

Information

Theory e Cross entropy:

Y)=> "> P(X, Y)logz[P(X,Y)/P(X)P(Y)]
X Y
(21)

e The cross entropy provides a measure of the mutual
information (dependency) between two random
variables
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