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Introduction

Introduction

• Sequential decision problems – those that involve a
series of decisions over time

• Considering that there is uncertainty in the results of the
agent’s decisions, these type of problems can be
modeled as Markov decision processes (MDPs)

• By solving the MDP model we obtain what is known as
a policy, which indicates to the agent which action to
select at each time step based on its current state; the
optimal policy is the one that selects the actions so that
the expected value is maximized

• Finally we will introduce partially observable MDPs
(POMDPs), in which there is not only uncertainty in the
results of the actions but also in the state

(L E Sucar: PGM) 3 / 53
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Markov Decision Processes

Markov Decision Processes

• A Markov decision process (MDP) models a sequential
decision problem, in which a system evolves over time
and is controlled by an agent

• The system dynamics are governed by a probabilistic
transition function Φ that maps states S and actions A
to new states S’

• At each time, an agent receives a reward R that
depends on the current state s and the applied action a

(L E Sucar: PGM) 4 / 53
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Markov Decision Processes

Example - robot in the grid world
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Markov Decision Processes

Grid World

• The robot’s possible actions are to move to the
neighboring cells (up, down, left, right)

• There is uncertainty in the result of each action taken by
the robot. For example, if the selected action is up the
robot goes to the upper cell with a probability of 0.8 and
with probability of 0.2 to other cells

• The objective of the robot is to go to the goal cell as fast
as possible and avoid the dangers. This will be
achieved by solving the MDP that represents this
problem, and maximizing the expected reward
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Markov Decision Processes

Example - policy
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Markov Decision Processes Representation

MDP - formalization

• An MDP is a tuple M =< S,A,Φ,R >, where S is a
finite set of states {s1, . . . , sn}. A is a finite set of
actions {a1, . . . , sm}. Φ : A× S × S → [0,1] is the state
transition function specified as a probability distribution

• The probability of reaching state s′ by performing action
a in state s is written as Φ(a, s, s′)

• R(s,a) is the reward that the agent receives if it takes
action a in state s

(L E Sucar: PGM) 8 / 53
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Markov Decision Processes Representation

Horizon

• Depending on how much into the future (horizon) we
consider there are two main types of MDPs: (i) finite
horizon and (ii) infinite horizon

• Finite horizon problems consider that there exists a
fixed, predetermined number of time steps for which we
want to maximize the expected reward

• Infinite horizon problems do not have a fixed,
predetermined number of time steps, these could vary
and in principle could be infinite – we will focus on this
case

(L E Sucar: PGM) 9 / 53
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Markov Decision Processes Representation

Value

• A policy, π, for an MDP is a function π : S → A that
specifies for each state, si , the action to be executed, ai

• Given a certain policy, the expected accumulated
reward for a certain state, s, is known as the value for
that state according to the policy, Vπ(s):

Vπ(s) = R(s,a) +
∑
s∈S

Φ(a, s, s′)Vπ(s′) (1)

• R(s,a) represents the immediate reward given action a,
and

∑
s∈S Φ(a, s, s′)Vπ(s′) is the expected value of the

next states according to the chosen policy

(L E Sucar: PGM) 10 / 53



Introduction

Markov
Decision
Processes
Representation

Evaluation
Value Iteration

Policy Iteration

Factored
MDPs
Abstraction

Decomposition

POMDPs

Applications
Power Plant
Operation

Robot Task
Coordination

References

Markov Decision Processes Representation

Discount factor

• For the infinite horizon case, a parameter known as the
discount factor, 0 ≤ γ < 1, is included so that the sum
converges

• This parameter can be interpreted as giving more value
to the rewards obtained at the present time than those
obtained in the future

• Including the discount factor, the value function is
written as:

Vπ(s) = R(s,a) + γ
∑
s∈S

Φ(a, s, s′)Vπ(s′) (2)
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Markov Decision Processes Representation

Bellman Equation
• What is desired is to find the policy that maximizes the

expected reward; that is, the policy that gives the
highest value for all states

• For the discounted infinite-horizon case with any given
discount factor γ, there is a policy π∗ that is optimal
regardless of the starting state and that satisfies what is
known as the Bellman equation

Vπ(s) = maxa{R(s,a) + γ
∑
s∈S

Φ(a, s, s′)Vπ(s′)} (3)

• The policy that maximizes the previous equation is then
the optimal policy, π∗:

π∗(s) = argmaxa{R(s,a) + γ
∑
s∈S

Φ(a, s, s′)Vπ(s′)} (4)
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Evaluation

Evaluation

• There are three basic methods for solving an MDP and
finding an optimal policy: (a) value iteration, (b) policy
iteration, and (c) linear programming

• The first two techniques solve the problem iteratively,
improving an initial value function or policy, respectively

• The third one transforms the problem to a linear
program which can then be solved using standard
optimization techniques such as the simplex method

• In case the model is unknown an alternative is to learn
the policy by trail and error, which is known as
Reinforcement Learning (outside the scope of this book)

(L E Sucar: PGM) 13 / 53
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Evaluation Value Iteration

Value Iteration

• Value iteration starts by assigning an initial value to
each state; usually this value is the immediate reward
for that state

• Then these estimates of the values are improved in
each iteration by maximizing the Bellman equation

• The process is terminated when the value for all states
converges

• The actions selected in the last iteration correspond to
the optimal policy

(L E Sucar: PGM) 14 / 53
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Evaluation Value Iteration

Algorithm

• (Initialization)
• ∀sV0(s) = R(s,a)

• t = 1
• REPEAT (Iterative improvement)
∀sVt (s) = maxa{R(s,a) + γ

∑
s∈S Φ(a, s, s′)Vt−1(s′)}

• UNTIL ∀s | Vt (s)− Vt−1(s) |< ε

• (Obtain optimal policy)
• π∗(s) = argmaxa{R(s,a) + γ

∑
s∈S Φ(a, s, s′)Vt (s′)}

(L E Sucar: PGM) 15 / 53
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Evaluation Value Iteration

Analysis

• The time complexity of the algorithm is quadratic in
terms of the number of state–actions

• Usually the policy converges before the values
converge; this means that there is no change in the
policy even if the value has not yet converged. This
gives rise to the second approach, policy iteration

(L E Sucar: PGM) 16 / 53
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Evaluation Policy Iteration

Policy Iteration

• Policy iteration starts by selecting a random, initial policy
• Then the policy is iteratively improved by selecting the

action for each state that increases the most the
expected value

• The algorithm terminates when the policy converges,
that is, the policy does not change from the previous
iteration

(L E Sucar: PGM) 17 / 53



Introduction

Markov
Decision
Processes
Representation

Evaluation
Value Iteration

Policy Iteration

Factored
MDPs
Abstraction

Decomposition

POMDPs

Applications
Power Plant
Operation

Robot Task
Coordination

References

Evaluation Policy Iteration

Algorithm

• π0 : ∀sa0(s) = ak (Initialize the policy)
• t = 1
• REPEAT
• Calculate values for the current policy:
• ∀sVπt−1

t (s) = {R(s,a) + γ
∑

s∈S Φ(a, s, s′)Vt−1(s′)}
• Iterative improvement:
• ∀sπt (s) = argmaxa{R(s,a) + γ

∑
s∈S Φ(a, s, s′)Vt (s′)}

• UNTIL πt = πt−1

(L E Sucar: PGM) 18 / 53
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Evaluation Policy Iteration

Analysis

• Policy iteration tends to converge in fewer iterations than
value iteration, however the computational cost of each
iteration is higher, as the values have to be updated

• Solving small MDPs with the previous algorithms is very
efficient; however it becomes difficult when the
state–actions space is very large

• An alternative is to decompose the state space and take
advantage of the independence relations to reduce the
memory and computation requirements, using a
graphical model-based representation of MDPs known
as Factored MDPs

(L E Sucar: PGM) 19 / 53
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Factored MDPs

Factored MDPs

• In a factored MDP, the set of states is described via a
set of random variables X = {X1, . . . ,Xn}

• The transition model and reward function can become
exponentially large if they are explicitly represented as
matrices, however, the frameworks of dynamic
Bayesian networks and decision trees give us the tools
to describe the transition model and the reward function
concisely

(L E Sucar: PGM) 20 / 53
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Factored MDPs

Transition function - DBN

• The transition function for each action, a, is represented
as a two–stage dynamic Bayesian network, that is a
two–layer directed acyclic graph GT whose nodes are
{X1, . . . ,Xn,X ′1, . . . ,X

′
n}

• Each node X ′i is associated with a conditional
probability distribution PΦ(X ′i | Parents(X ′i ))

• The transition probability Φ(a, si , s′i ) is then defined to
be ΠiPΦ(x ′i | ui) where ui represents the values of the
variables in Parents(X ′i )

(L E Sucar: PGM) 21 / 53
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Factored MDPs

Reward function - DT

• The reward associated with a state often depends only
on the values of certain features of the state

• The relationship between rewards and state variables
can be represented with value nodes in an influence
diagrams

• Although in the worst case the conditional reward table
(CRT) will take exponential space to store the reward
function, in many cases the reward function exhibits
structure allowing it to be represented compactly using
decision trees or graphs

(L E Sucar: PGM) 22 / 53
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Factored MDPs

Example - factored MDP
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Factored MDPs

Algebraic Decision Diagrams

• The representation can be compacted even more by
representing a CPT as a tree or a graph, such that
repeated probability values appear only once in the
leaves of these graphs

• A particular presentation that is very efficient is an
algebraic decision diagram or ADD

• Based on this compact representation, very efficient
versions of the value and policy iteration algorithms
have been developed that also reduce the
computational time required to solve complex MDP
models. An example of this is the SPUDD algorithm

(L E Sucar: PGM) 24 / 53
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Factored MDPs

ADD
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Factored MDPs Abstraction

Abstraction

• The idea of abstraction is to reduce the state space by
creating an abstract model where states with similar
features are grouped together

• Equivalent states are those that have the same
transition and reward functions; these can be grouped
together without altering the original model

• Further reductions can be achieved by grouping similar
states; this results in approximate models and creates a
trade-off between the precision of the model (and the
resulting policy) and its complexity

• Different alternatives: partition the state space into a set
of blocks such that each block is stable; partition the
state space into qualitative states that have similar
reward functions

(L E Sucar: PGM) 26 / 53
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Factored MDPs Decomposition

Decomposition

• Decomposition consists in dividing the global problem
into smaller subproblems that are solved independently
and their solutions combined

• There are two main types of decomposition: (i) serial or
hierarchical, and (ii) parallel or concurrent

(L E Sucar: PGM) 27 / 53
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Factored MDPs Decomposition

Hierarchical MDPs

• Hierarchical MDPs provide a sequential decomposition,
in which different subgoals are solved in sequence to
reach the final goal

• Hierarchical MDPs accelerate the solution of complex
problems by defining different subtasks that correspond
to intermediate goals, solving for each subgoal, and
then combining these subprocesses to solve the overall
problem

• Examples: HAM and MAXQ

(L E Sucar: PGM) 28 / 53
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Factored MDPs Decomposition

Concurrent MDPs

• In concurrent or parallel MDPs, the subtasks are
executed in parallel to solve the global task

• They consider that the task can be divided in several
relatively independent subtasks that can be solved
independently and then the solutions combined to solve
the global problem

• An alternative is to consider conflicts or restrictions
between task, initially solving each subtask
independently, and when the solutions are combined,
take into account potential conflicts between the partial
policies, and solve these conflicts to obtain a global,
approximately optimal policy

(L E Sucar: PGM) 29 / 53
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POMDPs

Partially observable MDPs

• In some domains, the state can not be observed
completely, there is only partial information about the
state of the system – POMDP

• In this case, there are certain observations from which
the state can be estimated probabilistically

• Consider the previous example of the robot in the grid
world. It could be that the robot can not determine
precisely the cell where it is (its state), but can estimate
the probability of being in each cell by observing the
surrounding environment

(L E Sucar: PGM) 30 / 53
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POMDPs

Formalization

• A POMDP is a tuple M =< S,A,Φ,R,O,Ω,Π >. The
first four elements are the same as in an MDP

• O is a finite set of observations {o1, . . . ,ol}
• Ω : S ×O → [0,1] is the observation function specified

as a probability distribution, which gives the probability
of an observation o given that the process is in state s,
P(o | s)

• Π is the initial state distribution that specifies the
probability of being in state s at t = 0

(L E Sucar: PGM) 31 / 53



Introduction

Markov
Decision
Processes
Representation

Evaluation
Value Iteration

Policy Iteration

Factored
MDPs
Abstraction

Decomposition

POMDPs

Applications
Power Plant
Operation

Robot Task
Coordination

References

POMDPs

Solving a POMDP

• In a POMDP the current state is not known with
certainty, only the probability distribution of the state,
which is known as the belief state

• So solving a POMDP requires finding a mapping form
the belief space to the action space - equivalent to a
continuous state space MDP

• Solving a POMDP is much more difficult than solving an
MDP, as the belief space is in principle infinite

(L E Sucar: PGM) 32 / 53
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POMDPs

Approximate Solution Techniques
Policy tree and DDN techniques: assuming a finite horizon,

a POMDP can be represented as a policy tree
(similar to a decision tree) or as a dynamic
decision network; then, algorithms for solving
these types of models can be applied.

Sampling techniques: the value function is computed for a
set of points in the belief space, and
interpolation is used to determine the optimal
action to take for other belief states which are
not in the set of sampling points.

Value function approximation techniques: given that the
value function is convex and piece-wise linear,
it can be described as a set of vectors (called α
vectors). Thus, it can be approximated by a set
of vectors that dominate the others, and in this
way find an approximate solution.

(L E Sucar: PGM) 33 / 53
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Applications

Applications

• Assisting power plant operators in the operation of a
power plant under difficult situations

• Coordinating a set of modules to solve a complex task
for service robots

(L E Sucar: PGM) 34 / 53
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Applications Power Plant Operation

Power Plant Operation Assistant

• The steam generation system of a combined-cycle
power plant provides superheated steam to a steam
turbine

• During normal operation, a three-element feedwater
control system commands the feed-water control valve
(fwv) to regulate the level (dl) and pressure (pd) in the
drum

• However, this traditional controller does not consider the
possibility of failures in the control loop and ignores
whether the outcomes of executing a decision will help
to increase the steam drum lifetime, security, and
productivity

• This problem was modeled as an MDP – for training
and assistance for power plant operators

(L E Sucar: PGM) 35 / 53
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Applications Power Plant Operation

AsistO
• AsistO is based on a decision-theoretic model -MDP-

that represents the main elements of the steam
generation system of a combined-cycle power plant

• The main variables in the steam generation system
represent the state in a factored form

• The actions correspond to the control of the main valves
in this subsystem of the power plant: feed-water valve
(fwv) and main steam valve (msv)

• The reward function is defined in terms of a
recommended operation curve for the relation between
the drum pressure and steam flow, the control actions
should try to maintain the plant within this
recommended operation curve

• The transition function is learned by using the power
plant simulator and sampling the state and action
spaces

(L E Sucar: PGM) 36 / 53
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Applications Power Plant Operation

Recommended Operation Curve
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Applications Power Plant Operation

Experiments

• Model: five state variables: Fms, Ffw , Pd , g, d ; and
four actions: open/close the feed-water (fwv) and main
steam (msv) valves.

• The reward function was defined based on the
recommended operation curve

• The memory requirements for a flat MDP representation
and a factored representation were compared. The flat
MDP required 589,824 parameters (probability values)
while the factored MDP only 758

• The optimal solution for the factored MDP was obtained
in less than two minutes on a standard personal
computer

(L E Sucar: PGM) 38 / 53
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Applications Robot Task Coordination

Robot Task Coordination

• A service robot should combine several capabilities,
such as localization and navigation, obstacle avoidance,
people detection and recognition, object recognition and
manipulation, etc.

• These different capabilities can be implemented as
independent software modules, which can then be
combined for solving a particular task

• It is necessary to coordinate the different modules to
perform a task, ideally in an optimal way

(L E Sucar: PGM) 39 / 53
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Applications Robot Task Coordination

Task coordination with MDPs
• Markov decision processes provide an appropriate

framework for task coordination for service robots
• Once a task is modeled as an MDP, the MDP can be

solved to obtain a policy to perform the task, which is
robust with respect to the uncertainty in the results of
the different actions

• Under this framework, based on general software
modules and an MDP–based coordinator, it is in
principle relatively easy for a service robot to solve
different tasks. We just need to modify the MDP reward
function according to the new task objectives

• Additionally, it is desirable for the robot to perform
several actions simultaneously, such as navigation to a
certain location, avoiding obstacles and looking for
people; all at the same time – this implies an explosion
in the action—state space

(L E Sucar: PGM) 40 / 53
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Applications Robot Task Coordination

Concurrent MDPs

• Based on functional decomposition, a complex task is
partitioned into several subtasks

• Each subtask is represented as an MDP and solved
independently, and the policies are executed in parallel

• However, conflicts may arise between the subtasks: (i)
resource conflicts, and (ii) behavior conflicts.
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Resource onflicts

• Resource conflicts occur when two actions require the
same physical resource (e.g., to control the wheels of a
robot) and cannot be executed concurrently

• This type of conflict is solved off–line by a two-phase
process

• In the first phase we obtained an optimal policy for each
subtask (MDP) – if there is a conflict between the
actions selected by each MDP for a certain state, the
one with maximum value is considered, and the state is
marked as a conflict state

• This initial solution is improved in a second phase using
policy iteration
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Behaivor

• Behavior conflicts arise in situations in which it is
possible to execute two (or more) actions at the same
time but it is not desirable given the application

• Behavior conflicts are solved on–line based on a set of
restrictions specified by the user

• If there are no restrictions, all the actions are executed
concurrently; otherwise, a constraint satisfaction
module selects the set of actions with the highest
expected utility
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Experiments

• An experiment was done with Markovito, a service
robot, which performed a delivery task
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Delivery Task

• The goal is for the robot to receive and deliver a
message, an object or both, under a user’s request

• Subtasks:
1 navigation, the robot navigates safely in different

scenarios;
2 vision, for looking and recognizing people and objects;
3 interaction, for listening and talking with a user;
4 manipulation, to receive and deliver an object safely;

and
5 expression, to show emotions using an animated face.

• Each subtask is represented as a factored MDP
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Representation

• If we represent this task as a single, flat MDP, there are
1,179,648 states (considering all the non-duplicated
state variables) and 1,536 action combinations, giving a
total of nearly two billion state-actions

• The MDP model for each subtask was defined using a
structured representation

• The transition and reward functions were specified by
the user based on task knowledge and intuition

• In this task, conflicts might arise between the different
subtasks, so we need to include conflict resolution
strategies
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Behavior Conflicts

action(s) restriction action(s)
get message not during turn OR advance
ask user name not before recognize user
recognize user not start avoid obstacle
get object directed towards
OR not during OR turn
deliver object OR moving
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Evaluation

• For comparison, the delivery task was solved under two
conditions: (i) without restrictions and (ii) with
restrictions

• In the case without restrictions, the robot performs
some undesirable behaviors. For example, in a typical
experiment, the robot is not able to identify the person
who wants to send a message for a long time

• In the case where restrictions were used, these allowed
a more fluid and efficient solution

• On average, the version with restrictions takes about
50% of the time steps required by the version without
restrictions to complete the task
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