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In Causation, Prediction, and Search (CPS hereafter), Peter Spirtes, Clark Glymour and I 

developed a theory of statistical causal inference.  In his presentation at the Notre Dame 
conference (and in his paper, this volume), Glymour discussed the assumptions on which this 
theory is built, traced some of the mathematical consequences of the assumptions, and pointed to 
situations in which the assumptions might fail.  Nevertheless, many at Notre Dame found the 
theory difficult to understand and/or assess.  As a result I was asked to write this paper to 
provide a more intuitive introduction to the theory.  In what follows I shun almost all formality 
and avoid the numerous and complicated qualifiers that typically accompany definitions or 
important philosophical concepts. They can be all be found in Glymour's paper or in CPS, which 
are clear although sometimes dense. Here I attempt to fix intuitions by highlighting a few of the 
essential ideas and by providing extremely simple examples throughout. 

The route I take is a response to the core concern of many I talked to at the Notre Dame 
conference. Our techniques take statistical data and output sets of directed graphs. Most 
everyone saw how that worked-but they could not easily assess the additional assumptions 
necessary to give such output a causal interpretation, that is an interpretation that would inform 
us about how systems would respond to interventions.  I will try to present in the simplest terms 
the assumptions that allow us to move from probabilistic independence relations to the kind of 
causal relations that involve counterfactuals about manipulations and interventions.  I first 
separate out the various parts of the theory: directed graphs, probability, and causality, and then 
clarify the assumptions that connect causal structure to probability. Finally, I discuss the 
additional assumptions needed to make inferences from statistical data to causal structure. 

 
1. DAGs and d-separation 
 
The theory we developed unites two pieces of mathematics and one piece of philosophy.  

The mathematical pieces are directed acyclic graphs (DAGs) and probability theory (with the 
focus on conditional independence), and the philosophy involves causation among variables. 

A DAG is a set of vertices and a set of edges (arrows) that connect pairs of these vertices.  
For example, we might have a set of three vertices: {X1, X2, X3}, and a set of two edges among 
these vertices: {X1→X2 , X2→X3}.  We almost always represent DAGs with a picture, or path 
diagram, e.g., this DAG looks like:   X1→ X2 → X3 

Prior to any interpretation, a DAG is a completely abstract mathematical object. In our 
theory, DAGs are given two distinct functions. In the first they represent sets of probability 
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distributions and in the second they represent causal structures.  The way they represent 
probability distributions is given by the Markov condition, which (in DAGs) turns out to be 
equivalent to a more generally useful graphical relation: d-separation (Pearl 1988).1  D-
separation is a relation between three disjoint sets of vertices in a directed graph.  Although too 
complicated to explain or define here,2 the basic idea involves checking whether a set of vertices 
Z blocks all connections of a certain type between X and Y in a graph G.  If so, then X and Y are 
d-separated by Z in G.  In the DAG on the left side of Fig. 1, for example, X2 blocks the only 
directed path connecting X1 and X3, so X1 and X3 are d-separated by X2 in this DAG.  By 
choosing d-separation to connect DAGs to probability distributions, we assume that in all of the 
distributions P a DAG G can represent, if sets of vertices X and Y are d-separated by a set Z in 
the DAG G, then X and Y are independent conditional on Z in P.  For example, applying d-
separation to the DAG in Fig. 1 gives us: X1 and X3 are d-separated by X2. We then assume that 
in all distributions this DAG can represent, X1 is independent of X3 conditional on X2. We use a 
notation for independence introduced by Phil Dawid (1979); X1 _||_ X3 | X2 means: X1 and X3 
are independent conditional on X2.   

 
 DAG  

X  1  X  2  X  3  

d-separation Set of Independencies  
X 1 X  2  X  3  

{  }  
 

 Fig. 1 

 
 

It should be stressed that as long as we remain agnostic and give no interpretation to DAGs, then 
they are just mathematical objects which we can connect to probability distributions in any way 
we like. We could just as easily define and then use e-separation, or f-separation, or any 
graphical relation we please, as long as it produced consistent sets of independencies. When we 
give DAGs a causal interpretation, it then becomes necessary to argue that d-separation is the 
correct connection between a causal DAG and probability distributions. Let us put off that task 
for a few more pages, however. 

There are often many distinct DAGs that represent exactly the same set of independence 
relations, and thus the same set of distributions.  And just as one might want a procedure that 
computes d-separation for any graph, one might want an algorithm that computes all the DAGs 
that represent a given set of independence relations (Fig. 2).  

                                                 
1 If directed graphs have cycles, or chains of arrows that lead from a variable back to itself, then this 

equivalence breaks down. 
2 We try to explain it in CPS, pp. 71-74. 
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We have developed several such algorithms, one of which is called the PC algorithm and is 

computed by the TETRAD II program.3 Its input is a set of independence relations over a set of 
variables and its output is a set of DAGs over these variables that are d-separation, or Markov, 
equivalent.4 Applying the PC algorithm to the same set of independence relations shown on the 
right side of Fig. 1, you can see (in Fig. 3) that there are two other DAGs that are d-separation 
equivalent to the DAG in Fig. 1.  PC is known to be complete in the sense that its output contains 
all and only those DAGs that are d-separation equivalent. 

 

DAGs
X 1 X 2 X 3 PC Algorithm Set of Independencies 

X 1 X 2 X 3 { } X 1 X 2 X 3 

X 1 X 2 X 3 
 

Fig. 3 
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many of the discovery algorithms presented in CPS, the TETRAD II program is available  from Lawrence Erlbaum 
Associates, Hillsdale, NJ.  

4 Sometimes there are no DAGs that can represent a given set of independence relations. 



   

2. Causal Graphs 
If taken no further, d-separation and the Markov condition are just mathematics connecting 

DAGs and probability distributions and need not involve causation at all.5 One might be content 
to use this mathematical theory solely to produce compact and elegant representations of 
independence structures,6 or one might take a further step by assuming that when DAGs are 
interpreted causally the Markov condition and d-separation are in fact the correct connection 
between causal structure and probabilistic independence. We call the latter assumption the 
Causal Markov condition, and it is a stronger assumption than the Markov condition. 

DAGs that are interpreted causally are called causal graphs. There is an arrow from X to Y 
in a causal graph involving a set of variables V just in case X is a direct cause of Y relative to V.  
For example, if S is a variable that codes for smoking behavior, Y a variable that codes for 
yellowed, or nicotaine stained, fingers, and C a variable that codes for the presence of lung 
cancer, then the following causal graph (Fig. 4) represents what I believe to be the causal 
structure among these variables. 

 

(Smoking) 
  
        S 

(Yellowed Fingers) (Lung Cancer) 

Y C 

 

Fig. 4 
 
 
Causal graphs are assumed to be complete in one sense and not in another. They are 

incomplete in that they do not necessarily include all of the causes of each variable in the 
system. Thus many of the causes of lung cancer have been left out, e.g., asbestos inhalation, 
genetic factors, etc.  They also leave out many variables that might lie in between a specified 
cause and its effect, e.g., cillia trauma in the bronchial lining might lie on the “true” causal 
pathway from smoking to lung cancer.  But a causal graph is assumed to be complete in the 
sense that all of the common causes of specified variables have been included.  For example, if 
there is some variable that is a cause of both smoking behavior and lung cancer, e.g., a genetic 
factor, then the causal graph above is not an accurate depiction of the causal structure among 
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robots or other AI agents an efficient way to store and use probability distributions which represented the agent's 
uncertainty over states of the world. 

6 In fact we have often heard just such a purpose endorsed explicitly in public by able statisticians, but in 
almost every case these same people over beer later confess their heresy by concurring that their real ambitions are 
causal and their public agnosticism is a prophylactic against the abuse of statistics by their clients or less careful 
practitioners.   



 

these three variables.  The causal graph is also assumed to be complete in the sense that all of the 
causal relations among the specified variables are included in the graph.  For example, the graph 
in Fig. 4 has no edge from Y to S, so it is only accurate if the level of nicotine stains does not in 
any way cause smoking behavior. 

The semantics of a causal graph involve ideal manipulations and the changes in the 
probability distribution that follow such manipulations. Such an account is circular, because to 
manipulate is to cause. Our purpose, however, is not to provide a reductive definition of 
causation, but rather to connect it to probability in a way that accords with scientific practice and 
allows a systematic investigation of causal inference. 

 To manipulate a variable ideally is to change it in a way that, at least for the moment, leaves 
every other variable undisturbed. Such a manipulation must directly change only its target and 
leave changes in the other variables to be produced by these targets or not at all. For example, 
suppose we are attempting to experimentally test hypotheses concerning the causal relations 
between athletic performance and confidence.  Suppose we intervene to inhibit athletic 
performance by administering a drug that blocks nutrient uptake in muscle cells, but that this 
drug also imitates the chemical structure of neurotransmitters that inhibit feelings of insecurity 
and anxiety, thus serving to directly increase anxiety and lower confidence. This intervention 
provides little help in trying to reason about the sort of causal relation that exists between 
athletic performance and confidence, because it directly alters both variables. It is an 
intervention with a “fat hand.”7 Ideal interventions are perfectly selective in the variables they 
directly change.   

The causal graph tells us, for any ideal manipulation we might consider, which other 
variables we would expect to change in some way and which we would not.  Put simply, the only 
variables we can hope to change must be causally "downstream" of the variables we 
manipulated.  Although we can make inferences upstream, that is from effects to their causes, we 
cannot manipulate an effect and hope to change its other causes. In Fig. 4, for example, after an 
ideal manipulation of the level of nicotine stains, nothing at all would happen to the probabilities 
of smoking and lung cancer. They would take on the same values they would have if we had 
done no manipulation at all. If we could manipulate the lung cancer level of an individual 
without directly perturbing his or her smoking behavior or finger stains, then again, we would 
not expect to change the probability of smoking or of finger stains.  If, however, we could 
manipulate smoking behavior in a way that did not directly perturb any other variable, then (for 
at least some of these manipulations) we would perturb the probability of the other variables 
through the direct causal route from smoking to the other variables. 

If the causal graph changes, so does the set of counterfactuals about ideal manipulations.  If, 
for example, the causal graph is as I picture it in Fig. 5 (absurd as it may seem), then only the 
statement concerning manipulations of lung cancer remains unchanged.  Any ideal manipulation 
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of smoking will result in no change in Y, but some will result in a change in C’s probability, and 
(some) manipulations of Y will result in changes in S’s probability. 

 

(Smoking) 
  
        S 

(Yellowed Fingers) (Lung Cancer) 

Y C 

 

Fig. 5 

 
 
Ignoring all sorts of subtleties, the point should be clear: the sort of causation we are after 

involves the response of a system to interventions.  
 
3. The Causal Markov Condition 
 
The Causal Markov assumption can be stated simply: 

 
A variable X is independent of every other variable (except X’s effects) conditional 
on all of its direct causes. 

 
Applying this to each variable in the causal graph in Fig. 4 yields the following 
independence relations:8 
 

For Y:   Y is independent of C conditional on S 
For S:    All of the other variables are S’s effects, so the condition is vacuous 
For C:   C  is independent of Y conditional on S 
 

By probability theory, the first and last of these independences are equivalent, so this 
causal graph entails one independence by the Causal Markov assumption.  You can see that 
Fig. 5 implies the same independence relations as does Fig. 4, even though it is different 
causally and thus entails different counterfactuals about interventions. 

The independence relations entailed by applying the Causal Markov assumption to a causal 
graph is the same as those obtained from applying d-separation to a causal graph, but it is 
simpler to justify the connection between causal graphs and probability when stated in a Markov 
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form.  The intuition behind the Causal Markov assumption is simple: ignoring a variable’s 
effects, all the relevant probabilistic information about a variable that can be obtained from a 
system is contained in its direct causes. In a Markov process, knowing a system’s current state is 
relevant to its future, but knowing how it got to its current state is completely irrelevant. Hans 
Reichenbach (1956) was the first philosopher to explicitly discuss the Markov properties of 
causal systems, but variants have been discussed by Nancy Cartwright (1989), Wesley Salmon 
(1984), Brian Skyrms (1970), Patrick Suppes (1970), and many other philosophers.   

How does such an assumption capture the asymmetry of causation?  For systems of two 
variables it cannot. The two causal graphs in Fig. 6 imply the same independencies by the Causal 
Markov condition, and are thus indistinguishable solely on the basis of probabilistic 
independence.  

  X Y   X Y  

Fig. 6 

 

But leaping from this simple indistinguishability to the conclusion that probabilities can never 
give us information about causal structure is patently fallacious. As Hausman (1984) and 
Papineau (1985) realized, adding a third variable changes the story entirely.  The two graphs in 
Fig. 7 are not Markov or d-separation equivalent, and the difference between their independence 
implications underlies the connection between independence and causal priority more generally. 

 

Independence Relations Entailed by d-separation 

X Z Y X Z 

X Y Z X Y Z 

 

Fig. 7 

 
We see three main lines of justification for the Causal Markov assumption, although surely 

there are others.  First, versions of the assumption are used, perhaps implicitly, in making causal 
inferences from controlled experiments. Second, philosophical treatments of probabilistic 
causality embrace it (Suppes, 1970; Reichenbach, 1956), and third, structural equation models 
(Bollen, 1989), which are perhaps the most widely used class of statistical causal models in 
social science are Causally Markov.  Elaborating on the first two lines of support are beyond the 



   

scope of this paper; they are covered in CPS or in Glymour’s paper. Here I will try to make the 
connection between structural equation models and the Causal Markov assumption a little more 
explicit.     

In a structural equation model, each variable is equal to a linear function of its direct causes 
plus an “error” term.  Thus the causal graph in Fig. 4 would translate into the following 
structural equation model: 

 
Y = β1 S + εy 
C = β2 S + εc 

 
where β1 and β2 are real valued coefficients and εc and εy are error terms with strictly positive 
variance.  If the system in Fig. 4 is complete as specified, that is, its causal graph is complete 
with respect to common causes, then a structural equation modeller would assume that εc and εy 
are independent of each other and of S.  Indeed, in structural equation models in which all of the 
common causes are included the error terms are assumed to be  independent. It turns out that 
such models necessarily satisfy the Causal Markov assumption (Kiiveri and Speed, 1982).  
Spirtes (1994) has generalized the result to models in which each effect is an arbitrary function 
of its immediate causes and an independent error.9 The nature of the function connecting cause 
and effect is not so important as the independence of the error terms. 

The connection between structural equation models and causation (as it involves the 
response of a system to interventions) arises through the connection between independent error 
terms and ideal manipulations. Although ideal manipulations provide the semantic ground for 
causal claims, such manipulations are sometimes only ideal and cannot be practically realized.  
For example, although poverty may cause crime, we cannot ethically intervene to impoverish 
people.  In such situations we resort to collecting data passively. Since experimental science 
specializes in creating arrangements in which ideal manipulations exist and are subject to our 
will, it is no surprise that critics of causal inference from statistical data insist that experiments 
are the only means of establishing causal claims.  But besides: “I can’t imagine how it can be 
done,” what is their argument? 

In the first place, there might well be ideally selective sources of variation that exist in 
nature but which we cannot now or ever hope to control. For example, the moon’s position 
exerts a direct effect on the gravitational field over the oceans, which causes the tides.  But 
though the moon is a source that we cannot control, at least we can measure it.   

In other systems, such ideal sources of variation might exist, but be both beyond our control 
and unobservable. In fact a natural interpretation of the error terms in structural equation models 
gives them precisely these properties. There is a unique error term εx for each specified variable 
X, and in systems which include all the common causes εx is assumed to be a source of X’s 
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variation that directly affects only X. And although we cannot measure them or control them, 
structural equation modellers assume that such error terms exist.  It is this assumption that makes 
such systems Causally Markov.10   

  It is tempting to think that even if we do interpret error terms as unobservable but ideal 
manipulations, then we are then stopped dead for purposes of causal inference just because we 
cannot observe them. But this is a fallacy. It is true that we cannot learn as much about the causal 
structure of such systems as we could if the error terms were observable (the experimenters 
world), but by no means does it follow that we can learn nothing about them. In fact this is 
precisely where causal inference starts, with systems that are assumed to be Causally Markov.   

 
4. Inference 
 
Accepting the Causal Markov assumption, I now turn to the subject of inference: moving 

from statistical data to conclusions about causal structure. Beginning with statistical data and 
background knowledge, we want to find all the possible causal structures that might have 
generated these data.  The fewer assumptions we make constraining the class of possible causal 
structures, the weaker our inferential purchase.  I should note, however, that it is not the job of 
our theory to dictate which assumptions a practicing investigator should endorse, but only to 
characterize what can and cannot be learned about the world given the particular assumptions 
chosen.   

In this section I discuss a few of the assumptions that we have studied. There are many 
others that we are now studying or that would be interesting to study.  An enormous class of 
problems I will not deal with at all involves statistical inference about independence: inferring 
the set of independence relations in a population from a sample. In what follows I assume that 
the data are statistically ideal and that in effect the population lies before us, so that any 
probabilistic independence claim can be decided with perfect reliability. 

 
Faithfulness 
 
The first assumption I will discuss is Faithfulness.  By assuming that a causal graph is 

Causally Markov, we assume that any population produced by this causal graph has the 
independence relations obtained by applying d-separation to it.  It does not follow, however, that 
the population has exactly these and no additional independencies. For example, suppose Fig. 8 
is a causal graph that truly describes the relations among exercise, smoking, and health, where 
the + and - signs indicate positive and inhibitory relations respectively.11  

 

                                                 
10 In certain contexts the detrimental effect on causal inference of violating this assumption is well undersood.  

For example, in a regression model in which some of the regressors are correlated with the error term, then the 
result is a bias in estimating the causal effect of these regressors. 

11 This example is from Cartwright (1983).   
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Fig. 8 

 
 
In this case the Causal Markov assumption alone puts no constraints on the distributions that 

this structure could produce, because we obtain no independencies whatsoever from applying d-
separation or the Markov condition to its DAG.  But in some of the distributions that this 
structure could produce, Smoking might be independent of Health “by coincidence.”  If Smoking 
has a negative direct effect on Health, but Smoking has a positive effect on Exercise (absurd as 
this may seem) and Exercise has a positive effect on Health, then Smoking serves to directly 
inhibit Health and indirectly improve it.  If the two effects happen to exactly balance and thus 
cancel, then there might be no association at all between Smoking and Health.  In such a case we 
say that the population is unfaithful to the causal graph that generated it.   

If there are any independence relations in the population that are not a consequence of the 
Causal Markov condition (or d-separation), then the population is unfaithful.  By assuming 
Faithfulness we eliminate all such cases from consideration.  Although at first this seems like a 
hefty assumption, it really isn’t. Assuming that a population is Faithful is to assume that 
whatever independencies occur in it arise not from incredible coincidence but rather from 
structure. Some form of this assumption is used in every science. When a theory cannot explain 
an empirical regularity save by invoking a special parameterization, then scientists are uneasy 
with the theory and look for an alternative that can explain the same regularity with structure and 
not luck. In the causal modeling case, the regularities are (conditional) independence relations, 
and the Faithfulness assumption is just one very clear codification of a preference for models 
that explain these regularities by invoking structure and not by invoking luck. By no means is it a 
guarantee; nature might indeed be capricious. But the existence of cases in which a procedure 
that assumes Faithfulness fails seems an awfully weak argument against the possibility of causal 
inference.  Nevertheless, critics continue to create unfaithful cases and display them (see, for 
example, David Freedman’s long paper in this volume). 

Assuming Faithfulness seems reasonable and is widely embraced by practicing scientists. 
The inferential advantage gained from the assumption in causal inference is enormous.  Without 
it, all we can say on the basis of independence data is that whatever causal structure generated 
the data, it cannot imply any independence relations by d-separation that are not present in the 



 

population.  With it, we can say that whatever structure generated the data, it implies by d-
separation exactly the independence relations that are present in the population. For example, 
suppose we have a population involving three variables X1, X2, X3, and suppose the  
independence relations in this population are as given below. 

 
 All Possible12 Independences   In   Not In 
 among X1, X2, X3   Population  Population 
 _________________________________________________________ 
 X1 _||_ X2    √ 
 X1 _||_ X3       √ 
 X2 _||_ X3       √ 
 X1 _||_ X2 | X3       √ 
 X1 _||_ X3 | X2       √ 
 X2 _||_ X3 | X1       √ 

 
Even if we assume that all the Causally Markov graphs that might have produced data with 

these independencies involve only X1, X2, and X3, then there are still nine such graphs. Their 
only shared feature is that each has some direct connection between X1 and X3 and between X2 
and X3. Adding Faithfulness reduces the set of nine to a singleton (Fig. 9).   

 

X 1 

X 3 

X 2 

 

Fig. 9 
 
Causal Sufficiency 
 
In this example we have managed to infer that both X1 and X2 are direct causes of X3 from a 

single marginal independence between X1 and X2. This gives many people pause, as it should. 
We have achieved such enormous inferential leverage in this case not only by assuming 
Faithfulness, but also by assuming Causal Sufficiency, which I noted above by writing: “all the 
Causally Markov graphs that . . . involve only X1, X2, and X3.”  

The assumption of Causal Sufficiency is satisfied if we have measured all the common 
causes of the measured variables.  Although this sounds quite similar to the assumptions about 
the completeness of causal graphs, it is not exactly the same thing.  When we assume that a 
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causal graph is complete with respect to common causes, it is in service of being clear about 
what sorts of systems we are representing with such graphs.  In the inferential case we are 
making two assumptions: one involves the existence of some causal graph that is complete with 
respect to common causes and that is Causally Markov, and the other is an assumption about the 
variables we have measured as opposed to those we have not.  For example, we might build a 
model in which we specify a variable called Intelligence which we cannot directly or perfectly 
measure, but four of whose effects we can measure, say test scores X1 - X4 (Fig. 10). 

 

Intelligence

X 1 X 2 X 3 X 4  

Fig. 10 
 

Supposing that the causal graph among Intelligence and X1 - X4 is complete with respect to 
common causes, and that it is Causally Markov and Faithful to whatever population it produces 
over {Intelligence, X1 - X4}, then the following list of the independence relations will hold in 
this population. 

 
X1 _||_ X2 | Intelligence  
X1 _||_ X3 | Intelligence 
X1 _||_ X4 | Intelligence 
X2 _||_ X3 | Intelligence 
X2 _||_ X4 | Intelligence 
X3 _||_ X4 | Intelligence 

  
Since Intelligence is unmeasured, however, our data will only include independencies that 

do not involve it, which in this case is the empty set.  Thus the causal graph involving 
Intelligence and X1 - X4 is complete with respect to common causes, but the measured variables 
X1 - X4 are not Causally Sufficient. To summarize, the Causal Markov assumption, although it 
involves a representational form of causal sufficiency, is an assumption about the way causation 
and probability are connected, while Causal Sufficiency is an assumption about what we have 
managed to measure. I have so far discussed three different assumptions: 

 
1) the Causal Markov assumption:  upon accurately specifying a causal graph G among 
some set of variables V (in which V includes all the common causes of pairs in V), at 



 

least the independence relations obtained by applying d-separation to G hold in the 
population probability distribution over V.  
 
2) the Faithfulness assumption:  exactly the independence relations obtained by applying 
d-separation to G hold in the probability distribution over V. 
 
3) the Causal Sufficiency assumption: the set of measured variables M include all of the 
common causes of pairs in M.  

 
In the example concerning Faithfulness, we managed to infer the unique causal structure in 

Fig. 9 from the single marginal independence X1 _||_ X2  by making all three assumptions.  It is 
still possible to make inferences about the structure(s) underlying the data without the Causal 
Sufficiency assumption, but of course we can learn less. 

When we do not assume Causal Sufficiency, we still assume that there is some structure 
involving the measured variables (and perhaps other variables) that is complete with respect to 
common causes and that satisfies the Causal Markov assumption, but we must acknowledge that 
we might not have measured all the common causes. So whatever algorithm we use to move 
from independence relations to all the causal graphs that might have produced these 
independence relations, the set of graphs must include members that have common causes we 
have not measured.  In the example in Fig. 9, we have measured X1-X3, and observed a single 
independence: X1 _||_  X2.   If we assume Causal Markov and Faithfulness, but not Causal 
Sufficiency, the set of 10 causal graphs that would produce exactly this independence appears 
below (Fig. 11), where the T variables in circles are the common causes that we might not have 
measured.  
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Fig. 11 
 
In fact this set is still too small, for where we have specified a single unmeasured common 

cause of two variables (such as X1 and X3) and named it "T1," in actuality there might be any 
number of distinct unmeasured common causes of X1 and X3.  So wherever T1 appears as a 
common cause (of say X1 and X3) this is really an abbreviation for: there exists some 
unmeasured common cause of X1 and X3.  

Although dropping the assumption of Causal Sufficiency has reduced our inferential power 
considerably, it has not completely eliminated it. Notice that in none of the structures in Fig. 11 
is X3 a cause of any other variable. So we have learned something about what causal relations do 
not exist:  X3 is not a cause of X1 or of X2, even though it is associated with both. In other 
words, we have inferred from independence data the following: if we were to ideally manipulate 
X3, then we would do nothing to alter X1 or X2.   

Can we ever gain knowledge about what causal relations do exist without assuming Causal 
Sufficiency?  Yes, but not unless we either measure at least four variables or make additional 
assumptions. For example, if the following independencies are observed among X1-X4, then 



 

assuming Causal Markov and Faithfulness we can conclude that in every graph that could 
possibly have generated this data, X3 is a cause of X4.   

 
X1 _||_ X2 
X1 _||_ X4  | X3 
X2 _||_ X4  | X3 

 
That is: if Causal Markov and Faithfulness are satisfied, then from these independence relations 
we can conclude that a manipulation of X3 would change the probability of X4. 

Adding other sorts of knowledge often improves the situation, e.g., knowledge about the 
time order of the variables.  In the following case from James Robins, for example, we can 
obtain knowledge that one variable is a cause of another when we have only measured three 
variables, and we do so by assuming Causal Markov, Faithfulness, but not Causal Sufficiency.  If 
we know that X1 occurs before X2 and X2 before X3, and we know that in the population X1 _||_ 
X3  | X2, then under these assumptions we can conlcude that X2 is a cause of X3. We can also 
conclude that there is no unmeasured common cause of X2 and X3. 

 
5.  Conclusion 
 
Contrary to what some take to be our purpose, we are not about trying to magically pull 

causal rabbits out of a statistical hat. Our theory of causal inference investigates what can and 
cannot be learned about causal structure from a set of assumptions that seem to be made 
commonly in scientific practice.  It is thus a theory about the inferential effect of a variety of 
assumptions far more than it is an endorsement of particular assumptions.  There are situations in 
which it is unreasonable to endorse the Causal Markov assumption (e.g., in quantum mechanical 
settings), Causal Sufficiency rarely seems reasonable, and there are certain situations where one 
might not want to assume Faithfulness (e.g., if some variables are completely determined by 
others).  In the Robins case above, for example, we inferred that there was no unmeasured 
common cause, or "confounder," of X2 and X3. Robins believes that in epidemiological contexts 
there are always unmeasured confounders, and thus makes an informal Bayesian argument in 
which he decides that his degrees of belief favor giving up Faithfulness before accepting the 
conclusion that in this case it forced.   

If our theory has any good effect on practice, it will be as much to cast doubt on pet theories 
by making it easy to show that reasonable and equivalent alternatives exist than it will be to 
extract causal conclusions from statistical data. If it succeeds in clarifying the scientific rationale 
that underlies causal inference, which is our real goal, then its most important effect will be to 
change the way studies are designed and data is collected. 
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