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Abstract

This chapter reviews the diverse roles that causal knowledge plays in reinforcement learning.
The first half of the chapter contrasts a “model-free” system that learns to repeat actions that
lead to reward with a “model-based” system that learns a probabilistic causal model of the
environment which it then uses to plan action sequences. Evidence suggests that these two
systems coexist in the brain, both competing and cooperating with each other. The interplay
of two systems allows the brain to negotiate a balance between cognitively cheap but inaccurate
model-free algorithms and accurate but expensive model-based algorithms. The second half of
the chapter reviews research on hidden state inference in reinforcement learning. The problem
of inferring hidden states can be construed in terms of inferring the latent causes that give
rise to sensory data and rewards. Because hidden state inference a↵ects both model-based and
model-free reinforcement learning, causal knowledge impinges upon both systems.
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Introduction

Reinforcement learning (RL) is the study of how an agent (human, animal or machine) can learn
to choose actions that maximize its future rewards (Sutton & Barto, 1998). Two strong constraints
have shaped the evolution of RL in the brain. On the one hand, the world is complex, favoring the
development of rich causal models that can be used to accurately predict future reward. On the
other hand, building and using causal models is computationally costly. If an agent needs to act
quickly and energy-e�ciently, cheaper but less accurate predictions may be required. Algorithms
that directly estimate future reward without building an explicit causal model are known as model-
free, in contrast to model-based algorithms that employ a causal model.

To make this distinction concrete, imagine how you might navigate from home to your o�ce. If you
just moved to a new house, the route may be unfamiliar and so you rely upon a map to figure out
a step-by-step plan. The map is a causal model: It tells you that taking an action (i.e., moving in
a particular direction) causes a change in your state (i.e., location). Constructing a plan amounts
to designing a causal chain that terminates at your intended goal. For this reason, the map-based
strategy is a form of model-based control. As you become more familiar with the route, you may
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Reward state, action ! reward
Transition state, action ! state
Hidden state hidden state ! observation

Table 1: Summary of causal relationships in reinforcement learning.

find yourself relying less on maps—you simply “know” what direction to go in a particular location.
One way this might happen is that you have learned to cache the values of actions in di↵erent states,
so that you can determine where to go simply by inspecting these cached values. A causal model
is not required for this navigation strategy. This is the essence of model-free control.

Experimental work has revealed that humans and animals use a combination of model-based and
model-free algorithms, implicating the co-existence of two “systems” in the brain that are at least
partially dissociable (Balleine & Dickinson, 1998; Daw, Niv, & Dayan, 2005; Dolan & Dayan, 2013).
These systems compete for control of behavior, but may also cooperate with each other, as I will
discuss later.

The aim of this chapter is to highlight the diverse roles that causal knowledge plays in model-based
and model-free RL. I begin with a brief summary of the historical background, and then review
the modern computational synthesis of model-based and model-free RL. While it is tempting to
view causal knowledge as falling strictly within the purview of model-based RL, this is not the
case. Agents must perpetually contend with partial observability : sensory data provide imperfect
information about the underlying “state” of the environment. It is the hidden state, rather than
sensory data, that is causally related to reward. For example, if one smells food cooking at a
restaurant and sits down to eat, it is not the smell (sensory data) that caused the food (reward)
to appear, but rather the cook who made the food (the hidden state). Both model-based and
model-free learning systems employ causal knowledge to form a belief about the hidden state. The
second half of this chapter is devoted to a review of research on the role of causal models in dealing
with partial observability.

The concept of causality appears in various forms throughout this chapter. Table 1 provides a
summary of the three forms of causality that play key roles in RL: Taking an action in a state
causes both a reward and a transition to a new state, and in partially observable environments the
state generates perceptual signatures (observations). In later sections, I will formalize these ideas
and discuss how they have been studied experimentally.

Historical background

The early study of RL was dominated by behaviorism, which explicitly rejected any notion of an
internal model. The behaviorist view of learning is succinctly summarized by Thorndike’s law of ef-
fect : if an action leads to reward, it will become more likely to be repeated in the future (Thorndike,
1911). While later computational models posited more complex rules governing behavior, virtually
all of them embodied the law of e↵ect (e.g., Mackintosh, 1975; Pearce, 1980; Rescorla & Wagner,
1972). As reviewed in the next section, this characterization also applies to contemporary theories
of model-free RL.
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Nonetheless, a variety of behavioral phenomena suggest that there exist powerful determinants of
responding that cannot be reduced to simple reinforcement. Tolman (1948) described a number of
ingenious experiments whose results are perplexing from a behaviorist perspective. For example,
Tolman showed that rats could take shortcuts or plan detours around obstacles without ever being
reinforced for these actions. Another example described by Tolman is latent learning : a rat allowed
to explore a maze without reinforcement was subsequently faster at learning to navigate to a reward.
Since the rat was not reinforced for its actions during the exploratory phase, this behavior cannot
be explained by the law of e↵ect. Later research on contextual fear conditioning revealed a similar
phenomenon: brief pre-exposure to a context enhanced the acquisition of contextual fear (Fanselow,
1990; Kiernan & Westbrook, 1993).

Tolman interpreted latent learning and other findings as evidence for a “cognitive map”—an internal
model of the environment that encodes information about spatial layout, object attributes, and
relations between objects. Several decades after Tolman’s pioneering work, the idea of a cognitive
map received direct support from recordings in the hippocampus that revealed neurons tuned to
an animal’s location in space (O’Keefe & Nadel, 1978). Subsequent research showed that the
hippocampal cognitive map is replete with representations of landmarks, boundaries, sequences,
and relations (Eichenbaum, 2004; Hasselmo, 2012).

Another line of assault on the law of e↵ect was pursued by Dickinson and his colleagues in the early
1980s (Dickinson, 1985). These studies mapped out the conditions under which instrumental be-
havior is controlled by goals, overriding the actions prescribed by an animal’s reinforcement history.
For example, rats trained to press a lever for sucrose would subsequently cease lever pressing in an
extinction test after the sucrose was separately paired with illness (thereby devaluing the sucrose
reinforcer), demonstrating outcome sensitivity consistent with a cognitive map or goal-directed
view of instrumental behavior (Adams, 1982). Since the instrumental action (lever pressing) was
never directly paired with illness, the law of e↵ect predicts no reduction of responding under these
circumstances. Importantly, goal-directed control of behavior could be superseded by stimulus-
response habits given enough training. In particular, rats overtrained with the sucrose reinforcer
continued to press the lever after the devaluation treatment, demonstrating outcome insensitivity
more consistent with a habit learning system governed purely by the law of e↵ect. These observa-
tions led to the idea of multiple competing learning systems, which will be discussed further in the
next section.

The important point to take away from these studies is that causality is central to a complete
understanding of RL in the brain. The cognitive map encodes information about how actions
cause changes in state, and the goal-directed nature of instrumental behavior suggests that animals
understand the causal e↵ects of their actions on subsequent rewards. These correspond to the first
two causal relationships listed in Table 1.

Reinforcement learning theory

Contemporary RL theory has its origins in a family of engineering techniques developed to deal with
complex planning and control problems (Bellman, 1957). This section introduces these techniques
formally (see Sutton & Barto, 1998, for a thorough introduction), and describes how they have
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Figure 1: Reinforcement learning. (A) The agent-environment interface. (B) Example of a
Markov decision process. Circles denote states, and arrows denote deterministic state transitions
caused by particular actions.

been used to explain experimental findings from psychology and neuroscience. I will first review
some basic notation and concepts, and then discuss several important algorithms for solving the
RL problem.

Formalization of the problem

The basic RL problem is summarized in Figure 1A. An agent at time t occupies state st, takes action
at from a policy ⇡(at|st), receives a reward rt with expected value R(st, at) and transitions to a
new state st+1 according to a transition distribution T (st+1|st, at). The agent continues interacting
with the environment ad infinitum (or until it reaches a terminal state), accumulating rewards.
For example, consider the simple foraging environment shown in Figure 1B. At each point in time,
the forager collects resources at one of two patches and continually chooses whether to stay at one
patch or transit to the other patch. In this example, the patches correspond to states, the resources
correspond to rewards, and the actions are stay/switch decisions.

One criterion of optimality is the maximization of cumulative reward, or return,
P1

t=0 rt. However,
this does not take into account the fact that most biological agents prefer rewards sooner rather
than later (Frederick, Loewenstein, & O’donoghue, 2002). This can be captured by assuming that
future rewards are discounted exponentially, leading to the following definition of discounted return:

R =
1X

t=0

�trt. (1)

The discount factor � 2 [0, 1] represents the agent’s preference for immediate rewards: lower values
of � indicate a steeper discounting of future rewards.
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Because rewards and transitions may be stochastic, and hence R is a random variable, we take the
goal of the agent to be maximizing expected discounted return, or value, defined as:

Q(s, a) = E [R | s0 = s, a0 = a] , (2)

where E[·] is the expectation operator, returning the average of its arguments (in this case averaging
over randomness in states, actions and rewards under a particular policy).To understand this equa-
tion, imagine an agent who takes action a in state s and then pursues policy ⇡ over an infinitely long
trajectory through the state space, meanwhile recording the discounted return. We can imagine
the agent restarting this trajectory many times, and then averaging the discounted return recorded
on each trajectory (this is known as a “Monte Carlo” approximation). The resulting value Q(s, a)
is equivalent to the average of discounted returns over all possible trajectories, weighted by the
probability of each trajectory under policy ⇡. The optimal action in state s maximizes Q(s, a):

a⇤s = argmax
a

Q(s, a). (3)

We say that a policy ⇡⇤ is optimal if it maximizes Q(s, a) for all states. While policies may in
general be probabilistic, the optimal policy is always deterministic, with ⇡⇤(s, a⇤s) = 1 and 0 for all
other actions. In the foraging example given above, suppose that the expected reward in Patch A
is larger than in Patch B; provided � is su�ciently large, the optimal policy is to always take the
“stay” action in Patch A and the “switch” action in Patch B. If � gets small enough, however, the
optimal policy is to stay in Patch B, since switching will result in delayed reward.

The environment described above is known as aMarkov decision process (MDP) because it obeys the
Markov property : state transitions and rewards are independent of the agent’s history conditional
on the current state and action. In the patch foraging example used above, the Markov property
says that the probability of transit to another patch depends only on the current patch and the
agent’s stay/switch decision (likewise for the resource collection at the current patch). The Markov
property enables the value function to be expressed recursively:

Q(s, a) = R(s, a) + �
X

s0

T (s0|s, a)
X

a0

⇡(a0|s0)Q(s0, a0). (4)

This expression is known as the Bellman equation (Bellman, 1957). Intuitively, the Bellman equa-
tions shows that the value function can be broken down into the immediate reward (first term) and
the expected future reward E[Q(s0, a0)] (second term). The sum over future states and actions in
the second term reflects the agent’s uncertainty; in probability theory, this is known as marginal-
ization.The optimal Q-value (i.e., the Q-value under the optimal policy ⇡⇤) can correspondingly be
written as:

Q⇤(s, a) = R(s, a) + �
X

s0

T (s0|s, a)max
a0

Q⇤(s0, a0). (5)

Here we have simply substituted ⇡⇤(a0|s0) = argmaxa0 Q(s0, a0) into Eq. 4. The Bellman equation
serves as the basis of e�cient learning and planning algorithms, which we discuss next.
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Algorithmic solutions

Model-based and model-free algorithms can, loosely speaking, be seen as working on di↵erent sides
of the Bellman equation. Model-based algorithms operate on the right-hand side of the Bellman
equation, in the sense that they compute Q(s, a) by directly applying the Bellman equation to
the learned reward and transition functions. For example, the value iteration algorithm (Sutton
& Barto, 1998) initializes the Q-values randomly and then repeatedly applies Eq. 5 to compute
new Q-values for each state-action pair. Value iteration is guaranteed to converge to the optimal
Q-value. However, it is intractable for large state and action spaces. For this reason, the most
successful modern techniques use some form of local tree search (Browne et al., 2012). These
algorithms employ the model as a means of simulating trajectories though the state space around
the current state, and estimate Q-values on the basis of these trajectories. While there is evidence
that humans carry out something resembling tree search (e.g., De Groot, 1978; Holding & Pfau,
1985; Huys et al., 2012, 2015), our current knowledge about model-based planning in the brain is
very limited (see Daw & Dayan, 2014, for further discussion).

Model-free algorithms operate on the left-hand side of the Bellman equation: Instead of learning
a model, they directly estimate Q(s, a) from experience and cache these estimates in a look-up
table.1 The most influential class of model-free algorithms is known as temporal di↵erence (TD)
learning (Sutton, 1988). All TD algorithms have in common the idea that learning is driven by the
discrepancy between observed and predicted reward (the prediction error). To understand how TD
learning is connected to the Bellman equation, notice that Eq. 5 can be written as an expectation:

Q⇤(st, at) = E

rt + �max

a0
Q⇤(st+1, a

0)

�
, (6)

where we have replaced the reward and transition functions with sampled rewards (rt) and states
(st+1) inside the expectation. The expectation can always be approximated by averaging many
such samples (cf. the Monte Carlo approximation described in the previous section). This equation
implies a consistency condition: If we have appropriately estimated the optimal Q-values, then the
di↵erence between rt + �maxa0 Q⇤(st+1, a0) and Q⇤(st, at) should, on average, be zero:

�t = rt + �max
a0

Q⇤(st+1, a
0)�Q⇤(st, at), (7)

E[�t] = 0. (8)

The variable �t is precisely the prediction error mentioned above, because it reflects the di↵erence
between observed and predicted rewards. What happens if we do not have an accurate estimate of
the optimal Q-values (or we are following a sub-optimal policy)? Then the prediction error will, on
average, be non-zero. In fact, the direction of the prediction error tells you something important
about how to update the Q-values. When the prediction error is positive, the value function
has underestimated the expected future reward and therefore the Q-value should be increased;
likewise, when the prediction error is negative, the value function has overestimated the expected
future reward and therefore the Q-value should be decreased.

1
In practice, storing values in a look-up table for MDPs with many states is ine�cient. For this reason, most

algorithms use some form of function approximation (Sutton & Barto, 1998).
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This is the essential idea underlying one of the most important TD algorithms, Q-learning (Watkins
& Dayan, 1992), which updates an estimate of the optimal value function according to:

Q̂(st, at) Q̂(st, at) + ↵�t (9)

�t = rt + �max
a0

Q̂(st+1, a
0)� Q̂(st, at) (10)

where ↵ 2 [0, 1] is a learning rate parameter. Although it is still a matter of debate what particular
form of TD learning is used by the brain (Niv, 2009), all TD algorithms embody the basic prediction
error logic laid out above.

The main reason that TD learning has figured so prominently in neuroscience is that the phasic
firing of midbrain dopamine neurons appears to correspond closely with the theoretical prediction
error (Bayer & Glimcher, 2005; Glimcher, 2011; Niv & Schoenbaum, 2008; Schultz, Dayan, &
Montague, 1997; Schultz & Dickinson, 2000). Some of the key evidence comes from Pavlovian
conditioning tasks (Schultz et al., 1997), where dopamine neurons fire in response to unexpected
reward (e.g., early in learning) but not to expected reward (e.g., late in learning). Furthermore,
dopamine neurons fire below baseline when an expected reward is omitted. The prediction error
interpretation of dopamine has received support from a wide range of studies, too numerous to
review here (see Glimcher, 2011).

The TD model has also played an important role in the development of animal learning theory
(Ludvig, Sutton, & Kehoe, 2012; Sutton & Barto, 1990). It can be seen as a “real-time” general-
ization of the Rescorla-Wagner model (which does not make predictions about intra-trial events),
allowing the TD model to explain various phenomena outside the scope of the Rescorla-Wagner
model (Rescorla & Wagner, 1972). For example, in trace conditioning, reward is delivered following
an unfilled delay after the o↵set of cue A. Acquisition of a conditioned response is facilitated if an-
other cue (B) is presented during the delay interval (Kehoe, 1982). According to the TD model, this
facilitation occurs because cue B acquires positive value, which generates a large positive prediction
error at the o↵set of cue A, thereby providing an amplified learning signal. TD learning provides a
similar account of second-order conditioning: when cue A is paired with reward, and subsequently
cue B is paired with cue A, cue B acquires the ability to elicit a conditioned response. According
to the TD model, the prediction error is positive when cue B is paired with cue A (since cue A
has a positive value), and this error signal drives learning of a positive value for cue B (Sutton &
Barto, 1990).2

Despite these successes, the TD model is still essentially an implementation of Thorndike’s law of
e↵ect, and hence fails to explain the phenomena discussed in the previous section, such as latent
learning and goal-directed control. What is needed, as Tolman pointed out, is a “cognitive map.”
Model-based RL provides one possible formalization of how a cognitive map can be used to support
goal-directed control (see also Reid & Staddon, 1998). Because model-based RL computes values on
the fly, rather than retrieving cached estimates, it can immediately and flexibly respond to changes
in rewards or transition probabilities, without having to back-propagate the TD error along an
unbroken sequence of states.

It is worth noting here that some authors have proposed mechanisms for goal-directed control that

2
Note that this analysis assumes that the association between B and the absence of reward is not encoded (see

Gershman, Blei, & Niv, 2010, for more discussion of this point).
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are associative rather than model-based (de Wit & Dickinson, 2009; Elsner & Hommel, 2001).
According to these theories, goal-directed control arises from associative links between stimuli,
actions, and outcomes. Supporting evidence comes from studies showing that outcomes can activate
the representations of actions that have caused the outcomes in the past (e.g., Elsner & Hommel,
2001). While these associative theories are not grounded in the formalism of RL, more recent
ideas have begun to bridge the gap. In particular, Stachenfeld, Botvinick, and Gershman (2014)
showed that one way to construct a cognitive map is to learn a predictive representation (Dayan,
1993), which is, in essence, an association between current and future states. This predictive
representation can then be combined with a reward function to e�ciently compute action values.
In addition to reproducing some of the behavior typically attributed a model-based system, the
predictive representation can capture many aspects of the hippocampal cognitive map. Importantly,
the predictive representation is not a causal model of the environment, in the sense that it cannot
be given a causal Bayes net interpretation—it does not encode the transition function that governs
the causal e↵ect of actions on the environment. Rather, it can be understood as a kind of summary
representation of the underlying causal system. Thus, it remains an open question whether goal-
directed control requires a system that learns a causal model of the environment and uses it to
formulate plans.

Transitions and interactions between the systems

The transition from goal-directed to habitual behavior has been rationalized in terms of uncertainty-
based arbitration between model-free and model-based RL (Daw et al., 2005). The idea is that
each learning system keeps track of its uncertainty via Bayesian estimation of its values, and
the system with lower uncertainty is given control of behavior. In the case of the model-free
system, the uncertainty is dominated by the stochasticity of transitions, rewards and actions (all
sources of “statistical noise”). In the case of the model-based system, the uncertainty is dominated
by “computational noise” induced by finite cognitive resources (e.g., truncation of tree search).
Generally speaking, the model-free system requires considerably more experience to suppress its
uncertainty to the level of the model-based system. On the other hand, the model-free system is
much more computationally e�cient, since values can be computed merely by inspecting the look-
up table. Thus, the model-based system controls behavior early in learning, when the model-free
values are mostly useless; later in learning, the model-free system takes control, when its values
become more accurate (statistical noise is reduced through averaging).3

The devaluation experiments described above (Adams, 1982; Dickinson, 1985) provide examples
of this transition. For an animal that has been moderately trained on an instrumental learning
task, the model-based system retains control of behavior (because its values are more accurate
than those of the model-free system), and hence instrumental responding is sensitive to reinforcer
devaluation. For an extensively trained animal, the model-free system (whose value estimates are
now su�ciently accurate) assumes control of behavior, rendering instrumental control insensitive
to devaluation.

Various factors can shift the balance between the two learning systems. For example, environments

3
According to a related account, the transition from model-based to model-free control can be understood in terms

of a speed/accuracy tradeo↵ (Gershman, Horvitz, & Tenenbaum, 2015; Keramati, Dezfouli, & Piray, 2011).
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Figure 2: The Dyna architecture.

in which the reward and transition probabilities change quickly favor the model-free system (Simon
& Daw, 2011). Placing people under working memory load also shifts control to the model-free
system, presumably by diverting some of the cognitive resources upon which the model-based
system depends (Otto, Gershman, Markman, & Daw, 2013). Concomitantly, working memory
capacity predicts the degree to which behavior appears model-based (Otto, Raio, Chiang, Phelps,
& Daw, 2013).

So far, the two learning systems have been treated as largely independent, interacting only in their
competition for control of behavior. However, competition may not be their only form of interaction.
Sutton (1990) proposed that the systems could also interact cooperatively; in this architecture,
called Dyna (Figure 2), the model-based system was used to produce simulated experience from
which the model-free system could then learn. Recently, behavioral evidence for this form of
interaction has begun to emerge (Gershman, Markman, & Otto, 2014). For example, Gershman et
al. (2014) showed that human subjects can make choices on the basis of model-based knowledge
under conditions where the model-free system is ostensibly in control of behavior. The utilization of
model-based knowledge by the model-free system can be enhanced by a brief period of quiescence
(listening to a piece of classical music), consistent with the idea that the model-based system
simulates experience “o✏ine” in the service of model-free learning.

The Dyna architecture also sits well with the observation that the hippocampus appears to simulate
spatial trajectories, leading a corresponding simulation in the striatum, the putative seat of model-
free learning (Lansink, Goltstein, Lankelma, McNaughton, & Pennartz, 2009). If the model-free
and model-based systems interact in this way, it may explain why model-based knowledge infiltrates
reward prediction errors measured in the striatum (Daw, Gershman, Seymour, Dayan, & Dolan,
2011), a finding which is perplexing from the perspective of a competitive architecture. Various
other possibilities for interactions between the two systems are discussed further in Daw and Dayan
(2014).
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Causal knowledge and partial observability

Both model-free and model-based learning rely on a representation of state. However, the state
representation that is relevant for obtaining rewards is often not the representation furnished by
early sensory processing. Rather, the state must be inferred from sensory data. Formally speaking,
this is a case of partial observability (Kaelbling, Littman, & Cassandra, 1998), where an agent only
has access to the hidden state via noisy sensory data. If the hidden state obeys the Markov property,
then we can call this environment a partially observable Markov decision process (POMDP). Bayes’
rule can be employed to infer the posterior distribution over hidden states given sensory data,
and this posterior distribution functions as a “belief state” in a fully observable MDP over which
learning can operate (albeit in a higher-dimensional space). The belief state MDP has the appealing
property that all the machinery of the previous section can be applied to this representation.

From hidden states to latent causes

One way to think about hidden state inference is in terms of latent causes: an MDP corresponds
to a probabilistic causal model in which states and actions jointly cause rewards, transitions, and
sensory data. In the foraging example used above, choosing the “switch” action in Patch A causes
a transition to Patch B and the receipt of reward; in a partially observable setting, the action would
also cause the observation of sensory information (e.g., entering the patch causes the appearance of
a prey type that is informative about which patch has just been entered). Hidden state inference
is a form of causal reasoning in this model, and thus shares much in common with causal reasoning
in other domains. For present purposes, the important point is that even the ostensibly “model-
free” system utilizes these inferential computations, thus further blurring the sense in which such a
system is truly model-free. One plausible possibility, suggested by several authors (Daw, Courville,
& Touretzky, 2006; Rao, 2010), is that the belief state is computed by cortical circuitry late in
the sensory processing stream, and then fed into subcortical circuits responsible for RL. Both
model-based and model-free systems, in this scheme, rely on the same belief state representation.

Rao (2010) has o↵ered one neurobiologically detailed proposal for how this might work in the case of
simple perceptual decisions about random dot motion. In the reaction-time version of the random
dots task (Roitman & Shadlen, 2002), a subject must make a rapid binary decision (left/right) about
the motion direction of randomly moving dots, where some fraction (the coherence) of the dots are
moving in the same direction. By changing the coherence of the dot motion, the experimenter can
parametrically adjust the perceived motion strength, and this produces corresponding changes in
discrimination accuracy (lower accuracy for low coherence) and response time (longer response times
for low coherence). While on the surface the random dots task may not appear like a problem of
latent causal inference, it resembles an ecologically valid problem faced by many animals. Imagine,
for example, a lion moving through the savannah brush; its camouflage induces a noisy, fluctuating
percept, with di↵erent points along the surface of the lion bound together by their common motion.
The visual system must integrate the noisy motion information to discern the lion’s direction of
movement, the latent cause generating the sensory information.

According to Rao (2010), motion selective neurons in area MT report the momentary likelihood
of sensory data (transmitted from early visual cortex) under di↵erent motion directions. The
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likelihoods are integrated over time in area LIP to compute the belief state (i.e., the posterior over
motion directions), producing a ramping of activity as evidence accumulates (Gold & Shadlen,
2002). The striatum (a part of the basal ganglia) receives inputs from cortical regions (including
LIP) and computes the Q-value, which then gets fed into midbrain circuits that compute the
prediction error, reported in the form of dopamine release. The dopamine signal drives updating
of the value function by modulating plasticity at cortico-striatal synapses (Reynolds & Wickens,
2002). Here the value function is defined over belief states and actions (motion direction judgments,
typically registered by a saccadic response).

In addition to explaining how animals could learn to solve the random dots task, Rao’s POMDP
model o↵ers a functional explanation of dopaminergic responses in the task. Nomoto, Schultz,
Watanabe, and Sakagami (2010) found that when dot coherence is 60%, dopamine neurons ramped
up their activity, peaking at the time of response. In the POMDP model, this occurs because the
value is lowest at the highest entropy belief state (i.e., when the animal is completely uncertain),
and increases rapidly as perceptual information reduces the entropy; because the prediction error
tracks temporal di↵erences in the value function, this results in the observe ramping pattern.4

Structure learning

Any RL system operating in a real-world environment must not only perform hidden state inference,
but must also discover the hidden states underlying its observations. This is a form of latent
structure learning (Courville, Daw, & Touretzky, 2006; Gershman & Niv, 2010). In the rest of this
section, I will describe several case studies illustrating how structure learning can explain various
empirical lacunae that have troubled RL theories.

Consider a Pavlovian fear conditioning experiment, in which a cue is repeatedly paired with an
aversive outcome (e.g., a shock). Over the course of training, the cue will come to elicit an innate
fear response (freezing, in the case of rat subjects). If the cue is subsequently extinguished, by
presenting it repeatedly without a shock, the fear response will subside. If states have a one-to-
one mapping with cues, then standard RL theory predicts that extinction produces unlearning of
the (negative) value acquired during training. However, this prediction is problematic, because a
variety of assays demonstrate that the fear memory persists despite extinction, and will reemerge
under certain circumstances (Bouton, 2004). Pavlov (1927) demonstrated that simply presenting
the cue again after a retention interval was su�cient to elicit conditioned responding, a phenomenon
known as spontaneous recovery (Rescorla, 2004). In another procedure, known as reinstatement,
exposing the subject to an isolated shock before testing can lead to conditioned responding to the
subsequently presented cue (Rescorla & Heth, 1975). These phenomena indicate that the states
are not identical with cues—rather, states are latent and must be inferred. The problem is made
di�cult by the fact that nothing tells the observer how many states exist or what their properties
are, hence these must be inferred as well.

A principled approach to this problem can be derived by appealing to ideas from Bayesian non-
parametrics, a field of statistics that deals with inference over latent structures with unbounded

4
More precisely, ramps will occur when the value function is a convex function of the state representation (Ger-

shman, 2014).
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Figure 3: The latent cause theory. Each box represents the animal’s observations on a single
trial. The circles represent latent causes, labeled to distinguish di↵erent causes. The upward arrows
denote probabilistic dependencies: observations are assumed to be generated by latent causes. The
animal does not get to observe the latent causes; it must infer these by inverting the generative
model using Bayes’ rule, as indicated by the downward arrow. As shown at the top of the schematic,
Bayes’ rule defines the probability of latent causes conditional on observations, which is obtained
(up to a normalization constant) by multiplying the probability of observations given hypothetical
causes (the likelihood) and the probability of the hypothetical latent causes (the prior).

complexity (Gershman & Blei, 2012). Recent work has developed models of Pavlovian conditioning
that use Bayesian nonparametric priors over latent causes, allowing the model to simultaneously
infer the number and properties of the latent causes (Gershman et al., 2010; Gershman & Niv, 2012;
Soto, Gershman, & Niv, 2014). Interested readers are referred to these papers for more details;
here I will simply convey a few examples of how these models are applied (see also Redish, Jensen,
Johnson, & Kurth-Nelson, 2007, for a related, non-probabilistic approach).

To a first approximation, a latent cause model is a good representation of the true causal structure
underlying Pavlovian conditioning experiments. Cues do not cause outcomes—the experimenter
causes both cues and outcomes. That is, the experimenter is a latent cause. This shows why it
is useful to think about hidden states in terms of latent causes rather than simply as expedient
mental constructs. As in other domains of cognition, rational analysis leads us to hypothesize that
the mind has evolved the capacity to learn about and represent the underlying causal structure of
the environment (Anderson, 1990).

Gershman et al. (2010) argued that memory recovery following extinction occurs because training
and extinction trials are assigned to separate latent causes. This partition of trials into latent causes
prevents unlearning of the fear memory during extinction, allowing it to return later. The theory
predicts that performing training and extinction in di↵erent contexts will increase the probability
of assigning them to separate latent causes. Bouton and Bolles (1979) confirmed this prediction,
showing that returning the subject to the training context increases conditioned responding (an
e↵ect known as renewal).

One can also reverse the order of training and extinction, so that the extinction phase becomes a
“preexposure” phase, causing a retardation of learning during training known as latent inhibition
(Lubow, 1973). This phenomenon is interesting because there is no reward prediction error during
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the preexposure phase (assuming that values are initialized to 0), and hence no learning signal
according to the TD model. The latent cause model, on the other hand, naturally explains latent
inhibition in terms of changes in the joint probability of cues and outcomes (Gershman et al.,
2010). Latent inhibition is also context sensitive: performing preexposure and training in di↵erent
contexts attenuates the latent inhibition e↵ect (Hall & Honey, 1989). Di↵erential context, according
to the latent cause model, increases the posterior probability that the two phases were generated
by separate latent causes (Gershman et al., 2010).

One might object that positing latent causes is superfluous when the di↵erent contexts are distin-
guished by observable stimuli. Context-dependency could therefore be captured by assuming that
context acts as another cue, so that context e↵ects are a form of compound conditioning. However,
this assumption runs into the problem that contexts do not act like punctate cues such as tones
and lights. Contexts do not summate with other cues: Pairing a previously conditioned context
with a cue does not enhance responding compared to a condition in which the cue is presented
alone (Bouton & Swartzentruber, 1986), and pairing an extinguished context with a cue does not
suppress conditioning to the cue (Bouton & Bolles, 1979). In a similar vein, contexts do not excite
conditioned responding on their own (Bouton & Swartzentruber, 1986). These findings support
the proposal that contexts are modulatory in nature (Swartzentruber, 1995). At present, it is not
clear that existing latent cause theories can adequately account for the modulatory role of context,
but the findings at least cast doubt on a simple compound conditioning account.

The context-dependency of renewal and latent inhibition both rely on an intact hippocampus
(Honey & Good, 1993; Ji & Maren, 2005), leading Gershman et al. (2010) to suggest that the
ability to flexibly infer new latent causes depends crucially on the hippocampus. This suggestion
fits with the work (reviewed above) characterizing the hippocampus as the seat of the “cognitive
map,” but in this case the inferred latent causes might feed into both model-based and model-
free RL. Young rats also appear to lack context-dependent renewal and latent inhibition (Yap &
Richardson, 2005, 2007), possibly due to immature hippocampal development.

Another factor that influences the assignment of trials to latent causes is reinforcement rate. A
classic finding in Pavlovian conditioning is the partial reinforcement extinction e↵ect : partially
reinforcing the cue during training results in slower extinction (Capaldi, 1957; Wagner, Siegel,
Thomas, & Ellison, 1964). This is surprising because standard RL models predict that partial
reinforcement will produce a weaker value estimate that can be extinguished more easily. The
latent cause model, in contrast, o↵ers an intuitive explanation: slower extinction occurs because
similar reinforcement rates during training and extinction provide evidence that the two phases
were generated by the same latent cause (Courville et al., 2006; Gershman & Niv, 2012).

Gershman, Jones, Norman, Monfils, and Niv (2013) took this idea one step further and examined
the e↵ects of manipulating the reinforcement sequence. The logic of these studies was that large
prediction errors during extinction induce the inference of a new latent cause. Thus, extinguishing
gradually (by incrementally reducing the frequency with which a cue was paired with shock) should
prevent the prediction errors from being large enough to induce the inference of a new latent cause,
while being small enough to drive unlearning of the fear memory. The gradual extinction procedure
was compared to a standard extinction procedure and a “gradual reverse” control, in which the cue
and shock were paired with the same probability as in the gradual extinction condition but in reverse
order (i.e., gradually increasing). All the conditions had a bu↵er of 8 unreinforced trials at the end
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of extinction to ensure that conditioned responding fell to the same level across groups. Despite
similar responding at the end of extinction, the groups di↵ered strikingly in their recovery: while
both the standard and gradual reverse groups showed spontaneous recovery and reinstatement,
the gradual extinction group showed no evidence of recovery. This finding is consistent with the
interpretation that gradual extinction led to a single latent cause assignment for both training and
extinction.

These are a few examples of how latent cause models can address the problem of latent structure
learning in partially observable domains. Undoubtedly, the models reviewed here are simplistic in
a number of ways, and other versions attempt to address these shortcomings. For example, both
Courville et al. (2006) and Soto et al. (2014) explored versions allowing multiple latent causes to
be simultaneously active. Lloyd and Leslie (2013) have developed a version of the latent cause
model that deals with a variety of complex instrumental learning phenomena. An important open
question is how these approaches can be more tightly integrated into the RL formalism reviewed
above, and ideally furnished with detailed neurobiological correlates.

Conclusions

In this chapter, I have argued that causal knowledge plays several roles in RL. First, model-based
RL involves building a causal model of the environment and using this model to compute values.
Second, both model-based and model-free RL rely upon inferences about latent causes in partially
observable domains.

For many cognitive psychologists, RL has the inescapable odor of behaviorist ideology, and indeed
traditional model-free RL enshrines this ideology by embracing Thorndike’s law of e↵ect. However,
my hope is that this chapter conveys some of the ways in which theoretical ideas about RL have
evolved beyond the law of e↵ect. Moreover, some of the same formalisms invoked above appear
throughout cognitive psychology. In particular, the probabilistic approach to causal learning and
structure discovery has played a prominent role in the “rational analysis” of cognition (Anderson,
1990; Tenenbaum, Kemp, Gri�ths, & Goodman, 2011). Modern theories of RL are now firmly
ensconced in the cognitive fold.
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