The Identification of Dynamics Plans

Modelos Gráficos Causales

Sebastián Bejos

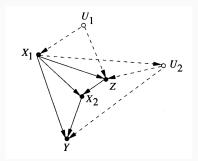
8 de julio de 2019

Instituto Nacional de Astrofísica Óptica y Electrónica

Resumen

- Evaluación probabilística de planes en presencia de variables ocultas.
 - Cada plan consta de varias acciones concurrentes o secuenciales.
 - Cada acción puede ser influenciada por sus acciones predecesores en el plan.
- Se establece un criterio gráfico para reconocer cuándo se pueden predecir los efectos de un plan dado a partir de observaciones pasivas sobre las variables medidas.
- Cuando se cumple el criterio, se proporciona una expresión de forma cerrada para la probabilidad de que el plan logre un objetivo específico.

Motivación



- X_1 y X_2 son **tratamientos prescritos** por un médico para un paciente en **dos momentos distintos**.
- Z representa observaciones que el segundo médico consulta para determinar X₂. Y representa la supervivencia del paciente.
- Las variables ocultas U₁ y U₂ representan, respectivamente, parte de la historia del paciente y la disposición del paciente para recuperarse.

2

Identificación de Planes: Notación y Suposiciones

Un **problema de control** consiste de un grafo acíclico dirigido (DAG) G con conjunto de vértices V, dividido en cuatro conjuntos separados $V = \{X, Z, U, Y\}$, donde:

X = el conjunto de variables de control (intervenciones, tratamientos, etc.);

Z = el conjunto de variables observadas, a menudo llamadas covariables;

U = el conjunto de variables no observadas (latentes);

 $\mathbf{Y} = \text{una variable de resultado.}$

Identificación de Planes: Notación y Suposiciones

- Se ordenan las **variables de control X** = X_1, \ldots, X_n , de modo que cada X_k no es un descendiente de $X_{k+j}(j>0)$ en G, y dejamos que el resultado Y sea un descendiente de X_n .
- Sea N_k el conjunto de nodos observados que no son descendiente de ningún elemento en el conjunto {X_k, X_{k+1},...X_n}

Definición

Un **plan** es una secuencia ordenada $[do(x_1), do(x_2), \dots do(x_n)]$ de asignaciones de valores a las variables de control.

Notación y Suposiciones

Definición

Un plan condicional es una secuencia ordenada $[do(g_1(z_1)), do(g_2(z_2)), \ldots do(g_n(z_n))]$, donde cada g_k es una función de un conjunto Z_k a X_k . El soporte Z_k de cada función $g_k(z_k)$ no debe contener ninguna variable que sea descendientes de X_k en G.

Notación y Suposiciones

 El problema es evaluar un plan (incondicional) mediante el cálculo de

$$P(y \mid do(x_1), do(x_2), \dots do(x_n)),$$

que represente el impacto del plan $[do(x_1), do(x_2), \dots do(x_n)]$ en la variable resultado Y.

- Se dice que la expresión $P(y \mid do(x_1), do(x_2), \dots do(x_n))$ es **identificable** en G si, para cada asignación $[do(x_1), do(x_2), \dots do(x_n)]$, la expresión se puede determinar únicamente a partir de la distribución conjunta de los observables $\{\mathbf{X}, Y, \mathbf{Z}\}$.
- Un problema de control es identificable siempre que $P(y \mid do(x_1), do(x_2), \dots do(x_n))$ sea identificable.

El Criterio de Puerta Trasera Secuencial

Teorema

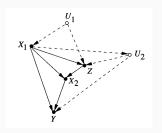
La probabilidad $P(y \mid do(x_1), do(x_2), \dots do(x_n))$ es identificable si, para toda $1 \leq k \leq n$, existe un conjunto \mathbf{Z}_k de covariables que satisfacen las siguientes condiciones:

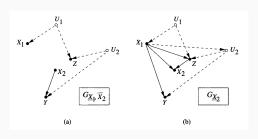
Cuando estas condiciones se satisfacen, el efecto del plan está dado por:

$$P(y \mid do(x_1), do(x_2), \dots do(x_n)) = \sum_{z_1, \dots, z_n} P(y \mid z_1, \dots, z_n, x_1, \dots, x_n)$$

$$\times \prod_{k=1}^n P(z_k \mid z_1, \dots, z_{k-1}, x_1, \dots, x_{k-1})$$

Ejemplo





Secuencia admisible y G-identificabilidad

Definición (Secuencia admisible y *G*-identificabilidad)

Cualquier secuencia Z_1, \ldots, Z_n de covariables que cumplan las condiciones en (i) y (ii) del teorema 3 se llamará admisible, y cualquier expresión que sea identificable según el criterio del teorema 3 se llamará G-identificable.

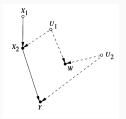


Figura 1: Una opción admisible $Z_1 = W$ que descarta cualquier opción admisible para Z_2 . La elección $Z_1 = \emptyset$ permitiría la construcción de una secuencia admisible $(Z_1 = \emptyset, Z_2 = \emptyset)$.

Corolario: Puerta Trasera Secuencial

Corolario

Un problema de control es G-identificable si y solo si este tiene una secuencia admisible.

Sub-secuencia Admisible Minimal

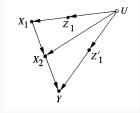


Figura 2: Ejemplo de la no unicidad de los conjuntos mínimos admisibles: Z_1 y Z_1' son minimales y admisibles, dado que se cumple que $(Y \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\! \setminus |Z_1)$ y $(Y \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\! \setminus |Z_1')$ en $G_{\underline{X_1}\overline{X_2}}$

Sub-secuencia Admisible Minimal

Teorema

Si existe una secuencia admisible $Z_1^*, \ldots Z_n^*$ entonces, para toda secuencia admisible minimal $Z_1, \ldots Z_{k-1}$ de covariables, existe un conjunto admisible Z_k .

Corolario

Un problema de control es G-identificable si y solo si el siguiente algoritmo termina con éxito.

- 1. Hacer k = 1
- 2. Escoger cualquier minimal $Z_k \subseteq N_k$ que satisfaga (ii) del teorema 3.
- 3. Si no existe tal Z_k entonces terminar con falla; en otro caso, hacer k=k+1
- 4. Si k=n+1 entonces terminar con exito; en otro caso, regresar al paso 2.

G-identificable

Teorema

La probabilidad $P(y \mid do(x_1), do(x_2), \dots do(x_n))$ es G-identificable si se satisfacen la siguiente condición para toda $1 \le k \le n$:

$$(Y \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\! \setminus |X_1, \ldots, X_{k-1}, W_1, \ldots, W_k)_{G_{\underline{X}_k, \overline{X}_{k+1}, \ldots, \overline{X}_n}},$$

donde W_k es el conjunto de covariables en G que son, no decendientes de $\{X_k, X_{k+1}, \ldots, X_n\}$ y tienen a Y o a X_k como descendientes en $G_{\underline{X}_k, \overline{X}_{k+1}, \ldots, \overline{X}_n}$. Además, si esta condición se satisface, entonces los planes se evalúan como:

$$P(y \mid do(x_1), do(x_2), \dots do(x_n)) = \sum_{w_1, \dots, w_n} P(y \mid w_1, \dots, w_n, x_1, \dots, x_n)$$

$$\times \prod_{k=1}^n P(w_k \mid w_1, \dots, w_{k-1}, x_1, \dots, x_{k-1})$$