

Part 1: Fundamentals

Sebastián Bejos, Eduardo Morales and Enrique Sucar.

Mixed Graphs

Definition

A (directed) **mixed graph** is a graph that may contain two kinds of edges: directed edges (\rightarrow) and bi-directed edges (\leftrightarrow) .

- Between any two vertices there is at most one edge.
- The two ends of an edge we call **marks**.
- There are two kinds of marks: **arrowhead** (>) and **tail** (-).
- We say an edge is **into** (or **out of**) a vertex if the mark of the edge at the vertex is an arrowhead (or tail).

Mixed Graphs

We use the following terminology to describe relations between variables a mixed graph G:

If
$$\left\{\begin{array}{c} X \leftrightarrow Y \\ X \to Y \\ X \leftarrow Y \end{array}\right\}$$
 in \mathcal{M} then X is a
$$\left\{\begin{array}{c} \text{spouse} \\ \text{parent} \\ \text{child} \end{array}\right\}$$
 of Y and
$$\left\{\begin{array}{c} X \in \textbf{sp}(Y) \\ X \in \textbf{pa}(Y) \\ X \in \textbf{ch}(Y) \end{array}\right\}$$

Definition

A vertex X is said to be an **ancestor** of a vertex Y, $X \in an(Y)$, if either there is a directed path $X \rightarrow \cdots \rightarrow Y$ from X to Y, or X = Y.

Ancestral Graphs

Definition

A mixed (directed) graph is an ancestral graph if:

- (a) there are no directed cycles;
- (b) whenever there is an edge $X \leftrightarrow Y$, then there is no directed path from X to Y, or from Y to X.

Figure 1: (a) An ancestral graph.

Figure 2: (b) No ancestral graph.

Collider Paths

Definition

- (a) In an ancestral graph, a nonendpoint vertex X on a path is said to be a **collider** if two arrowheads meet at X
 (i.e., → X ←, ↔ X ↔, ↔ X ←. → X ↔).
- (b) All other nonendpoint vertices on a path are **noncolliders** (i.e., $\rightarrow X \rightarrow$, $\leftarrow X \leftarrow$, $\leftarrow X \rightarrow$, $\leftrightarrow X \rightarrow$, $\leftarrow X \leftrightarrow$)
- (c) A path along which every nonendpoint is a collider is called a **collider path**.

m-Connecting Paths

Definition

In an ancestral graph, a path π between vertices X and Y is **active** or *m*-connecting relative to a (possibly empty) set of vertices *Z*, with *X*, $Y \notin Z$ if

(i) every noncollider on π is not a member of **Z**;

(ii) every collider on *π* is an ancestor of some member of *Z*.
(iii) otherwise, *Z* blocks *π*.

Example: For the ancestral graph $A \rightarrow B \leftrightarrow C \leftarrow D$.

- The path $\pi_1 = (A, B, C, D)$ is active relative to $\mathbf{Z} = \{B, C\}$.
- The path π₁ is not *m*-connecting relative to Z = Ø, Z = {B} or Z = {C}, i.e., Z = Ø, Z = {B} and Z = {C} blocks π₁.

m-Separation

Definition

- X and Y are said to be m-separated by Z if there is no active path between X and Y relative to Z, i.e., if Z blocks all paths between X and Y.
- Two disjoint sets of variables **X** and **Y** are *m*-separated by **Z** if every variable in **X** is *m*-separated from every variable in **Y** by **Z**.

Example: For the ancestral graph $A \rightarrow B \leftrightarrow C \leftarrow D$.

- ({A} ≇_m {D} | {B, C}) since π₁ = (A, B, C, D) is active relative to Z = {B, C}.
- ({*A*} ⊥_{*m*} {*D*}), ({*A*} ⊥_{*m*} {*D*} | {*B*}) and ({*A*} ⊥_{*m*} {*D*} | {*C*}), since there is no active path relative to *Z* = Ø, *Z* = {*B*} and *Z* = {*C*}, respectively.

Formal Independence Models

Definition

An independence model over a finite set **V** is a set **I** of ternary relations $\langle X, Y | Z \rangle$ where **X**, **Y** and **Z** are disjoint subsets of **V**, while **X** and **Y** are not empty.

- The interpretation (X, Y | Z) is that X and Y are independent given Z.
- The independence model associated with an ancestral graph, $I_m(\mathcal{G})$, is defined via *m*-separation as follows:

 $I_m(\mathcal{G}) = \{ \langle X, Y \mid Z \rangle | X \text{ is } m \text{-separated from } Y \text{ given in } Z \}$

Definition

An ancestral graph \mathcal{G} is said to be **maximal** if, for every pair of nonadjacent vertices (X, Y), there exists a set Z $(X, Y \notin Z)$ such that X and Y are m-separated conditional on Z, i.e., $\langle \{X\}, \{Y\} \mid Z \rangle \in I_m(\mathcal{G}).$

Figure 3: (a) A not maximal ancestral graph.

(*Y*, *W*) is the only pair of nonadjacent vertices.

• For $\mathbf{Z} = \{X, Z\}, \pi_1 = (Y, X, Z, W)$ its a path that *m*-connects *Y* and *W*.

- For $Z = \{Z\}$, $\pi_3 = (Y, X, W)$ is an active path as there are no colliders in π_3 , X is noncollider for π_3 and $X \notin Z$.
- For $\mathbf{Z} = \emptyset$, π_1 , π_2 and π_3 are active paths.

 Maximal ancestral graphs (MAGs) are maximal in the sense that no additional edge may be added to the graph without changing the independence model.

Proposition

If $\mathcal{G} = (\mathbf{V}, \mathbf{E})$ is a maximal ancestral graph, and \mathcal{G} is a subgraph of $\mathcal{G}^* = (\mathbf{V}, \mathbf{E}^*)$, then $\mathbf{I}_m(\mathcal{G}) = \mathbf{I}_m(\mathcal{G}^*)$ implies $\mathcal{G} = \mathcal{G}^*$

• The following theorem gives the converse.

Theorem

If \mathcal{G} is an ancestral graph then there exists a unique maximal ancestral graph \mathcal{M} formed by adding \leftrightarrow edges to \mathcal{G} such that $I_m(\mathcal{G}) = I_m(\mathcal{M})$.

Figure 5: (a) An ancestral graph G.

Figure 6: (b) The maximal ancestral graph \mathcal{M} from \mathcal{G} .

Inducing Paths

Definition

An inducing path π relative to a set L, between vertices X and Y in an ancestral graph \mathcal{G} , is a path on which every nonendpoint vertex not in L is both a collider on π and an ancestor of at least one of the endpoints, X and Y.

- Any single-edge path is trivially an inducing path relative to any set of vertices.
- To simplify terminology, we will henceforth refer to inducing paths relative to the empty set simply as inducing paths

Inducing Paths

- The path (*Y*, *Z*, *W*) is an inducing path relative to {*Z*}, but not an inducing path relative to the empty set (because *Z* is not a collider)
- The path (Y, X, Z, W) is an inducing path relative to the empty set, because both X and Z are colliders on the path, X is an ancestor of W, and Z is an ancestor of Y.

Alternative definition to MAGs

Definition

A mixed graph is called a maximal ancestral graph (MAG) if

- i the graph does not contain any directed or almost directed cycles (**ancestral**); and
- ii there is no inducing path between any two non-adjacent vertices (**maximal**).

• The graph is not maximal because the path (*Y*, *X*, *Z*, *W*) is an inducing path between the non-adjacent vertices *Y* and *W*.

- Given any DAG D over V = O ∪ L there is a MAG M over O alone, such that for any disjoint sets X, Y, Z ⊆ O, X and Y are d-separated by Z in D if and only if they are m-separated by Z in the MAG M.
- The following construction gives us such a MAG:

Input: A DAG \mathcal{D} over $O \cup L$ Output: A MAG \mathcal{M} over O

- i For each pair of variables $X, Y \in O$, X and Y are adjacent in \mathcal{M} if and only if there is an inducing path between them relative to L in \mathcal{D} .
- ii For each pair of adjacent variables X, Y in \mathcal{M} ,
 - (a) orient the edge as $X \to Y$ in \mathcal{M} if X is an ancestor of Y in \mathcal{D} ;
 - (b) orient it as $X \leftarrow Y$ in \mathcal{M} if Y is an ancestor of X in \mathcal{D} ;
 - (c) orient it as $X \leftrightarrow Y$ in \mathcal{M} otherwise.

Figure 7: (a) A DAG \mathcal{D} over $\boldsymbol{O} \cup \boldsymbol{L}$ with $\boldsymbol{L} = \{L_1\}$

Figure 8: (b) The MAG ${\mathcal M}$ over ${\boldsymbol 0}$ from the DAG ${\mathcal D}$

Figure 9: (a) A DAG \mathcal{D} over $\boldsymbol{O} \cup \boldsymbol{L}$ with $\boldsymbol{L} = \{L_1\}$

Figure 10: (b) The MAG ${\mathcal M}$ over ${\boldsymbol O}$ from the DAG ${\mathcal D}$

Figure 11: (a) A DAG \mathcal{D} over $\mathbf{O} \cup \mathbf{L}$ with $\mathbf{L} = \{L_1, \dots, L_k\}$ Figure 12: (b) The MAG ${\mathcal M}$ over ${\boldsymbol O}$ from the DAG ${\mathcal D}$

Meanning of the edges of a MAG

Directed edges as $X \rightarrow Y$ means:

- i X is an ancestor of Y.
- ii Y is not an ancestor of X.
- iii This **does not rule out** possible latent confounding between *X* and *Y*.

Bi-directed edges as $X \leftrightarrow Y$ means:

- i X is not an ancestor of Y.
- ii Y is not an ancestor of X.
- iii X and Y are **confounded**.

Canonical DAGs

Definition

If \mathcal{G} is an ancestral graph with vertex set V, then we define the **canonical DAG**, $\mathcal{D}(\mathcal{G})$ associated with \mathcal{G} as follows:

i Let
$$\boldsymbol{L}_{\mathcal{D}(\mathcal{G})} = \{\lambda_{XY} \mid X \leftrightarrow Y \text{ in } \mathcal{G}\}$$

ii DAG $\mathcal{D}(\mathcal{G})$ has vertex set $V \cup L_{\mathcal{D}(\mathcal{G})}$ and edge set defined as:

If
$$\left\{\begin{array}{c} X \to Y \\ X \leftrightarrow Y \end{array}\right\}$$
 in \mathcal{G} then $\left\{\begin{array}{c} X \to Y \\ X \leftarrow \lambda_{XY} \to Y \end{array}\right\}$ in $\mathcal{D}(\mathcal{G})$.

Markov equivalence

- Several MAGs can also encode the same conditional independencies via *m*-separation.
- Such MAGs form a Markov equivalence class which can be described uniquely by a partial ancestral graph (PAG).
- A PAG P has the same adjacencies as any MAG in the Markov equivalence class described by P.
- We denote all MAGs in the Markov equivalence class described by a PAG *G* by [*G*].

Partial Ancestral Graphs

Definition

Let $[\mathcal{M}]$ be the Markov equivalence class of an arbitrary MAG \mathcal{M} . The **partial ancestral graph** (PAG) for $[\mathcal{M}], \mathcal{P}_{[\mathcal{M}]}$, is a partial mixed graph such that

- i $\mathcal{P}_{[\mathcal{M}]}$ has the same adjacencies as \mathcal{M} (and any member of $[\mathcal{M}]$) does;
- ii A mark of arrowhead is in $\mathcal{P}_{[\mathcal{M}]}$ if and only if it is shared by all MAGs in $[\mathcal{M}]$; and
- iii A mark of tail is in $\mathcal{P}_{[\mathcal{M}]}$ if and only if it is shared by all MAGs in $[\mathcal{M}]$.

Causal Bayesian networks

Definition

A **Bayesian network** for a set of variables $V = \{X_1, ..., X_p\}$ is a pair (\mathcal{G} , f), where \mathcal{G} is a DAG, and f is a joint density for V that factorizes as $\prod_{i=1}^{p} f(X_i | pa(X_i))$.

Definition

We call a **DAG causal** if every edge $X_i \rightarrow X_j$ in \mathcal{G} represents a direct causal effect of X_i on X_j .

Definition

A Bayesian network (\mathcal{G}, f) is a **causal Bayesian network** if \mathcal{G} is a causal DAG.

Consistent densities

- A density *f* is consistent with a causal DAG \mathcal{D} if the pair (\mathcal{D}, f) forms a causal Bayesian network.
- A density *f* is consistent with a causal MAG *M* if there exists a causal Bayesian network (*D*^{*}, *f*^{*}) such that *M* represents *D*^{*} and *f* is the observed marginal of *f*^{*}.
- A density *f* is **consistent with a causal PAG** *G* if it is consistent with a causal MAG in [*G*].