Building Maps for Indoor Mobile Robots Using
Ultrasonic and Laser Range Sensors

Abstract

A new method for learning probabilistic grid-based
maps of indoor environments by a mobile robot is de-
scribed. New contributions on two magjor components
of map learning, namely, sensor data fusion and ex-
ploration are proposed. In particular, new models of
sensors and a way of sensor data fusion that takes
advantage of multiple viewpoints are presented. The
exploration approach merges a local strategy, similar
to wall following to keep the robot close to obstacles,
within a global search frame, based on a dynamic pro-
gramming algorithm. We introduce the concept of
travel space as a way to map costs to grid cells based
on distances to obstacles. This method is tested using
o simulated and a real mobile robot with odometer,
ultrasonic and laser range sensors (implemented with
a laser line generator and o camera) with promising
results.

Keywords: Map Building, Exploration, Sen-
sor Data Fusion, Mobile Robots.

1 Introduction

This paper deals with the task of learning a model of
an environment by an indoor mobile robot using its
sensors. The map learned is commonly used by the
mobile robot navigation system while doing a high
level task. Sometimes there is no hand—coded map of
the environment, it is difficult or dangerous to build
a map by a human being, or the hand-coded map
does not take into account the characteristics of the
sensors (Lee, 1996). The ability to learn a map of the
environment increases the flexibility and usefulness of
mobile robots.

The problem of learning a model of an environment
by a mobile robot while it is moving is difficult and
far from being solved (Thrun, 1998). The following
factors impose practical limitations (Thrun, 1998):

e Sensors limitations. Sensors are often not capa-
ble of directly measuring the quantity of interest.

o Perceptual limitations. The perceptual range of
most sensors is limited to a small range around
the robot.

e Sensor noise. Sensor measurements are typically
corrupted by noise.

e Drift/Slippage. Robot motion is inaccurate and
odometric errors accumulate over time.

This paper presents an approach for an indoor mo-
bile robot using its sensors, to learn a Probabilistic
Grid-based Map (PGM) (Elfes, 1989; Thrun et al.,
1998) of an environment. A PGM is a two dimen-
sional map where the environment is divided in square
regions or cells of the same size that have occupancy
probabilities associated to them. A PGM is appealing
because it can be easily used to fuse sensor data. See
(Gallistel, 1990) for other types of maps and (Lee,
1996) for a discussion of advantages and disadvan-
tages of each type of map .

This work considers a mobile robot with a ring
of ultrasonic range sensors, or sonars for short, a
common arrangement used in other previous research
(Thrun, 1998). The robot has as well a laser sensor,
which measures proximity of nearby objects using a
combination of a laser line generator and a camera.
The laser line is parallel to the floor. Distances to ob-
jects can be estimated considering the height of the
laser points within images.

Building a PGM can be described by three major
components:

Sensor data fusion. Multiple sensor data are
mapped and integrated over time to occupancy
probabilites of grid cells. An extended approach
to the sonar data fusion described in (Howard
& Kitchen, 1996) is given. A new laser range
model is also presented. Finally, a way to fuse
data from different sensor types is described.

Exploration. The robot explores its environment
trying to reach the nearest unexplored grid cell
minimizing the travel cost. A novel approach to
merge local strategies, like wall following, within



a global search frame, based on a dynamic pro-
gramming algorithm, is given.

Position estimation. The position of the robot is
continuously tracked, minimizing odometric er-
rors. This approach estimates the position of the
robot based on correlations between laser range
data and the map.

The remainder of this paper is organized as follows.
Sections 2, 3 and 4 describe each of the three compo-
nents for building a PGM. Experimental results using
a mobile robot simulator and a real mobile robot are
presented in section 5. Finally, some conclusions and
future research directions are given.

2 Sensor Data Fusion

The environment is modeled as a set of cells arranged
in a regular two—dimensional grid. The occupancy of
a cell at location (z,y) is measured by the state vari-
able O(z,y) which can have one of two values: occ
(occupied) and free. For each cell, the probability
that O(z,y) = oce, denoted shortly by P(0), is esti-
mated using the sensors of the robot. In this work it is
considered that the robot has three types of sensors:

Ultrasonic range sensors. In this case, let P(O;)
be the occupancy probability of the cell (x,y) de-
tected only by sonars.

Laser range sensors. In the same way, let P(O;)
be the occupancy probability detected only by
this type of sensors.

Maneuverability. The mere fact that a robot moves
to a location (x,y) makes it unlikely that this lo-
cation is occupied. Let P(O,,) be the occupancy
probability detected by this type of sensor.

A cell will be considered occupied if it is detected
occupied by at least one sensor. In this way, the prob-
ability that a given cell is occupied can be estimated
using a logical OR operation among the occupancy
states detected by each type of sensor:

P(0) = P(O; ORO; OR Oy) 1)

To expand the right hand side of (1), it is assumed
that the events O,, O; and O,, are statistically in-
dependent. With this assumption, and after some
algebra, equation (1) becomes:

PO)=1- [ a-P0y) (2)

i=s,l,m

This expression can be used to compute the proba-
bility that a cell is occupied once we have determined
the probability that a cell is occupied by each type
of sensor. The prior probabilities P(O), are initially
set to 0.5 to indicate ignorance. This implies that the
prior probabilities for the variables associated to each
type of sensor ¢ (i = s,l,m) for every cell are given
by:

Pyrior(05) =1 (0.5)"/* (3)
A description of how to compute the probability

that cells are occupied using each type of sensor is
given in the following sections.

2.1 Ultrasonic Range Sensors

There are two main difficulties using sonars: 1) they
have a wide beam, like a 30 degrees cone and 2) a spec-
ular reflection occurs whenever an ultrasonic pulse
encounters a smooth extended surface. In ordinary
office environments which contain smooth walls and
glass doors specular reflection is common (Howard
& Kitchen, 1996). Elfes (1989) and Moravec (1988)
describe an occupancy grid approach in which range
measurements from multiple viewpoints are combined
into a PGM. Each cell in the grid is assigned a single
value indicating the probability that the cell is oc-
cupied. Unfortunately, the occupancy grid approach
does not work well in specular environments (Howard
& Kitchen, 1996). Howard and Kitchen (1996) pro-
pose an improvement of grid-based approaches by in-
troducing the concept of response grid. The basic idea
is that a cell may generate a response (e.g. appears to
be occupied) when viewed from one direction, but will
not generate a response when viewed from another.
Following the approach described in (Howard &
Kitchen, 1996), when an ultrasonic pulse entering a
cell with some direction is reflected back to the detec-
tor, the cell is said to have a response in that direction.
The occupancy value of the cell is determined by as-
suming that any cell that generates a response in one
or more directions must contain at least one surface
and therefore it is occupied. The response of a cell
(z,y) in some direction ¢ is measured by the variable
R (res means response): R(z,y,¢) = res. The full
interval [0,360°)] is divided into n intervals. Let R;,
be the proposition that a given cell (z,y) generates a
response for the direction interval ¢;. The probability
that the cell is occupied using sonars is given by:

P(0,) = P(R; OR --- OR Ry) (4)

To expand the right hand side of (4), it is assumed
that the events R; are mutually independent. With
this assumption, (4) becomes:



n

P(0,) =1-[[(1 - P(Ry)) (5)

i=1

The prior probability P(R;) can be computed from
equation (2):
Pprior (Os)) % (6)
The following sensor model is used to estimate
the probability of a response given a measurement, r,
P(R;|r). Let s be the distance between the cell (z,y)

and the sensor. P(R;|r) for all grid cells under the
sonar cone are estimated by:

Pprior(Ri) =1- (]- -

P(R;|r) = (7
1- ( Pprwr(Ri))(l - I(smowv)ﬁ 7’f s<r
pmor( ) if s>r
przor( )-K—Sminﬁ Zf s=T

where K 8,4, is a constant close to 1, K s, is an-
other constant close to 0, and Nc is the number of grid
cells (N¢ >= 1) at range s covered by the sonar. In
this way, the probability of a cell whose distance s is
greater than the sonar reading r is not changed; when
s = r short sonar readings tend to significantly in-
crease the probability of occupancy, while long sonar
readings tend to slightly increase it; and when s < r
short sonar readings tend to significantly decrease the
probability of occupancy, while long sonar readings
tend to slightly decrease it.

To compute P(R;) given m sensor readings, de-
noted 7 r@ . (™) one has to assume condi-
tional independence between () and r() (i # j)
given that (R;(z,y) = res) is true. In other words:

Pr@|Ry, 7MW . pD p@D) - pm)y = p(r(D|R))
(8)
With this assumption, a probabilistic update rule
for P(R;) can be deduced (Thrun et al., 1998),
(Thrun, 1998):
PRilrM,. .. M)y =11+ Mﬂ“odl]_l
(] ’ ’ 1— P(Rz)
9)
where
r P(Ri|r) 11— P(R;)
P
rod; = H[l _ R ‘T(J))][ P(Rz) ]

This equation can be used to update the probabilities
in an incremental way.
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Figure 1: Laser model. (a) Laser range sensor imple-
mented with laser pointers and a camera. (b) Types
of cells within the laser model.

2.2 Laser range sensor

A camera, together with a laser line generator par-
allel to the floor, are aligned to implement a laser
range sensor. This arrangement can rotate to cover
the whole area around the robot. In the following
analysis we consider the laser line generator as a set
of laser pointers in a radial arrangement.

Let us now consider the uncertainty in the esti-
mated distances due to image resolution. Let h be
the distance between the x—axis of the image and the
laser point within the image, H be the height of the
laser point (a constant), f be the camera focal length
and Z be the distance from the camera center to the
laser point (see Fig. 1 (a)). The relative error of Z
due to image resolution (Ah) is given by (Shigang
et al., 1992):

AZ 1
|51 = 1Ak (10)

Considering similar triangles, the absolute error

E, = |AZ], for a given distance Z, can be expressed

as:
(11)
h

where K; = fA—H is a constant that depends on the
specific camera (f and Ah) and the vertical distance
between the camera and the laser pointers (H). In
order to update the probability P(O;) given a set of

E(2) = K, Z?



laser range data, the proposed model considers the
laser data in consecutive pairs!. Three types of cells
(see Fig. 1 (b)), for two consecutive readings are con-
sidered:

1. Cells associated to each reading.

2. Cells between cells of type (1), considering a lin-
ear interpolation.

3. Cells inside the polygon formed by the camera
and the two readings.

For each type of cell, the probability P(Oy), given
two consecutive readings Z(1), Z(?) is updated in the
following way. Let Z(!) be the reading associated to
one cell of type (1). Then, the probability that this
type of cell is occupied given the reading is given by:

P(01|Z2D) = 1= (1 = Ppriog(0))(1 = Klpnaz) ' #)
(12)
where Kl,,,, is a constant close to 1. This expression
takes into account the absolute error associated to
the reading, and assigns high values to short readings
and low values to large readings. The update rule
for cells of type 1, chooses the minimum value be-
tween the old and the new probability values. In this
way, short laser readings overwrite probabilities due
to longer readings. To update cells of type 2, if the
minimum of P(0;)|Z™M) and P(0;)|Z®) is greater
than the old value, then the minimum value between
PO)|(ZW +Kl,) and P(O)|(Z? +K1,) is choseen.
This means that short readings, as before (consider-
ing the minimum of both readings), overwrite prob-
abilities due to longer readings. Kl, depends on the
belief that these cells are occupied. This value could
be a function on the distance between the two laser
points. To update cells of type 3, if the minimum of
P(0))|ZM) and P(0;)|Z®) is greater than the old
value, then we multiply the old value by a factor KI;
in the interval (0,1). KI; depends on the belief that
these cells are free.
This is a much simpler approach than that of equa-
tion (9) which can be used in this case since laser
range data are less noisy than sonar data.

2.3 Maneuverability

In this case, we use a simple update rule. To update
P(O,,) given the position of the robot, all the cells
under the robot are decreased by a factor K,, in the
interval (0,1).

IThat is, adjacent laser points on an angular sequence.

3 Exploration

Research on exploration strategies has developed two
general approaches: reactive and model based. By far
the most widely—used exploration strategy in reac-
tive robotics is wall following. Model based strategies
vary with the type of model being used, but they are
based on the same underlying idea: go to the least—
explored region (Lee, 1996). A critical issue while ex-
ploring the environment is to estimate the robot po-
sition. There are several successful localization meth-
ods that can estimate the robot’s position using its
sensors (Gutmann et al., 1998). However, most lo-
calization methods fail when the sensors of the robot
are beyond its perceptual capability (Roy et al., 1999)
(i-e. the robot is too far from obstacles). This paper
introduces a novel approach to explore a static indoor
environment. The idea is to reach the nearest unex-
plored grid cell minimizing the travel cost. The travel
cost takes into account the perceptual limitations of
the sensors and tries to maintain a fixed distance to
obstacles while the robot is moving (wall following).
The concept of travel space is introduced to assign
costs to grid cells. The motion policy of the robot
is computed using a dynamic programing algorithm
that includes the costs associated to the travel space.
This approach merges local or reactive strategies with
a global or model based strategy.

The general idea for exploration is to move the
robot on a minimum—cost path to the nearest un-
explored grid cell (Thrun, 1998). The minimum-
cost path is computed using value iteration, a pop-
ular dynamic programming algorithm. In (Thrun,
1998) the cost for traversing a grid cell is deter-
mined by its occupancy value, while in (McKerrow,
1991) the cost is determined by the distance between
cells (see chapter 8 in (Lee, 1996)). This paper pro-
poses an approach that combines local search strate-
gies within a modified version of value iteration de-
scribed in (McKerrow, 1991). When the robot starts
to build a map, all the cells have the same proba-
bility of occupancy P(O) = 0.5. A cell is consid-
ered unexplored when its occupancy probability is in
the interval (close to 0.5) defined by two constants
[Pemin, Pemaz] (Pemin < 0.5 < Pénq,) and ezplored
otherwise.

Cells are defined as free or occupied. A cell is con-
sidered occupied when its P(O) reaches a threshold
value Pon,.; and continues to be occupied while its
P(O) does not fall below a threshold value Popin
(where Popmin < Pomaz)- It is considered free in other
case. This mechanism prevents changes in the state of
occupancy of a cell by small probability changes. We
assume that Pe,, .. < P0Opin, S0 an unexplored cell is
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Figure 2: Travel space due to a single occupied cell

also a free cell. In this way, the PGM becomes a bi-
nary map when cells are classified as occupied or free.
This binary map will be called occupied—free map.

In this work, a cylindrical (circular base) robot was
used, so the configuration space (c—space) (Latombe,
1991) can be computed by growing the occupied cells
by the radius of the robot. In fact, the c-space is
extended to form a travel space. The idea behind
the travel space is to define a way to control the ex-
ploration by a kind of wall following strategy. Wall
following is a local method that has been used to
navigate robots in indoor environments, but unfortu-
nately it can easily get trapped in loops (Lee, 1996).
The travel space together with a dynamic program-
ming technique has the advantages of both, local and
global strategies: robustness and completeness.

Consider the travel space due to a single real oc-
cupied cell in the occupied—free map (see Figure 2).

The travel space splits the free cells of the
occupied—free map in four categories:

1. Occupied cells. These cells are inside the circle
given by the radius of the robot (as in the c-
space) with center in the real occupied cell. After
this expansion, the robot is considered as a single
cell.

2. Warning cells. Cells close to an occupied cell.
Let D,, be the maximum distance between a cell
of this type and its closest real occupied cell.
These cells are called warning cells because their
purpose is to warn the robot about its closeness
to an obstacle. The value of D, takes into ac-
count the perceptual limitations of the sensors.

3. Travel cells. Cells close to a warning cell. Let
D; be the maximum distance between a cell of
this type and its closest real occupied cell. These
cells are called travel cells because their purpose
is to suggest to the robot a path to follow.

4. Far cells. Any free cell (in the occupied—free
space) that is not a warning or a travel cell.

Figure 3: A travel space. From darker to lighter:
occupied cell (black), warning cells (dark gray), travel
cells (light gray), and far cells (white)

In order to assign a higher cost to warning cells
closer to obstacles, each warning cell must record, be-
sides its type, the distance to the nearest occupied cell
dmin- For travel and far cells it is enough to record
the cell’s type. A linear function is used to get the
cost of a warning cell depending on the distance to
the nearest occupied cell.

The travel space can be computed incrementally
after each change of state of a cell in the occupied—
free map while the robot is exploring the environment
(Romero et al., 2000). An example of a travel space
is shown in Figure 3.

A policy to move to the unexplored cells following
minimum—cost paths is computed using the travel
space and a modified version of value iteration. The
algorithm uses two variables, V and M, associated
to each cell. V(z,y) denotes the travel cost from
cell (x,y) to the nearest unexplored cell. M(x,y)
represents the optimal movement to choose, given
that the robot is in that cell. We consider 8 possible
movements of the robot, one per cell in its vicinity. If
M(z,y) = (dz,dy), where dz is the change in z and dy
is the change in y, the set of valid movements is M, =
{(15 O)a(la 1)3(15 O)a(_la 1)3(_15 0)7(_1’ —1),(0, _1)5
(1,—1)}. The idea is to associate costs to cells
depending on its type. If warning cells and far
cells have costs higher than travel cells, then a
wall following strategy for exploration is taken into
account.

For simplicity, cells of type warning, travel or far,
will be call free cells in the travel space. Using the
variables M and V', the algorithm has two steps:

1. Initialization. Unexplored cells (z,y) that are
free in the travel space, are initialized with
V(z,y) = 0, all the other explored cells that
are free in the travel space are initialized with
V(z,y) = co. All the free cells in the travel space
are initialized with an undefined value to M.

2. Update. Let (x,,y,) be the position before the
last movement of the robot. For all the explored
free cells (z,y) # (x,,y,) in c—space do:



Viz,y) < ming,qyem, AV (@ +dz,y + dy) +
Cost((z,y), (dz,dy)}

M(z,y) + arg-minggqayem AV (@ + dz,y +
dy) + Cost((z,y), (dz, dy)}

where Cost((z,y), (dz, dy)) measures the cost of mov-
ing from the cell (z,y) to the cell (x+dx,y+dy). This
function punishes changes in direction and takes the
value C(z+dz,y+dy)+ Dist((z,y), (z+dz, y+dy))+
Kp.. Where Dist(p1,p2) is the distance between cells
p1 and py (1 or v/2), and Kp, represents the cost of the
rotation of the robot to reach the next cell. C(z,y)
represents the cost associated with cell (z,y) in the
travel space, based on its type. This assignment that
punishes direction changes of the robot makes sense
if we consider that rotation changes become a major
source of uncertainty about the position of the robot.

The update rule is iterated, and when the values
(V(z,y), M(z,y)) converge, the robot executes the
movement indicated by M.

Exploration ends when V' = oo for the cell where
the robot is placed, which means that there is no way
to reach an unexplored cell. Each time the value itera-
tion algorithm is called, only the V' values around the
robot are initialized, in a similar way to the bounding
boz described in (Thrun, 1998).

There are two related works. In (Roy et al., 1999),
a coastal navigation method is described, once the
PGM has been built. Each cell in the map contains a
notion of information content available at that point
in the map, which corresponds to the ability of the
robot to localize itself. The information content is
based on the concept of entropy and some assump-
tions are considered to reduce the complexity of the
method. Our approach generates a similar form of
coastal navigation with a simpler and more efficient
method. The incremental algorithm developed in this
paper also fits the time requirements for the explo-
ration task. In another related work (Thrun, 1998),
the probability of occupancy of the cell is used as a
cost associated to the cells. The motion policy, given
by the value iteration algorithm, needs to be postpro-
cessed in order to keep the robot near to the center
of narrow passages (but they do not describe how to
do that). In our approach there is no need to modify
the policy given by the value iteration algorithm. The
local guides, in the form of costs, are inside the value
iteration algorithm, so the policy is optimal given the
costs associated to cells and the cost to move to an
adjacent cell.

Figure 4: The real mobile robot

4 Position Tracking

Position tracking is the problem of estimating the
robot position while it is moving, using its sensors.
As noted in (Thrun et al., 1998), position tracking is
particularly difficult to solve if map learning is inter-
leaved with localization. A recent survey in (Boren-
stein et al., 1996) dedicated to this topic illustrates
the importance of localization and the large number
of existing approaches. The approach used in this pa-
per is a simple version of the techniques described in
(Weib et al., 1994). The position tracking algorithm
computes the actual location of the robot in two steps:

1. Rotation. From the last position of the robot a
laser wvisibility view is computed from the map, using
only the probabilities associated to the laser range
sensors (P(O;(x,y)). For reference, this view will
be called a map view. Then, the map view is con-
verted to a polar map view taking the robot position
as the center, and using linear interpolation to get a
smooth curve. In a similar way, a polar sensor view
is obtained from the current laser range data (sensor
view). The rotation between the last position and the
new position can be estimated using a correlation be-
tween the polar map view and the polar sensor view.

2. Traslation. The position of the robot can be
estimated using a correlation between the map and
the sensor view, once the sensor view has the same
orientation that the map view. In this correlation
only the sensor readings above some threshold value
Kd are considered

5 Experimental Results

This section presents the results obtained using a mo-
bile robot simulator and a real mobile robot. The
mobile robots have odometer, ultrasonic and a low
cost laser range sensor (about 300 US$ vs 8000 US$
of laser-based time of flight range sensor). We use a
Super Scout Mobile Robot with a ring of 16 sonars,
a camera and a laser line generator (see Figure 4).
See (Romero & Morales, 1999) for details about the
sonar model implemented in the simulator. Figures



Figure 5: Laser range sensor operation. From left to
right: (a) Image from the camera. (b) Image with the
laser line generator turned on. (¢) Image of (b) - (a)

@

Figure 6: Laser range sensor operation (cont.). From
left to right: (a) Image with a single laser point per
column. (b) Obstacles in front of the robot

5 and 6 illustrate the laser range sensor operation.
Fig. 5 (a) and (b) show images taken from the cam-
era before and after the laser line generator is turned
on. If we subtract image (a) from image (b) and ap-
ply a median filter (to deal with the noise), the laser
points are emphasized, as it is shown in the Fig 5 (c).
To get a single laser point per column of the image,
we compute the center of mass of every column of
the image, considering the gray level as the mass of
each pixel (black pixels have no mass). The result
of this operation is shown in Figure 6(a) (considering
only points with a total mass above a given thresh-
old value). Finally, Figure 6 (b) shows the mapping
from the laser points in (a) to a map of obstacles in
front of the mobile robot. Note the uncertainty asso-
ciated to long readings. In fact, this behavior of the
laser range sensor makes difficult the comparison of
our map building method with other methods. Most
works use laser—based time of flight ranging systems
where the uncertainty associated to readings does not
depend of the distance to the obstacle.

Figure 7 (a) shows the PGM built by the simulated
robot without using the travel space (i.e. assigning
null costs to warning and travel cells). The grid cells
are 10x10cm? and the map is 10x10m?2. The simulator
introduces an uniform random error on displacements
of £10% and a uniform random orientation error of
about +7 degrees, per movement. The lighter trace
on the map is given by the odometer and it shows
the path followed by the robot. Note that sometimes
the robot gets very close to obstacles. Figure 7 (b)
shows the map built using the travel space and Fig.
7 (c) shows the map built using the real mobile robot

Figure 7: PGMs. White areas represent cells with
occupancy probabilities near to 0. From left to right:
(@) Using the simulator without the travel space. (b)
Using the simulator and the travel space. (¢) Using
the real mobile robot and the travel space

within an office environment with desks, chairs, book-
shelfs, etc. (note the effect of a glass door in the lower
right corner). In these cases, warning cells have costs
in the interval [13, 1] (a linear function was used to es-
timate costs depending on the distance from the cell
to the nearest occupied cell), travel cells have a cost
of 0.001 and far cells have a cost of 6. The warning
cells form a layer of 100 ¢cm. and the travel cells form
a layer of 20 cm. These cost values implement the
wall following strategy to explore the environment, as
can be observed in the map. Also the robot does not
get too close to obstacles even in narrow passages. In-
stead, in narrow passages (where there are only warn-
ing cells) the robot tends to maximize the clearance
between the robot and the obstacles. The map of
the Fig. 7 (b) is also more accurate than the map
built without using the travel space (Fig. 7(a)). This
is because the travel space approach tends to move
the robot to positions where the sensor readings are
more reliable and hence the position tracking algo-
rithm gives better estimations.

Some experiments were performed to evaluate the
changes due to Kp,, the cost of making orientation
changes in the robot movements, during the explo-
ration phase using the simulator. In these exper-
iments we assign a cost of Kp. for rotation of 45
degrees, 2Kp,. for 90 degrees, and so on. Table 1
shows the results, considering the length d (in cm.)
of the path followed by the robot, the total number
of movements made by the robot (n), the amount ()
of orientation changes (in 45 degrees units) made by
the robot, and the ratio (8/n). These results suggest
that higher Kp. values tend to decrease the number of
movements that change the orientation of the robot.
The effect of Kp. is analog to the effect of inertial
mass: it tends to keep the orientation of the robot
unchanged.



Kp. | d n 0 0/n

0 3352 | 284 | 162 | 0.5704
1 3640 | 310 | 163 | 0.5258
2 3596 | 304 | 155 | 0.5098
3 3536 | 306 | 145 | 0.4738

Table 1: Some experimental results for different costs
of orientation changes ( Kp.)

6 Conclusions

A new method for map learning for indoor mobile
robots using ultrasonic and laser range sensors was
presented. This paper extends the approach described
in (Howard & Kitchen, 1996) to fuse ultrasonic range
data, gives a new probabilistic model of laser range
sensors, and presents a method for integrating sensor
data of different types. The experimental results show
that this approach is adequate for sensor data fusion.

Additionally, a new approach for a mobile robot to
explore in an indoor environment that combines local
control (via cost associated to cells in the travel space)
with a global exploration strategy (using a dynamic
programming technique) has been described. As the
experimental results confirm, the exploration follows
a kind of wall following technique to reduce uncer-
tainty in terms of localization, as well as to guide
the robot through narrow passages maximizing the
distance between the robot and the obstacles. This
combination of local and global strategies takes the
advantages of both: robustness of local strategies and
completeness of global strategies. Also a heuristic to
minimize the number of orientation changes, trying
to minimize the accumulated odometric error, is also
introduced.

We plan to explore some dynamic extensions to the
travel space approach considering the specular degree
of cells captured by the sonar model.

References

Borenstein, J., Everett, B., & Feng, L. Navigat-
ing Mobile Robots: Systems and Techniques. Welles-
ley, MA: A K. Peter, Ltd. 1996.

Elfes, A. “Using Occupancy Grids for Mobile Robot
Perception and Navigation”. IEEE Computer, 22(6),
46-57. 1989.

Gallistel, C. The Organization of Learning. MIT
Press. 1990.

Gutmann, J.-S., Burgard, W., Fox, D., &
Konolige, K. “An experimental Comparison of Lo-

calization Methods”. In: Proc. International Confer-
ence on Intelligent Robots and Systems (IROS’98).
1998.

Howard, H., & Kitchen, L. “Generating Sonar
Maps in Highly Specular Environments”. In: Pro-
ceedings of the Fourth International Conference on
Control, Automation, Robotics and Vision. 1996.

Latombe, J-C. Robot Motion Planning. Kluwer
Academic Publishers. 1991.

Lee, D. The Map—Building and Exploration of a
Simple Sonar—Equipped Robot. Cambridge University
Press. 1996.

McKerrow, P. J. Introduction to Robotics. Addison-
Wesley. 1991.

Moravec, H. P. “Sensor Fusion in Certainty Grids
on Mobile Robots”. AI Magazine, 9(2), 61-74. 1988.

Romero, L., & Morales, E. “Uso de una red neu-
ronal para la fusion de lecturas de sonares en robots
moviles”. In: Segundo Encuentro Nacional de Com-
putacion (ENC99) Mezxico. 1999.

Romero, L., Morales, E., & Sucar, E. “A Ro-
bust Exploration and Navigation Approach For In-
door Mobile Robots Merging Local and Global Strate-
gies”. In: IBERAMIA, LNIA. Springer. 2000.

Roy, Nicholas, Burgard, Wolfram, Fox, Dieter,
& Thrun, Sebastian. “Coastal Navigation — Mo-
bile Robot Navigation with Uncertainty in Dynamic
Environments”. In: Proc. IEEE Conf. Robotics and
Automation (ICRA). 1999 (May).

Shigang, L., Ichiro, M., Hiroshi, I., & T.,
Saburo. “Finding of 3D Structure by an Active-
vision—based Mobile Robot”. In: Proceedings of the
IEEE International Conference on Robotics and Au-
tomation. 1992.

Thrun, S. “Learning Maps for Indoor Mobile Robot
Navigation”. Artificial Intelligence, 99(1), 21-71.
1998.

Thrun, S., Bucken, A., Burgar, W., et al. “Map
Learning and High-Speed Navigation in RHINO”. In:
Kortenkamp, D., Bonasso, R. P., & Murphy, R
(eds), Artificial Intelligence and Mobile Robots. AAAT
Press/The MIT Press. 1998.

Weib, G., Wetzler, C., & Puttkamer, E. “Keep-
ing Track of Position and Orientation of Moving In-
door Systems by Correlation of Range-Finder Scans”.
In: Intelligent Robots and Systems. 1994.



