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Abstract. Fault diagnosis in complex systems is important due to the
impact it may have for reducing breakage costs or for avoiding pro-
duction losses in industrial systems. Several approaches have been pro-
posed for fault diagnosis, some of which are based on Bayesian Networks.
Bayesian Networks are an adequate formalism for representing and rea-
soning under uncertainty conditions, however, they do not scale well for
complex systems. For overcoming this limitation, researchers have pro-
posed Multiply Sectioned Bayesian Networks. These are an extension of
the Bayesian Networks for representing large domains, while ensuring
the network inference in an efficient way. In this work we propose a dis-
tributed method for fault diagnosis in complex systems using Multiply
Sectioned Bayesian Networks. The method was tested in the detection of
multiple faults in combinational logic circuits showing comparable results
with the literature in terms of accuracy, but with a significant reduction
in the runtime.
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1 Introduction

Fault detection is an important part of each engineering system, and it is often
a prerequisite for commissioning, so systems must be robust to different types
of faults which translates into high levels of reliability.

Research in this field has been focused on the application of different statis-
tics techniques or Artificial Intelligence (AI), focusing efforts to timely detect
abnormal behaviors from the analysis of the data of the sensed variables which
translates into reduced repair costs.

A complex system is a system formed out of many components whose behav-
ior is emergent, i.e., the behavior of the system cannot be simply inferred from
the behavior of its components. A measure for assessing the complexity of such
system is the amount of information necessary to describe its behavior [1]. Exam-
ples of complex systems include human economies, climate, nervous systems, and
modern energy or telecommunication infrastructures.
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Several approaches have been proposed for fault detection, but not all take
into account the uncertainty of real-world systems. In practice, model uncer-
tainties and measurement noise can complicate fault detection, so the developed
methods must be robust to these conditions. Bayesian Network (BN), represent
an adequate formalism for the representation and reasoning under uncertainty
conditions [19].

In [12], the authors proposed an algorithm for sensor validation by represent-
ing the relationships between the variables by using a Bayesian Network and the
validation process is based on probabilistic propagation. The authors estimate
the values of the variables, identifying the apparent fault from the expected
value and the actual value of the analyzed variable. This work does not take
into account, however, the complexity of the model domain and the distributed
nature of its different components.

Multiply Sectioned Bayesian Networks (MSBNs), proposed by [26], are pre-
sented as an alternative for the modeling of large domain problems. MSBN iden-
tify domain partitions in smaller sub-domains that communicate with each other
from shared information and where the inference process of the global network
is performed efficiently.

In this work we focused on extending the work presented in [12] to a dis-
tributed approach, using the Multiply Sectioned Bayesian Network theory, for
detection of multiple faults in complex systems. The proposal is tested by apply-
ing it to fault detection of combinational logic circuits.

The method was tested for 3 circuit examples, simulating the failed behavior
of some of its components. The results show that, in terms of precision, our
proposal has a behavior similar to the method proposed in [12], but it also
results in a reduced runtime, and offers the possibility of modeling large domain
problems for which the original method is intractable.

The remainder of this paper is organized as follows. First, in Sect. 2 the
related work is presented. Section 3 describes the main concepts related to
MSBN. In Sect. 4, we show the distributed method of fault diagnosis based on
the proposal presented in [12]. In Sect. 5, we show our experimental study for
fault diagnosis applied to combinational logic circuits. Finally, Sect. 6 presents
some conclusions and future work.

2 Related Work

The methods of sensor validation (or more generally, the process of data valida-
tion) consist for two main stages: the detection of data faults and the correction
of these failed data. The detection of defective data identifies dubious values or
errors in the data, and the correction process provides methods to deal with
problematic data [20]. In each category, different tools and methods exist in the
scientific literature, and we will focus on the methods of fault detection as the
main objective of our investigation.

In the state of the art related to fault detection, there are simple methods
based on tests or physical or mathematical models, classifying the data in valid,
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invalid or missing [2,4]. These works, however, require knowledge of the observed
phenomenon, what is not applicable to real problems, and where you do not have
all the information of the study object.

Other studies in Artificial Intelligence have investigated the use of Artificial
Neural Networks (ANNs) for sensor validation. Some of the network architectures
use Multilayer Perceptrons for the estimation of some variables from other known
[7,9,14,17].

In another work, [16], the authors use Multilayer Perceptrons to estimate
variables, based on their values from previous epochs, for which they compare
two approaches for the fault detection process. The first approach is based on
the use of a set of Neural Networks for learning on-line, and the second app-
roach is based on the use of Kalman filters [10]. The study reveals that neural
online learning architectures have potential for estimation purposes in a sensor
validation scheme.

Another technique proposed is Self-Organizing Maps. In these works the data
are grouped into clusters of related data [3,22]. The detection of a fault is based
on a measure of distance to the closest cluster.

Other works combine different Artificial Intelligence techniques. For example,
in [18], the authors proposed a fault detection method using ANNs and Support
Vector Machines (SVM) with Genetic Algorithms (GA).

All of these approaches that are based on the use of ANNs are limited by
the need to learn the model from the complete information of the variables. It
is necessary to use alternative techniques to predict the values of the variables
in the presence of incomplete information or uncertain data.

Other works, such as those proposed in [8,11], introduce the use of Fuzzy
Logic for the task of fault detection. The main limitation of using Fuzzy Logic
is the need for expert knowledge to learn the membership functions.

Another technique used for the validation of sensor data, and which are
robust to the uncertainty of the data, are probabilistic methods. The authors of
[13] proposed sensor validation algorithms that combine different probabilistic
methods, including Bayesian Networks. On the contrary, [21] proposed the val-
idation of data using Sparse Bayesian Learning (SBL) and a Relevance Vector
Machine (RVM), which is an SVM specialization.

Our research is an extension of the work presented in [12], for the validation of
sensors in complex systems in the presence of uncertainty. The method consists
of two fundamental stages: the apparent fault detection stage and the fault
isolation stage.

In the fault detection stage, apparent faults are detected by comparing the
current value with the predicted value through the propagation of beliefs, con-
sidering the rest of the variables as the evidence. This process is repeated for
all variables, identifying those whose value differs from the value predicted as
apparent faults.

In the fault isolation stage, from the apparent faults identified in the first
stage and based on the property of the Markov Blanket (MB), an additional
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Bayesian Network composed of two levels is created. The root nodes represent
the real faults, and the nodes in the lower level represent the apparent faults.

The main advantage of this work is that it does not require fault data that
can be difficult to obtain and is scarce, but it does not take into account the
complexity of models in the inference process. In [6], the author demonstrated
that the inference mechanism in the Bayesian Networks with multiple connec-
tions is a NP-hard problem, so that increasing the complexity (in terms of the
connectivity of the network) of the problem modeled as a Bayesian Network
increases the computational cost of probabilistic inference. That is why in the
work presented in [12], the size of the domain of the problem is an important
aspect, both in the probabilistic model obtained in the fault detection stage and
in the Bayesian Network that is built in the fault isolation stage.

3 Multiply Sectioned Bayesian Networks

Multiply Sectioned Bayesian Networks (MSBNs) were proposed by [26] for the
representation of large domain networks. An MSBN M is a set of Bayesian sub-
nets that together defines a Bayesian Network (BN). M represents probabilistic
dependence of a domain partitioned into sub-domains [25]. This technique con-
stitutes an extension of the junction tree technique [15], where each node in the
tree is formed by the clustering of a group of variables from the original network,
and probabilistic inference is made on this new structure where each grouping
acts as a unit for the passage of messages.

To ensure exact inference, MSBNs must satisfy the following tree conditions.
The mathematical principles, as well as the definitions, are extracted from the
work presented in [24].

(a) The subnets must satisfy a hypertree condition.

Definition 1. Let G = (V,E) be a connected graph sectioned into subgraphs
Gi = (Vi, Ei) such that the Gi’s can be associated with a tree Ψ with the following
property: Each node in Ψ is labeled by a Gi and each link between Gk and Gm is
labeled by the interface Vk ∩ Vm such that for each i and j, Vi ∩ Vj is contained
in each subgraph on the path between Gi and Gj in Ψ . Then Ψ is a hypertree
over G. Each Gi is a hypernode and each interface is a hyperlink.

(b) Variables shared between subnets must form a d-sepset.

Definition 2. Let G be a directed graph such that a hypertree over G exists. Let
x be a node that is contained in more than one subgraph and π(x) be its parents
in G. Then x is a d-sepnode if there exists one subgraph that contains π(x). An
interface I is a d-sepnode if every x ∈ I is a d-sepnode.

(c) The structure of an MSBN is a multiply sectioned DAG (MSDAG) with a
hypertree organization.
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Definition 3. A hypertree MSDAG G =
⊔

i Gi, where each Gi is a DAG, is a
connected DAG such that (1) there exists a hypertree Ψ over G, and (2) each
hyperlink in Ψ is a d-sepset.

Under these conditions an MSBN is defined as:

Definition 4. An MSBN M is a triplet (V,G, P ). V =
⋃

i Vi is the domain
where each Vi is a set of variables, called a subdomain. G =

⊔
i Gi (a hypertree

MSDAG) is the structure where nodes of each DAG Gi are labeled by elements
of Vi. Let x be a variable and π(x) be all parents of x in G. For each x, exactly
one of its occurrences (in a Gi containing {x}∪π(x)) is assigned P (x|π(x)), and
each occurrence in other DAGs is assigned a uniform potential. P =

∏
i Pi is the

joint probability distribution (jpd), where each Pi is the product of the potentials
associated with nodes in Gi. A triplet Si = (Vi, Gi, Pi) is called a subnet of M .
Two subnets Si and Sj are said to be adjacent if Gi and Gj are adjacent.

Figure 1 shows a trivial example of MSBN with three sections or subnets.
The dashed nodes correspond to the variables shared between subnets.

Fig. 1. A example of MSBN with three sections. Each section represents a sub-domain
of the problem. The dashed nodes are the variables shared between adjacent sections.

The use of MSBN is limited to problem domains capable of breaking down
into smaller subdomains. Many complex systems meet this condition so it is
possible to apply this technique.

4 Distributed Fault Detection Method

In this section we briefly describe the proposed method from extending the work
presented in [12] to a distributed approach with the use of the MSBN technique.
To organize the work, the following subsections are divided, taking into account
the two stages proposed by the authors of [12]: fault detection and fault isolation.
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4.1 Fault Detection Stage

In the fault detection stage, a MSBN is constructed, representing the relation-
ships between the variables of the domain to be validated, and partitioned into
sections that satisfy the conditions described in the previous section (partitions
are created from localization principles inherent to each problem domain). For
the construction of the MSBN, we use the research tool WebWeavr-IV [23]. The
four main steps for its construction are summarized below:

(a) Bayesian Networks construction for each section (individual agent level). For
this step the necessary parameters include:
– a set of variables;
– a graph that represents the relations of independence between the vari-

ables; and
– a set of conditional probability distributions.

(b) Knowledge representation at the agent society level. In this stage the struc-
ture for communication between adjacent sections is defined. For this task
we define:
– organization of sections or agents;
– public variables between adjacent sections; and
– hypertree condition check.

(c) Model verification. This stage includes obtaining the junction tree associated
with each section, including:
– global acyclicity test and
– d-sepnode test.

(d) Compilation into Linked Cluster Trees. This structure is responsible for
ensuring efficient communication between the adjacent sections through mes-
sage passing.

For more details related to the construction and inference process of MSBNs
see [26].

In general, the apparent fault detection algorithm consists of the following
steps:
1: Obtaining the MSBN that represents the domain of the problem to validate
2: for new evidence do
3: for each section do
4: for each variable to be validated (usually all) do
5: Propagate the probabilities to obtain the posterior probability distri-

bution of the variable given the new evidence. The propagation process involves
communication between adjacent sections

6: Compare the predicted value (maximum posterior probability) with
the current value of the variable and decide if there is an error

7: end for
8: end for
9: end for

The output of the algorithm consists of a list S of variables with apparent
faults related to the section or sections to which they belong in the case of being
shared variables.
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4.2 Fault Isolation Stage

In the fault isolation stage, new Bayesian Networks are built relative to the
sections of the model to be validated. These new Bayesian Networks consist of
two levels. The nodes in the first level represent, for all variables, the events with
real faults, and the nodes in the second level represent the apparent faults in
all the variables. The relationship between the two levels corresponds with the
Extended Markov Blanket (EMB) for each variable.

The EMB of one variable is defined as the parents, children, and other parents
of their children, including the variable. In [12] the authors showed that it is
enough to find matches between the apparent faults and the Extended Markov
Blanket to isolate the real faults. Considering as new evidence the apparent
faults identified in the previous stage, the probabilities associated with the real
faults of each variable are updated.

For the case where apparent faults are identified in shared variables, the iso-
lation network is formed from the union of the isolation networks corresponding
to each section to which the shared variable belongs. Figure 2 represents the
isolation network obtained for Sect. 1 of the example described in Fig. 1.

Fig. 2. Isolation network corresponding to Sect. 1 of the example of Fig. 1. The nodes
(variables) at the upper level, Ri, correspond to the real faults, and the ones in the
lower level, Ai, to the apparent faults.

5 Experiments and Results

In this section we tested the distributed algorithm of sensor validation for fault
detection in combinational logic circuits. Initially, we will describe the main
steps followed to obtain the models of MSBNs, then we will present the used
evaluation metrics, and finally, we will describe the obtained results.

5.1 Integration of MSBNs in Combinational Logic Circuits

The case studies used to test our proposal correspond to combinational logic
circuits formed by several components (subnets or sections) that communicate
with each other. Each component is formed by a set of logical gates: AND,
OR and NOT. Figure 3 depicts a simple example of a circuit partitioned in five
components.
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Fig. 3. Combinational logic circuit partitioned into 5 components.

For the work with the MSBNs we use the WEBWEAVR-IV toolkit [23], both
for the creation of Bayesian networks at the local level, and for communication
between the adjacent sections globally.

Each component is modeled as a Bayesian Network where each node repre-
sents the input and output variables of each logic gate within the circuit. For
the parameters learning of the BN, the normal behavior of the circuit was simu-
lated with the incomplete information of the variables represented by the BNs.
Figure 4, shows a BN from component U0 in Fig. 3.

Fig. 4. Bayesian Network that represents the relationship between the variables of
component U0 of Fig. 3.

After defining the sections at the local level, the communication structure is
defined at the section level, establishing the variables shared between adjacent
sections and verifying the hypertree condition. The model is also verified with the
global aciclicity test and d-sepset tests. The last step in the construction of the
model is the inference in all the MSBN that consists of two fundamental steps:
the inference at global level using the junction tree technique and the inference
to guarantee the global consistency from the construction of the Linked Cluster
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Trees between adjacent sections for the passage of messages. All these functions
are implemented in the WEBWEAVR-IV toolkit.

To model the unsuccessful behavior of the circuit, three types of failures
were modeled: some component of the circuit stuck to 0, stuck to 1, or negate
the output of a component. The components that fail were randomly selected,
as well as the type of fault that occurs.

5.2 Evaluation Metrics

After performing the isolation stage, the output of our system will be the vari-
ables involved in the fault detection ordered by the probability of the occurrence
of a real failure in each one of those variables. This can be seen as a problem
of information retrieval where it is desirable that, in the first positions of this
ordered list, the variables with real faults are found which would be the relevant
variables.

To test the behavior of our research, we used two evaluation metrics proposed
in the information retrieval work: P@5 and MAP [5]. P@5 is the precision at
the 5-th position in the ranking of results. Mean Average Precision (MAP) is
the Mean of the Average Precision scores for a group of queries, and average
precision is the average of the precision scores at the rank locations of each
relevant variable. This metric takes into account the order in which the variables
are returned and is defined as:

MAP = AV G

( ∑n
i=1 P (i) ∗ rel(i)

|relevant variables|

)
(1)

where n is the number of retrieved variables, P (i) is the precision of the first
i variables, and rel(i) is a binary function indicating if variable at i-position is
relevant or not.

5.3 Results

For the experiments we tested with 3 different examples of logic circuits. To each
example, 20 cases of failures were made, 50% simple faults and 50% multiple
faults (two and three simultaneous failures). Each test case corresponds to the
abnormal behavior of one or more components of the circuit and consists of 100
instances.

Table 1 shows a summary of the test examples. The results are shown inde-
pendently of the sectioning performed on each example.

To evaluate the effectiveness of our proposal we will compare it with the work
presented in [12], which we will call baseline.

Table 2 shows the results of the P@5 and MAP for the three test cases.
As shown in the results for example 1 and 2, the results are the same, which
makes sense because the main difference of our proposal with the baseline is
the representation and the way of making the inference, which translates into
reduced runtime as the complexity of the problem to be modeled increases. For
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Table 1. Summary of the logic gates and the variables of each test example.

Example OR gates AND gates NOT gates Variables

1 8 6 4 25

2 20 24 8 97

3 96 75 44 391

Table 2. Comparison of our proposal vs. [12] (baseline) in P@5 and MAP for the three
combinational logic circuits of Table 1.

Example 1 2 3

P@5 MAP P@5 MAP P@5 MAP

Baseline 0.9417 0.5788 0.8917 0.6113 - -

Our proposal 0.9417 0.5788 0.8917 0.6113 0.8802 0.5771

example 3, given the complexity of the problem, it is not possible to obtain a
solution for the case of the work presented in [12].

Table 3 shows the results of the two metrics used for the detection of simple
and multiple faults. The best results, in terms of P@5, are obtained for the
detection of simple faults, where in most cases the variable with fault is returned
within the first 5 positions of variables with the highest probability of having a
real fault.

Table 3. Comparison between simple and multiple faults in terms of P@5 and MAP.

Example 1 2 3

P@5 MAP P@5 MAP P@5 MAP

Simple faults 1 0.575 0.9 0.5583 1 0.5409

Multiple faults 0.8833 0.5826 0.864 0.6643 0.7262 0.5931

Table 4 shows the comparison in terms of execution time of the work pre-
sented in [12] vs. our proposal. The times are indicated in minutes. This analysis
includes the learning of the parameters, the fault detection stage and the fault
isolation stage. The time reduction of the proposed algorithm is considerable,
and as the complexity of the problem increases, the difference becomes even
more evident. In Example 3, given the size of the problem, it is not possible to
obtain a solution with the baseline method.
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Table 4. Comparison between the average execution time of [12] (baseline) vs. our
proposal. The times are indicated in minutes.

Example 1 2 3

Baseline 0.1173 23.717 -

Our proposal 0.0325 9.07 4368.9

6 Conclusions

We proposed a distributed extension of the work presented in [12], for the multi-
ple faults detection in complex systems. For this, we use MSBNs, that is a tech-
nique for representing large domains that it is possible to partition into smaller
sub-domains. The proposed method was tested for the detection of faults in com-
binational logic circuits. Based on the experiments, we can conclude that the
proposed method maintains the effectiveness in terms of accuracy with respect
to the original work while significantly reducing the execution time which makes
it possible to deal with larger domain models.

As future work, we will apply this approach to other domains, in particular
for diagnosis of wind turbines, which include discrete and continuous variables.
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3. Böhme, T., Cox, C., Valentin, N., Denoeux, T.: Comparison of autoassociative
neural networks and kohonen maps for signal failure detection and reconstruction.
Intell. Eng. Syst. Through Artif. Neural Netw. 9, 637–644 (1991)
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