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Abstract. Reinforcement Learning (RL) algorithms create a mapping
from states to actions, in order to maximize an expected reward and
derive an optimal policy. However, traditional learning algorithms rarely
consider that learning has an associated cost and that the available
resources to learn may be limited. Therefore, we can think of learning
over a limited budget. If we are developing a learning algorithm for an
agent i.e. a robot, we should consider that it may have a limited amount
of battery; if we do the same for a finance broker, it will have a limited
amount of money. Both examples require planning according to a limited
budget. Another important concept, related to budget-aware reinforce-
ment learning, is called risk profile, and it relates to how risk-averse the
agent is. The risk profile can be used as an input to the learning algo-
rithm so that different policies can be learned according to how much
risk the agent is willing to expose itself to. This paper describes a new
strategy to incorporate the agent’s risk profile as an input to the learn-
ing framework by using reward shaping. The paper also studies the effect
of a constrained budget on RL and shows that, under such restrictions,
RL algorithms can be forced to make a more efficient use of the available
resources. The experiments show that as the even if it is possible to learn
on a constrained budget with low budgets the learning process becomes
slow. They also show that the reward shaping process is able to guide
the agent to learn a less risky policy.
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1 Introduction

The purpose of executing a reinforcement learning algorithm is to generate a
mapping from situations to actions so as to maximize a function reward or rein-
forcement signal. The agent must discover by itself which actions yield the best
reward by executing an experimentation process, considering as well the impact
of the current decision over future rewards. These two characteristics, trial-and-
error and delayed reward, are the two most important features of reinforcement
learning [1]. The agent task is to develop a knowledge of its environment by using
an experimentation process. This knowledge is to be exploited afterwards by the
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agent to obtain a reward. However, most RL algorithms learn an (near) optimal
policy without considering a learning cost. The process of learning has a cost
because of the exploration process [2], since deciding to explore an unknown area
implies an expense of some sort, and visiting certain areas in the environment
might lead to large costs. If the agent has a limited amount of resources, or a bud-
get, to pay for these costs, the learning process has to be optimized accounting
for it. This optimization becomes critical within certain applications.

An example of such applications might appear in robotics [3], where a robot
has to learn a task before running out of batteries but, at the same time, avoid
certain actions that might yield a catastrophic outcome, such as the destruction
of the robot. Another example might occur in a finance application [4], where a
policy tries to maximize the utility at a certain time horizon, but at the same
time, avoiding any chance of running out of money. The concept of risk arises
naturally on the latter example, and also the concept of risk aversion, if the prob-
lem is stated as to learn a policy which yields the largest reward but at the same
time minimizing the risk of running out of money. In general terms our problem
is to optimize a certain parameter observing, at the same time, a safety margin
over another parameter. To deal with these type of problems some techniques
and algorithms have been developed under the concept of Safe Reinforcement
Learning or SRL [5]. SRL can be defined as the process of learning policies that
maximize the expectation of the reward in problems where it is important to
ensure reasonable system performance and/or respect safety constraints during
the learning and/or deployment processes [6]. Therefore one could say that SRL
studies the process of reinforcement learning accounting for the safety of the
agent.

So far we have the problem of learning a policy to optimize a resource, while
reducing the probability (or risk) of running out of such a resource during the
learning process. Since the traditional learning algorithms only aim to optimize
a reward, this work proposes the use of reward shaping to model the concept of
risk profile βp and learn policies accounting for it.

The remainder of this paper is organized as follows. Section 2 describes the
most closely related work. In Sect. 3 the proposed approach is described in
detail. Section 4 describes the learning environment and in Sect. 5 the experi-
mental results are given. Finally conclusions and future research work are given
in Sect. 6.

2 Related Work

SRL is a requirement in many scenarios where the safety of the agent is particu-
larly important and, for this reason, researchers are paying increasing attention
not only to maximize the long-term reward, but also to damage and risk avoid-
ance [7,8]. SRL is a relatively new topic, therefore there is still some debate on
how to classify the different techniques used to accomplish it. However, Garćıa
and Fernández [6] proposed a SRL taxonomy which classifies the SRL tech-
niques in two broad groups. The first group includes techniques which modify
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the optimality criterion, the second group includes techniques which modify the
exploration process through the incorporation of external knowledge or the guid-
ance of a risk metric. This work fits into the first group, since it proposes and
modifies the reward function in order to consider the agent’s risk profile.

Risk metrics are considered in several forms in the RL literature, but in most
of them the risk is related to the stochasticity of the environment, therefore
it is related to the inherent uncertainty of the environment [9]. Dealing with
environment uncertainty is not easy because in those environments, even an
optimal policy (with respect to the return) may perform poorly in some cases.
For this reason, and in order to be able to test our exploration strategy without
the randomness which the environment’s inherent uncertainty might generate,
our work will deal only with stationary rewards, and our risk metric will be
tightly related to the amount of resources the agent has at any given time and
to the probability of running out of these resources.

In RL, techniques for selecting actions during the learning phase are called
exploration/exploitation strategies. Most exploration methods are based on
heuristics, rely on statistics collected from sampling the environment, or have
a random exploratory component, i.e. ε − greedy, which aim to explore the
state space efficiently. To avoid risky situations, the exploration process is often
modified by including prior knowledge of the task. This prior knowledge can
be used to provide initial information to the RL algorithm biasing the subse-
quent exploratory process [10,11], to provide a finite set of demonstrations on
the task [12], or to provide guidance [13]. It is important to mention that most
of these exploration methods are blind to the risk of actions, and all of them are
blind to the notion of a budget. It is left as future work to make the exploration
dependent on the budget.

Finally some background on reward shaping will be given now. The prac-
tice of reward shaping in reinforcement learning consists of supplying additional
rewards to a learning agent to guide its learning process, beyond those supplied
by the underlying MDP [14], thus shaping its behavior. This shaping process
results on a faster convergence time to an optimal policy because the additional
rewards provided to the agent makes the exploration process more efficient.
Therefore, reward shaping has the potential to be a very powerful technique for
scaling up reinforcement learning methods to handle complex problems [15], and
it can be used with any reinforcement learning algorithm such as Q-Learning [16].

3 Learning Framework Description

Our learning framework was inspired by the real-life perception of danger and the
concept of risk averseness. As shown in Fig. 1, the same danger can be perceived
as larger or smaller according to the agent who observes it. For a risk-seeking
agent, the danger perception is diminished, but for a risk-averse agent, the danger
is amplified. The same idea applies for budget; any investment is seen as less risky
as the amount of budget increases. Now we will explain our learning framework.
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Fig. 1. Risk-averse agent experiment.

Formally the agent starts with a given amount of resources B0, called budget,
then at each time t = i it receives a reward ri, therefore the accumulated reward
at time, or step, t is:

Rt =
t∑

i=1

ri (1)

And the accumulated budget at time t is shown in Eq. 2. In this research,
each step represents a cost so the budget is reduced accordingly to the length of
the path.

Bt = B0 + Rt (2)

In order to guarantee that a policy can be found with a given budget we must
ensure that B0 > E(Rt), where E(Rt) corresponds to the expected value of the
reward’s sum assuming no discount rate. For this simple gridworld scenario with
only two possible paths this value is simple to calculate as it will be shown later.

3.1 Shaping Rewards

Intuitively we are trying to learn a policy for some Markov Decision Process
(MDP) M = (S,A, T, γ,R)1, and we wish to help our learning algorithm by
giving it additional shaping rewards which will hopefully guide it towards learn-
ing a policy which accounts for βp. To formalize this, we assume that, rather
than running our reinforcement learning algorithm on M = (S,A, T, γ,R), we
will run it on some transformed MDP M ′ = (S,A, T, γ,R′), where R′ = f(R) is
the reward function in the transformed MDP, and and f can take several forms.
1 Where S is a set of states, A is a set of actions, T is a transition function, γ is a

discount factor and R is a reward function.
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In traditional reward shaping research, it has been an additive function, in this
research we use a simple, yet effective form to represent the reward provided to
the learning algorithm. So, if in the original MDP M we would have received a
reward R(s, a, s′) for moving from s to s′ by executing action a, then in the new
MDP M ′ we would receive reward βpR(s, a, s′) on the same event. Now our job
is to select the value of βp to properly shape the reward and derive a risk-aware
policy.

3.2 Mapping the Risk Profile Using Reward Shaping

We used a simple approach to map risk profile by using reward shaping: by
carefully selecting the value of βp. If we pick βp > 1 the agent will have a risk
averse profile, and if 0 < βp ≤ <1, the agent will have a risk seeking profile.
Effectively, with this simple mechanism, a risk averse agent will consider the
rewards (costs) in a pessimistic way and will take lower risks, while a risk seeking
agent will consider the rewards in an optimistic way and will take higher risks.

In this work we only change the original value of R when the rewards are neg-
ative, thus changing the agent’s perception of the investment or effort required
to earn any given final reward Bt. As a sidenote, in an analogous manner the
rewards could be shaped as well by affecting only the positive rewards, however,
in order to be consistent with the explanation given on Sect. 3, only the negative
rewards were shaped.

4 Scenario Description

In order to test the ideas about reinforcement learning considering budget and
risk we used Q-Learning as the reinforcement learning algorithm, and a grid
world with some considerations which will be described on this section.

The strategy was tested in a 10 × 5 grid world, as shown in Fig. 2. The
bottom left square has the coordinate (0, 0), while the upper right square has
the coordinate (10, 5). The grid world includes a wall which the agent cannot
cross (marked in black) and two special squares marked with an E and a $ sign.
The E shows the position of an exit, while the $ square provides the agent with a
special reward. As a convention the reward provided by any given square where
x = i and y = j will be named as ri,j , and the reward provided by the $ square
will be named as r$ regardless of its position. The reward r$ ≥ 1, while the rest
of the squares provide a reward equal to −1.

The task that the agent has to perform is to find its way to the E square
in order to maximize its final reward R. The agent can as well decide to get
the coin first and then head to the exit. Since the reward of every grid world
square equals −1, the reward the agent will receive after reaching the exit will
depend on the Manhattan distance [17] of the route it chooses and on wether
it decides to pick up the coin or not. Let’s call the shortest route which picks
up the coin as Route1 and the shortest route which does not pick up the coin
as Route2. The Manhattan distance of Route1 is MD(Route1) = 17, while
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Fig. 2. Simple grid world used to show the effect on the learned policy of using reward
shaping to modelate the user’s risk profile.

MD(Route2) = 9, therefore the reward for Route1 is R(Route1) = −17+r$ and
R(Route2) = −9. Note that R(Route1) considers the reward provided by the
$ square. The accumulated reward and the accumulated budget are calculated
as stated by Eqs. 1 and 2. Considering that the agent requires one time step to
move from one square to another one, the time required to complete the task
following Route1 is T (Route1) = 17 and T (Route2) = 9. One could anticipate
that the agents decision to choose Route1 will depend on r$, however it will be
shown that it depends as well on the agents risk profile βp.

As mentioned before the initial budget B0 is the amount of resources that
the agent has to complete its task. If we think in terms of a robot and fuel then
the budget is the amount of fuel the agent has, while r$ corresponds to a fuel
tank that the robot can find and use. The variable ri,j is the reward received
at any given (i, j) square, so following on with the robot example, it represents
the fuel the agent has to spend in order to move. The agent aims to find the
exit with as much fuel remaining as possible. If the agent runs out of fuel before
finding the exit then the task is considered as failed and the game is over. With
this in mind a game start when the agent receives its budget and ends if any of
the following conditions occur:

– Condition 1 (Tn1). The agent completed the task and found the exit.
– Condition 2 (Tn2). The agent ran out of budget.

Note that finding the $ square is not part of the task, therefore the agent has
to decide wether it is convenient to visit it to receive r$ or not.

5 Experiments

To test our experiments we used the simulation software Burlap [18] and the RL
algorithm Q-Learning shown in Eq. 3 with γ = 0.90 and the values for α shown
in Table 1. The experiments aim to prove that (i) it is possible to learn a policy
which completes a task with a constrained budget and (ii) that reward shaping
is a good alternative to learn policies which account for the agent’s risk profile.

Q(st, at) ← (1 − αt)Q(st, at) + αt[R(s) + γ max
a

Q(st+1, a)] (3)
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Table 1. Experiment values.

Variable Value(s) Comments

α {0.3, 0.9} The learning rate

B0 {20, 30, 40, 50} The budget at the beginning of each game

r$ {9} The reward for visiting the square $

βp {0.5, 2} The agent’s risk profile

In order to prove these ideas we executed experiments changing the values
of βp and B0. The used values are shown in Table 1.

To refer to any particular combination of these variables a shorthand is used.
For instance the shorthand COIN9-0.9-2-20 is used to label an experiment with
r$ = 9, α = 0.9, B0 = 25 of a risk-averse agent (the number 2 represents a
risk-averse agent while the number 1 represents a risk-seeking agent).

5.1 Experiment Settings

The series of experiments is divided in learning episodes (LE), each one of these
started when the agent received its initial budget and ended when either Tn1 or
Tn2 was accomplished. One experiment consisted of 500 learning episodes and
each experiment was repeated for n = 25 times. The metrics used to evaluate
the results are described in Table 1.

Table 2. Experiment metrics.

Variable Description

EXIT For any given LE it represents the percentage of n where the agent
reached the exit

C1 For any given LE it represents the percentage of n where the agent visited
square $

FR Average final reward that the agent received at the end of any given
learning episode

Table 3 shows that the agent can only receive three different rewards: any
movement on any direction gives the agent a reward equal to −1, if it reaches
square $ it receives a reward of 9, and if it runs out of budget it receives a
reward of −10. Considering this, and assuming that the agent does not run out
of budget, then R(Route1) = −17 + 9 = −8 and R(Route2) = −9; therefore, if
the agent is willing to tolerate the risk of running out of budget it should try to
learn a path similar to Route1, otherwise its safer choice is a path like Route2.

To determine the value of E(Rt) we assumed that there is an equal probability
for the agent to pick either Route1 or Route2. Therefore E(Rt) = 0.5 · −8+0.5 ·
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Table 3. The possible rewards the agent can receive.

State change Reward

Transition to any square −1

Transition to square $ 9

Transition to B0 = 0 −10

−9 = −8.5. From this simple calculation we can tell that B0 has to be larger
than |−8.5| so that it is sufficient to complete the task.

5.2 Experimental Results

Each plot shown in this section includes three subplots, and each one with one
of the metrics described on Table 2. At any given subplot four series are plotted,
and these are labeled as described in Sect. 4. The subplots share the horizontal
axis which represents the learning episode LE.

Fig. 3. Risk-seeking agent experiment.

Figure 3 shows the learning process of a risk-seeking agent (βp = 0.5), and
Fig. 4 shows the learning process of a risk-averse agent (βp = 2). Both risk
profiles were modeled by using reward shaping and the difference between them
is clear: the risk-seeking agent learns to follow Route1 while the risk-averse agent
learns that it is better to follow Route2 while both learn to find the exit located
at the bottom right square of the gridworld. This can be told by observing the
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subplots labeled as EXIT and C1 of each plot. On the EXIT subplot after
learning episode 400 all the plotted series have a success rate larger than 75%.
On the C1 subplot is where the differences between the risk-seeking and risk-
averse agent are: after learning episode 400 the risk-seeking success rate for
this subplot is more than 80%, while for the risk-averse agent is less than 40%,
therefore the latter is developing a policy which ignores the square $ and instead
heads directly towards the exit square.

Each experiment was tested with 4 different values of B0: 20, 30, 40 and 50.
Regardless the value of α and the agent’s risk profile, the more budget the faster
the agent learns its final policy, however it also requires more money to learn
the same policy.

Now lets analyze the impact of modifying the budget by observing Fig. 3. As
mentioned before 4 different values of B0. Also if the agent runs out of budget
(condition Tn2), it receives a reward of −10. These two facts support the agents
behavior near learning episode 0 on subplot FR, which plots the variable Bt

at the moment t when either condition Tn1 or Tn2 is reached: the minimum
value Bt that the agent can reach corresponds to −B0 minus the penalization
for running out of budget. For this reason the minimum value for Bt of series
COIN9-0.3-1-20 is −30. Another important observation on FR subplots is that
as B0 increases, it allows the agent to learn its policy faster, however the tradeoff
is that the learning process becomes more expensive since the area below the
x-axis and the FR curve increases proportionally to B0. Table 4 shows this area
from t = 0 to time t = 100 and from time t = 0 to t = 200 for the FR subplot
shown on Fig. 3.

Our final analysis is related to the impact of learning rate α. A high learning
rate value was used on the experiments reported previously, therefore, just to
prove that this decision has no relevant impact on the learned policy we will
report an experiment with a low learning rate value. Figure 5 shows the results
of the same experiment plotted on Fig. 3, which corresponds to a risk-seeking
agent. The only difference is the value of alpha: the first one uses Q-Learning
with α = 0.9 and the latter uses α = 0.3. Both agents learn a policy which
follows Route1, however the agent which uses α = 0.9 develops its policy faster.
Since the rewards are stationary we expected this behavior. Therefore we can
state that the value of α makes no impact on our process of modeling risk profile
by using reward shaping.

Table 4. Learning cost for different values of B0

B0 FR @ 100 FR @ 200

20 44,896 84,799

30 55,937 88,879

40 59,931 86,766

50 63,647 91,013
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Fig. 4. Risk-averse agent experiment.

Fig. 5. Risk-seeking experiment with low learning rate value.

So far our experiments showed that: it is possible to learn an optimal policy
with a constrained budget, given that this budget is large enough to cover a
minimum cost2; and that with a high budget the agent learns the optimal policy

2 In this case a transportation cost set by the distance between the agent’s starting
point and the exit square.
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faster, but since it is allowed to explore more, the learning cost increases as
shown in Table 4.

6 Conclusions and Future Work

This work provided some references about the lack of consideration of budget in
RL, and how relevant the concept of budget is within several RL applications.
As mentioned before, RL techniques attempt to optimize a reward no matter the
learning cost, and this situation is not suitable when the learning process requires
resources which are limited, as occurs in many real scenarios. Furthermore, not
all agents share the same risk tolerance, however RL techniques do not account
for this issue either.

For these reasons we aimed to work on a SRL technique which consider
budget and risk profile. We provided the agent a negative reward for running
out of resources and weighted this reward by using reward shaping. The negative
reward received by the agent if it runs out of budget forces it to consider the
risk of trying to improve its final reward, while the shaping process allows us to
quantify a qualitative agent’s attribute, such as how risk tolerant it is, and use
it as an input for the learning process.

Our results showed that it is possible to learn a policy even on a constrained
budget. They also showed that the reward shaping process helps learning algo-
rithm to understand the agent’s risk preferences, and allows it to learn different
policies according to its risk profile, i.e. sometimes the agent decided that, in
order to maintain a safety level, it was not an optimal policy to visit square $.

Our future work will be focused on developing strategies to determine the
minimum budget required by a given scenario in order to determine if a solution
is reachable with a certain budget or at a given time horizon for any given
profile. This task is not hard to do in our simple grid world, however it becomes a
very important issue in non-trivial scenarios. We also aim to develop exploration
strategies which consider a budget input; the idea that justifies to have this target
is that an agent should be less prone to exploring new actions as it resources run
low. There is also work to be done related to improving the exploration process
accounting again for budget and risk profile.
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