
Robotics and Autonomous Systems 83 (2016) 1–14

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Automatic discovery of relational concepts by an incremental
graph-based representation
Ana C. Tenorio-González ⇤, Eduardo F. Morales
1 Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, Sta. Ma. Tonantzintla, Puebla, 72840, Mexico

h i g h l i g h t s

• We designed a method to learn relational concepts from a graph-based representation.
• Our method is designed to discover common/useful concepts of an environment.
• Our method can be used by an autonomous agent like a robot.
• Our method learned common concepts in three domains (polygons/furniture/floors).
• Independent human users validated the common concepts learned by our method.

a r t i c l e i n f o

Article history:
Received 8 December 2014
Received in revised form
11 May 2016
Accepted 27 June 2016
Available online 5 July 2016

Keywords:
Robot learning
Automatic concept learning
Concept discovery
Predicate invention
Inductive logic programming

a b s t r a c t

Automatic discovery of concepts has been an elusive area in machine learning. In this paper, we
describe a system, called ADC, that automatically discovers concepts in a robotics domain, performing
predicate invention. Unlike traditional approaches of concept discovery, our approach automatically
finds and collects instances of potential relational concepts. An agent, using ADC, creates an incremental
graph-based representation with the information it gathers while exploring its environment, from
which common sub-graphs are identified. The subgraphs discovered are instances of potential relational
concepts which are inducedwith Inductive Logic Programming and predicate invention. Several concepts
can be induced concurrently and the learned concepts can form arbitrarily hierarchies. The approach was
tested for learning concepts of polygons, furniture, and floors of buildings with a simulated robot and
compared with concepts suggested by users.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The increasing capabilities with which robots are provided at
present, are allowing them to perform different tasks in a better
way. However, before robots can be used to perform simple tasks,
it is normally necessary to provide them with data and complex
programs designed by users to simplify the reasoning process of
the robot. This can be a time consuming process and involves
several iterations until the robot is able to achieve the intended
goals. An alternative approach is to let the robot discover by
itself the required concepts to accomplish its tasks. Robots can
obtain useful data, directly from their own experience with the
environment, that could be used to induce concepts. Such abstract

⇤ Corresponding author.
E-mail addresses: catanace17@inaoep.mx (A.C. Tenorio-González),

emorales@inaoep.mx (E.F. Morales).
1 http://www.inaoe.mx.

concepts can be used to simplify robotics tasks, such as navigation,
planning or reasoning. In this paper, we describe how concepts
can be automatically learned by a robot while it is exploring
its environment. Traditionally, concept discovery departs from a
given set of examples. In this research, the agent automatically
searches and collects instances of potential concepts.

Robot learning has been a very active research area. Most
of the research has been based on reinforcement learning and
programming by demonstration [1,2] and, to a smaller extend, on
concept learning [3]. In reinforcement learning and programming
by demonstration the robot learns how to perform a task and
normally assumes that the state-space representation is specified
beforehand by the user. Other researches have tried to learn
concepts that can be used to represent states useful to a robot,
however, the agent normally learns a single concept at a time and
the user is heavily involved in carefully preparing the learning
settings.

Among the most commonly used approaches for concept dis-
covery are those based on Inductive Logic Programming (ILP) with

http://dx.doi.org/10.1016/j.robot.2016.06.012
0921-8890/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.robot.2016.06.012
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2016.06.012&domain=pdf
mailto:catanace17@inaoep.mx
mailto:emorales@inaoep.mx
http://www.inaoe.mx
http://dx.doi.org/10.1016/j.robot.2016.06.012

2 A.C. Tenorio-González, E.F. Morales / Robotics and Autonomous Systems 83 (2016) 1–14

predicate invention. ILP with predicate invention provides an un-
derstandable representation (to humans) and mechanisms to in-
troduce new predicates not available in the initial background
knowledge. It is based on a logic programming languagewith pow-
erful inferencemechanisms that cannot be found in othermachine
learning techniques. ILP systems using predicate invention can be
classified into approaches based on reformulation and on demand-
driven approaches [4]. Systems using reformulation introduce new
predicates produced by combining or restructuring other predi-
cates to produce a more compact and precise theory (e.g., [5–8]).
The demand-driven approaches introduce new predicates when
the vocabulary is not enough to induce a theory (e.g., [9–18]).

In this paper, we describe a new approach ADC (Automatic
Discovery of Concepts) for discovery of concepts with demand-
driven predicate invention in a robotic domain. The robot gathers
information while exploring its environment, identifies similar
instances of potential concepts and learns relational concepts using
ILP. Unlike previous systems, the proposed algorithm is designed to
learn multiple concepts about objects and their relations, building
hierarchies of concepts, based ondata incrementally obtained from
the direct experience of an agent with an unknown environment.
We applied the proposed approach to learn concepts involving
polygons, furniture, and floors of buildings that could be used for
manipulation and navigation tasks. We evaluated the usefulness
of the induced concepts in new environments and compared them
to the expected concepts of human users. The rest of the paper is
organized as follows. Section 2 describes the close related work
comparedwith ADC. In Section 3, the proposed system is described
in detail. Section 4 presents the experimental results and Section 5
gives general conclusions and future research directions.

2. Related work

Inmost of ILP systems there is a strong dependency on the user,
the data is in many cases, collected by the user before the learning
process, the learning scenarios must be prepared, and usually,
there is no simultaneous concept learning, i.e., only one concept
is learned at a time. In this paper, we propose ADC algorithm to
learn several concepts (also hierarchical concepts) at the same time
with demand-driven predicate invention; what the system learns
depends on the information it gathers during the exploration of an
environment and it is not known in advance.

In particular, among the ILP approaches with demand-driven
predicate invention, Statistical Predicate Invention (SPI) [19] ad-
dresses the discovery of new concepts and proposes a general-
ization of predicate invention, known as statistical learning for
hidden variable discovery. The algorithm, Multiple Relational Clus-
tering (MRC), is presented to cluster objects, attributes and their
relations using Markov logic (an extension of FOL). The process
of clustering is done automatically, and it is equivalent to the in-
troduction of new predicates (predicate invention), where each
cluster represents a unit predicate. In [16] an algorithm based on
teleo-reactive programs (TRP) is proposed for learning new con-
cepts and skills of different hierarchies from existing knowledge.
TRP represents hierarchical procedural knowledge, based on reac-
tive execution of goal-oriented skills. In the manner of a STRIPS
planner, each skill consists of a goal, an initial state or precondi-
tion, an action ormethod to reach the goal, and a final state or post-
condition. First a bottom-up inference mechanism is performed to
identify the current state using the perceptions of the agent and
the background knowledge, then TRP searches for the first high-
level goal that is not satisfied, and tries to form a path in the hi-
erarchy of skills from the current state of the agent to that goal.
When a sequence of skills to achieve the goal cannot be found, the
algorithm introduces new skills. The new skills form their precon-
ditions and goals using preconditions of concepts and skills clos-
est to the goal. SPI and TRP were tested on databases and card

games respectively. Learning of multiple concepts with predicate
invention has also been addressed in Hyper [20,18]. This system
is one of the latest systems using demand-driven predicate inven-
tion in robotics domains. Hyper starts with background knowledge
and can perform predicate invention adding placeholder predi-
cates (predicateswhich are being invented) to the target predicates
that are being induced. It works automatically once the experi-
mental setup has been properly prepared. The system reuses pre-
viously learned concepts for learning new concepts. Positive and
negative examples are provided to the system, the positive exam-
ples are obtained by the robot while it explores the environment
guided by a human (through commands) and the negative exam-
ples are synthetically generated. The system was tested for learn-
ing the concepts of movable, not movable, and obstacle. In Hyper,
multi-predicate and predicate invention is supported, but, pred-
icate invention is performed using templates for new predicates
that should be designed before the learning process. Also, exam-
ples should be provided to Hyper, by databases or by a manually
guided exploration.

ADC introduces new predicates automatically, as SPI, TRP and
Hyper, but also automatically discovers examples of potential
concepts from the environment. In this sense, ADC does not
need databases of examples or using pre-defined templates
for the discovery of new predicates. ADC is able to collect
positive examples and create negative examples for the induction
process. Also as TRP and Hyper, ADC performs incremental
hierarchical multi-predicate learning because of its graph-based
representation. Although, other approaches have been proposed to
also learn hierarchical concepts (e.g., [12,21–27]), they are usually
designed to work on databases or in controlled environments, as
in SPI, TRP and Hyper.

Recently, Meta-Interpretive Learning (MIL implemented by
MetagolD/O) [28,29] has been proposed in ILP based on meta-
rules, induction and abduction to produce higher-order datalog
programs, which takes advantage of predicate invention and re-
cursivity. MIL is based on incremental declarative multi-predicate
learning, using meta-rules to conduct the search of the hypothesis
from a set of examples. Meta-rules are like templates where the
meta-interpreter performs substitutions to introduce new predi-
cates (predicate invention). Predicate invention creates predicates
representing relations instead of objects or propositions. MetagolD
has been used to learn high-order concepts in three domains [29]:
the East–West train challenge, NELL language learning task and for
top-down construction of re-usable robotic strategies in a simpli-
fied model of the world (for construction of walls). MetagolO has
also learned general strategies representing a set of plans (as those
learned by traditional AI planning) that reduce the use of resources
(e.g., battery, distance) [30]. MetagolO has shown the advantage
of using composite objects and actions (formed by other primi-
tive and/or composite objects and actions) to produce resource
efficient strategies from examples. Experiments with composite
elements were performed with a simulated humanoid robot in
one-dimensional space in tasks of delivery and sorting.

ADC is based on inverse entailment induction (Progol [31])
with first-order logic and can perform incrementalmulti-predicate
learning with predicate invention, as Metagol. Metagol has
shown the advantages of learning composite objects and actions,
meanwhile ADC has been used to discover composite concepts
about objects in robotics domains. The use of meta-rules in MIL
is a powerful tool for predicate invention, but it depends on the
number and design of themeta-rules to produce useful predicates.
Also, Metagol, like traditional ILP systems, requires that sets
of examples be provided by the user. In this sense, the main
advantage of ADC over other ILP systems, including Metagol, is its
ability to automatically discover and collect examples of potential
concepts directly from the environment. ADC obtains and creates

A.C. Tenorio-González, E.F. Morales / Robotics and Autonomous Systems 83 (2016) 1–14 3

its positive and negative examples automatically. ADC performs
predicate invention without a template/guide for new predicates,
and although, recursivity is not yet supported by ADC, it could be
supported extending the graph-based representation.

3. Automatic discovery of relational concepts by an incremen-

tal graph-based representation through exploration

Our approach, called ADC (for Automatic Discovery of Con-
cepts), is designed to provide an agentwith the skills to find poten-
tially relevant conceptswhile exploring an unknown environment.
The main parts of ADC are:

1. Explore: Traverse and sense the environment following an
exploration strategy.

2. Represent: Given the information from the sensor’s readings
verify which predicates of the background knowledge can be
satisfied with it. Match each predicate, representing objects or
relations of theworld, with vertexes and edges to incrementally
construct a graph.

3. Induce: After reaching a goal state during the exploration, find
approximately equal frequent sub-graphs from the constructed
graph and create sets of similar sub-graphs. For each set induce
a new concept through an Inductive Logic Programming algo-
rithm, using the corresponding first-order logic representation
of the sub-graphs. Add the new concepts to the existing back-
ground knowledge.

4. Simplify: Each time a new concept is induced, replace the
induced concept in the original graph by a node and repeat
the process until no more common sub-graphs can be found,
allowing the discovery of hierarchical concepts.

The details about these main parts of the proposed algorithm
are presented in the following subsections. Also, the pseudo code of
the proposedmethod is presented in Algorithm 1 and Algorithm 2.

Algorithm 1 The ADC algorithm.
1: Given definitions for objects O and relations among objects R

as background knowledge BK , a set of primitive actions A, an
exploration strategy E, and a set of conditions to identify target
goals T

2: Set groups Cl = ; and graph G = null
3: repeat

4: Perform action a 2 A to explore the environment using E
5: Capture information from the robot’s sensors and identify

objects and their relations in the environment using its cur-
rent BK and add them to graph G, where objects/attributes=
nodes, relations = edges

6: until until current state satisfies T
7: while A frequent sub-graph g is found in G do

8: if g has relevant elements/similar structure to the instances of
an existing group Ci 2 Cl then

9: Let Ci = {g} [Ci
10: else

11: Create a new group Ci = {g}, Cl = {Ci} [Cl
12: end if

13: Let d = Induce Concept(g, Ci, Cl) and BK = {d} [BK
14: G = Graph G compressed using d (with instantiated

variables)
15: if G cannot be compressed using d then

16: G = Graph G compressed using g
17: end if

18: end while

3.1. Incremental graph-based representation

During the exploration phase, ADC incrementally builds a
graph G representing objects and relations identified from sensor
readings in the environment. In order to accomplish this purpose, a
set of basic objectsO and relations R between objects (e.g., touches,
on, near etc.) as well as some basic actions (e.g., move-forward,
turn-right, etc.), represented by predicates, are provided by the
user as background knowledge BK to explore the environment.
So, while the agent is exploring its environment with its current
known actions, it tries to identify elements of the environment
using its current predicates in the BK . These elements are
incrementally added to a graph-based representation of the
environment, where objects and their attributes are represented
as vertexes and relations as edges. When the arity of a relation
is greater than two and there is not direct mapping to a simple
graph,we use conceptual graphs [32] to represent objects and their
relations as concepts and conceptual relations (both, as vertexes of
a graph). In this way, the agent incrementally builds a graph until it
reaches an intrinsic goal (defined by a function that considers the
current state interesting in someway) or an extrinsic goal (defined
normally by the user representing a goal of the current task). This
process is illustrated in Fig. 1 and referred in the Algorithm 1 in
line 5.

3.2. Induction of potential relational concepts

In this research, the agent is not told what concepts to discover
or what constitutes a valid set of examples. To guide the learning
process in this research it is assumed that information that
is repeated in the environment constitutes a potentially useful
concept.

3.2.1. Identification of relational concepts instances in the graph-
based representation.

A graph-based representation G allows the system to identify
potential concepts by searching for frequent sub-graphs g . Since
the identified sub-graphs are structures (formed by objects and
their attributes and relations among them) found many times
in the environment representation, they may represent relevant
structures of the environment and could be used by the agent to
characterize it. Characterizing the environmentwith new concepts
can be useful to identify different states of the world and solve
tasks involving state changes.

We discover frequent sub-graphswhich best compress an input
graph using an inexact matching measure and the minimum
description length principle (MDL) by the Subdue [21] system.
Subdue performs a computationally constrained beam search in
order to discover substructures. At the beginning, a substructure
is selected matching a single vertex of the graph, then, a series
of expansions are performed iteratively through all possible
directions (edges) to create new substructures. On each iteration,
the substructure which best compresses the current graph is
selected, guided by MDL, among all (or up to a computational
limit) possible substructures generated by expansions. Additional
background knowledge and pruning methods are also used
during the search of substructures [33]. The similarity among
substructures, found by Subdue, is calculated by an inexact
matching measure that depends on a threshold value, which
measures the fraction of the size (vertexes and edges) by which
graphs can differ. A value of 0 (default value) implies that
the graphs must match exactly. For our purpose, this value
is set low to promote finding similar (with small differences)
instances of the same concept, and deal with possible errors or
noise in the sensors’ information. Although finding sub-graphs is
equivalent to sub-graph isomorphism, which is NP-complete [34],

4 A.C. Tenorio-González, E.F. Morales / Robotics and Autonomous Systems 83 (2016) 1–14

Fig. 1. A robot explores the floor of a building, using an initial background knowledge, identifies basic elements and builds a graph from which frequent substructures are
identified as instances of potential concepts.

Table 1

Examples of CPU time spent by Subdue (release 2011 available at [35]) in
substructure discovery for different sizes of graphs. Parameters of testing: beam
width: 4, evaluation method: MDL, directed/undirected edges, minimum size
of substructures: 1, maximum size of substructures: 2500, allow overlapping
instances: false, prune: false, threshold: 0.1/0.3. OS: Debian Linux 7.0. Hardware:
CPU: AMD Sempron 3600+ 2 GHz, RAM: 4 Gb 667 MHz.

Number of vertexes Number of edges CPU time (s)

20–50 20–60 ⇡0.07
51–80 70–80 ⇡0.18
81–135 81–140 ⇡5.15
· · · · · · · · ·
4500 4000 ⇡15.05

Subdue is designed to find a large number of substructures under
computational constraints. The inexact matching process for a
graph 1with n vertexes and a graph 2withm vertexes, wherem �
n, has a complexity of O(nm+1), although its performance can be
improved by the use of a branch-and-bound search algorithm [33].
Some examples of Subdue performance, with the parameters
values used in this research, are presented in Table 1. This process
of sub-graph discovery is performed to find each frequent subgraph
g from G referred in Algorithm 1 in line 7.

The performance of the ADC algorithm using the sub-graph
discovery method described above depends on its background
knowledge (number of objects and relations), the characteristics
of the environment, and the size of the graphs formed during
the exploration of an environment. It is expected that with large
background knowledge and environments, the performance of
ADC can be seriously affected. In the experiments presented in this
paper with a simulated robot the performance of ADCwas in terms
of seconds. ADC can only discover concepts derived from frequent
sub-graphs (with at least one relation among their objects). It is
currently limited to represent them as non-recursive first-order
clausal definitions without functional symbols or negation. Using
more expressive definitions is left as future work.

3.2.2. Grouping relational concepts instances in sets
We identify a very large number of sub-graphs by Subdue,

many of which are redundant or instances of more general
concepts. In order to learn more general concepts, ADC performs
a generalization process over graphs. ADC creates sets of similar
instances of sub-graphs. Each group has all the similar sub-graphs,
all their equivalent clausal form, and the current generalization of
the clauses. When a new group is created with a single graph, its

clausal definition also corresponds to the current generalization of
the group.

When a sub-graph gi is discovered, the sub-graph is kept but
also it is transformed into a clause clgi . The body of the clause
clgi is constructed with all the elements in the sub-graph gi, each
object on 2 O (or concept c) and relation rn 2 R of gi correspond
to a literal ln of the body of the clause. The head of the clause is
defined with a new predicate name with its arguments formed
by the distinctive arguments existing in the literals in the body
of the clause. For instance, in Fig. 2 a sub-graph is discovered
in a graph of a scene with pieces of furniture. This sub-graph is
formed by four objects (one seat and three legs), one attribute of
an object (flat with the link is), and three relations (on). When
this sub-graph is represented by a clause, each object and relation
is represented by a literal. The arguments of the literals for the
objects are the name of the instances (seat1, leg1, leg2, leg3) and
the attributes of the objects (flat in the case of seat). The arguments
of the literals of the relations are the objects involved in that
relation. The arguments of the head are the arguments of the
literals in the body of the clause (seat1, flat, leg1, leg2, leg3). As
we produce clauses from sub-graphs, we can take advantage of
powerful machine learning methods for relational concepts. Also,
we can exploit the expressiveness and understandability of a
first-order language (e.g., include variables and relations in the
definitions). The clauses induced by ADC can be directly used by
a robot as independent pieces of knowledge, and can participate in
the discovery of knowledge.

In many cases, different instances of the same concept have a
similar structure with almost the same elements, however, this
is not always the case for some concepts, as illustrated in Fig. 3.
To address this issue, we introduce two measures to define when
to include an instance to a group. The first measure considers the
similarity between the type of elements (objects and relations)
involved in an instance, while the second one measures the
similarity in terms of structural matching. Both measures are
applied to the clausal definitions to create the groups. Suppose we
have the six instances shown in Fig. 3. If we try to group those six
sub-graphs measuring only their structural similarity, it is likely
that sub-graphs 4 and 5will be placed in a group, sub-graphs 2 and
6 in other group, and possibly sub-graphs 3, 4 and 5will be forming
another group. If we consider their basic elements, sub-graphs 1–4
could be placed in one group (with commonelements: seat S, leg L),
and sub-graphs 5 and 6 could be in another group (with common
elements: flat board F , leg L). We used both similarity measures
with preference to the measure involving common elements. If a

A.C. Tenorio-González, E.F. Morales / Robotics and Autonomous Systems 83 (2016) 1–14 5

Fig. 2. A scene with six pieces of furniture (1) is represented by a graph (2), from which a common sub-graph is obtained (3) and represented by a Horn clause (4).

Fig. 3. Examples of concepts (chairs, stools and tables) with their graph representations. Graphs 1–4 illustrate chairs and stools, while graphs 5 and 6 illustrate two kinds
of tables. This figure shows how instances of different concepts can have similar structures but different elements (e.g., figures 2, 6, 4 and 5), and how instances of the same
concepts can have similar structures but different elements (e.g. figures 1, 2, 5 and 6).

new instance is similar to a group in terms of common elements it
is added to that group, otherwise themeasure in terms of structural
differences is used. If there is no group satisfying a threshold value
for at least one of the two measures, then a new group is created
with the new instance.

With the first measure a sub-graph gi is added to a group Ck
if certain percentage of the objects and relations of the clause clgi
of gi can also be found in the common objects and relations Rk
found in the instances of that group. Thismeasure allows to cluster
sub-graphs which share the same objects and relations although
their structures and sizes could be different (this measure is used
in Algorithm 1 line 8).

Let clgi be a new instance clause and Lg be its set of literals. Let
Ck be a group of instances and Rk be the set of common literals in
the clauses of the instances in Ck according to Eq. (3). A sub-graph
gi is added to a group Ck, if a large proportion of the literals Lg in
clgi are common to Rk (see Eq. (1)) and if a large proportion of the
most common literals in Ck (i.e., Rk) are common to the literals in
clgi (see Eq. (2)).

gi 2 Ck iff
|Lg \ Rk|

|Lg |
� th1 (1)

gi 2 Ck iff
|Lg \ Rk|

|Rk|
� th2 (2)

l 2 Rk iff
SCkX

i=1

|{l} \ Lgi | �

|LCk |P
j=1

SCkP
i=1

|{lj} \ Lgi |

|LCk |
(3)

where SCk = number of sub-graphs of Ck, LCk = set of literals
of all graphs in Ck and th1, th2 = threshold values. Let N(l) =

name of literal l and L a set of literals:

{l} \ L =
⇢
l if N(l) = N(k) and k 2 L
; otherwise. (4)

The second measure takes into account the size and structure
of the sub-graphs. A sub-graph gi is added to a group of sub-graphs
Ck if the average cost of structural changes to make gi = gk 2 Ck
for all the sub-graphs in Ck is smaller than a threshold value (see
Eq. (5)). Thematchcost(gi, gk) corresponds to the inexact matching
measure used in Subdue, this function calculates the minimum
cost to convert one graph to another, considering a cost based on
deletion, insertion and substitution of vertexes and edges, through
a branch-and-bound tree search algorithm [21] (this measure is
used in Algorithm 1 line 8).

gi 2 Ck iff

SCkP
j=1

matchcost(gi, gj)

SCk
 th3 (5)

where th3 = threshold value.
The similarity between instances in a group depends of the

values given to the thresholds th1, th2 and th3.
If the thresholds th1 and th2 are set to 0, the instances in a

group could have clauses without any literal in common. If these
thresholds are set to 1, all the instances in a group should have
the same literals in their clauses. Thresholds th1 and th2 higher
than 0.5 promote that instances, with a large number of literals in
common in their clauses, are grouped together. In our experiments
these thresholds values were empirically set to th1 = 0.6 and
th2 = 0.7 for all the domains. Varying the threshold th3 produces
instances withmore or less similar structures (vertexes and edges)

6 A.C. Tenorio-González, E.F. Morales / Robotics and Autonomous Systems 83 (2016) 1–14

in the same group. If it is set to 0, instances in a group will have the
same structure. In our experiments, the best results were obtained
when this value was less or equal than 3.0 due to the size of
the sub-graphs (less than 30 vertexes) and the cost of comparing
sub-graphs by the inexact matching measure. Higher values of
th3 may be needed for large graphs. Instances with very different
elements and/or structures in the same groupproduce very general
definitions, possibly covering several useful concepts.

3.2.3. Induction of definitions of potential relational concepts
Each time a sub-graph is added to a group, ADC runs a

generalization process (see the Algorithm 2). As we mentioned,
each sub-graph gj in the group Ck is also represented by a clause
clgj , then, when a new discovered sub-graph gi is added to a group
Ck, its respective clause clgi together with the rest of the clauses of
the instances in the group are used as positive examples Ex+ for
the induction of a concept definition newD.

Also a set of negative examples Ex� is constructed. This set
includes clauses of the instances clgo and concept definitions dj
of other groups Cj 2 Cl and negative examples artificially created
(Ex�ar) by deleting literals from positive examples Ex+ of the group
where the new graph was added (see Eq. (8)). This prevents ADC
from over-generalizations from few examples. The group concept
definition is re-induced each time a new sub-graph is added to
the group (see Algorithm 2). Currently, the induction process is
performed by the Progol system based on inverse entailment and a
general-to-specific search [31]. The process is described as follows:

newD Induce(BK , Ex+, Ex�) % induces a new definition (6)

where:

Ex+ = {clgm 2 Ck} % set of positive examples (7)

Ex� = {dj 2 BK |dj 6= d} [{clgo 2 Cj|Cj 2 Cl ^ Cj 6= Ck}
[Ex�ar % set of negative examples (8)

where d is the current concept definition in the group. If the group
has one instance, this instance will be the current definition. If the
group has two or more instances, their induced generalization will
be the current definition. And,

Ex�ar = Modify(Ex+) (9)

where, Modify creates new negative examples from the positive
examples Ex+ (line 5 in Algorithm 2). Each clg 2 Ex+ has the form
hg O, Rwhere hg is the head of the clause, O = {o1, o2, . . . , on}
is the set of literals in the clause that describes objects, and R =
{r1, r2, . . . , rm} is the set of literals that describes relations among
objects.Modify creates the following clauses as negative examples
(if they are not members of Ex+):

hg O (a clause without relations)
hg R (a clause without explicit objects)
hg O, R0|R0 ⇢ R (clauses with a smaller number of relations).

Suppose we have the clause clgl as one positive example:

s1(seat1, flat1,leg1, leg2, leg3) : �
seat(seat1, flat1), leg(leg1), leg(leg2),
leg(leg3), on(seat1, leg1),
on(seat1, leg2), on(seat1, leg3)

and

s1(seat1, flat1,leg1, leg2, leg3) : �
seat(seat1, flat1), leg(leg1), leg(leg2),
leg(leg3), on(seat1, leg1), on(seat1, leg2)

as a second positive example clgm . Both clauses as instances of the
same group. Then, the negative examples artificially created from
the first positive example clgl are:

Clause without relations:
s1(seat1, flat1,leg1, leg2, leg3) : �

seat(seat1, flat1), leg(leg1), leg(leg2),
leg(leg3).

Clause without explicit objects:
s1(seat1, flat1,leg1, leg2, leg3) : �

on(seat1, leg1), on(seat1, leg2),
on(seat1, leg3).

Clauses with a smaller number of relations:
s1(seat1, flat1,leg1, leg2, leg3) : �

seat(seat1, flat1), leg(leg1), leg(leg2),
leg(leg3), on(seat1, leg2),
on(seat1, leg3).

s1(seat1, flat1,leg1, leg2, leg3) : �
seat(seat1, flat1), leg(leg1), leg(leg2),
leg(leg3), on(seat1, leg1).

s1(seat1, flat1,leg1, leg2, leg3) : �
seat(seat1, flat1), leg(leg1), leg(leg2),
leg(leg3), on(seat1, leg1),
on(seat1, leg3).

s1(seat1, flat1,leg1, leg2, leg3) : �
seat(seat1, flat1), leg(leg1), leg(leg2),
leg(leg3), on(seat1, leg2).

s1(seat1, flat1,leg1, leg2, leg3) : �
seat(seat1, flat1), leg(leg1), leg(leg2),
leg(leg3), on(seat1, leg3).

Note that the clause:

s1(seat1, flat1,leg1, leg2, leg3) : �
seat(seat1, flat1), leg(leg1), leg(leg2),
leg(leg3), on(seat1, leg1),
on(seat1, leg2)

was not produced as a negative example as it is one of the positive
examples (clgm) of the group.

The artificial negative examples (Ex�ar) are created to avoid over-
generalization. At the beginning, each group has few instances of a
potential concept and it is likely that the induced concept will be
too specific. However, as different instances are added to the group,
its definition becomes more general, as the artificial negative
examples (clauses) are produced only if they cannot be found in the
positive examples. Since, it is unknownhowmany instanceswill be
collected in each group and what elements (objects and relations)
will have future instances, the automatic generation of negative
examples helps us to reduce possible over-generalizations. Also,
the Ex�ar are useful when positive examples of some groups cannot
be used as negative examples to other groups, because there are
significantly differences between groups.

The number of concepts induced by ADC can grow quickly
and several strategies can be used to control it. In particular, the
concepts can be arranged in lattices that can be used to decide
which concepts to consider at the same time. The number of
concepts which are learned in a session of learning can be limited,
and also, methods to select relevant concepts can be developed. In
thisworkwe havemade some experimentswith the use of lattices.

3.3. Hierarchical relational concepts

The new induced definition newD can be used to compress
the current graph G by substituting the instances of the whole
sub-graph (representing newD) by simple nodes with their
corresponding arcs. If the new definition has variables, they must
be instantiated before the concept can be used for compressing the
graph. In our case, the variable arguments of the predicates are
arbitrarily, although consistently, instantiated. The definition, with

A.C. Tenorio-González, E.F. Morales / Robotics and Autonomous Systems 83 (2016) 1–14 7

Fig. 4. Example of compression of a graph and generation of a new input graph. In the figure, a structure representing four frequent sub-graphs is used to compress the
graph and create the concept of stool (C1). Then, the process is repeated and the concept of table is generated (C2). Finally, these concepts are used, in the compressed graph,
to create the concept of ‘‘table and stool’’ (C3).

Algorithm 2 Induce definitions of potential concept
1: Induce Concept(g, C, Cl)
2: Let d1 = clause definition constructed from g
3: if group C has associated a definition d in BK then

4: Let Ex+ = C
5: Create artificial negative examples guided by current in-

stances in Ex+, Ex�ar = Modify(Ex+)
6: Let Ex� = {di 2 BK |di 6= d}[{go 2 Ci|Ci 2 Cl^Ci 6= C}[Ex�ar
7: newD = Induce(BK , Ex+, Ex�)
8: if newD could not be induced then

9: Discard newD
10: Let C = C � {g}
11: Create a new group Cj = {g}, Cl = {Cj} [Cl
12: Set d = d1
13: else

14: Set d = newD
15: end if

16: else

17: Set d = d1
18: end if

19: Return d

its original arguments (variables), however, is kept and can be used
for further learning. Currently, the compression of G using newD
is performed through the algorithm provided by Subdue, applying
the inexact matching measure to find the sub-graph representing
newD in G [21]. The compressed graph is then used as new input to
our algorithm to find new common sub-graphs, from which new,
hierarchical concepts can be induced. Since the new compressed
graph has vertexes that represent previously learned concepts,
when new frequent sub-graphs are found on it, it is possible that
these new common sub-graphs include learned concepts among
its vertexes (see Fig. 4).

4. Experiments

ADC was applied in three domains: floors, polygons and
furniture, to learn concepts that could be used for manipulation
and navigation tasks. First, we present the results of the
experiments obtained by ADC in these domains, with some
illustrations of the kind of concepts learned by the system. We
then present an evaluation of these learned concepts in terms
of how well they are recognized by users and how useful they
are in new environments. The thresholds for the algorithm were
set to th1 = 0.6, th2 = 0.7 and th3 = 3.0. The threshold

Fig. 5. Floor maps used by the robot to learn ‘‘structural’’ concepts.

for similar substructure search by Subdue was set to 0.3 for
the floors and 0.1 for the polygons and furniture domains. The
original implementation of Subdue (release 2011 available in [35])
was used in the experiments. The background knowledge in
these experiments did not include numerical data, however, the
proposed algorithm can support numerical data if needed. In [36]
canbe found thebackgroundknowledgeused in these experiments
by ADC.

4.1. Floors

The first experiments were performed on simulation using
Player/Stage [37] with a Pioneer 2 robot equipped with a laser
sensor (with a range of 180°). In this domain, the robot explored
five maps of floors of buildings, shown in Fig. 5. The robot
built five graphs with 24, 38, 135, 45, and 50 nodes for each
map, respectively. Different strategies can be used to explore the
environment. They can be guided by unexplored areas, using an
intrinsically motivated reward function or be guided by the user.
In these experiments, the user guided the robot to cover the whole
floors once.

The initial background knowledge provided to the robot
consisted of two predicates, wall and touches (see Table 2 and
Fig. 6). An incremental algorithmwas used for the identification of
lines from laser readings [38], from which instances of walls were
identified.

In this first set of experiments we contrasted the results
obtained with ADC with those that can be obtained by Subdue, a
graph-based discovery algorithm. Many induction systems, such
as Subdue, cannot be used in an incremental way or significantly
decrease their performance if the data is given incrementally.
Table 3 shows the number of concepts induced by ADC and by

8 A.C. Tenorio-González, E.F. Morales / Robotics and Autonomous Systems 83 (2016) 1–14

Table 2

Background knowledge provided to learn concepts about floors.

BK Name Description

Object wall/1 Representing a wall/line segment in the environment, where its argument is an identifier (constant or variable) of an instance.
Relation touches/2 Representing two walls forming a corner, where its arguments are identifiers (constants or variables) of two instances (wall, concept).

Table 3

Results from the floors. In ADC the graphs were incrementally constructed from
exploring the environment. In Subdue the complete graphs were given either as a
single graph or sequentially.

Floors Group
with
singleton

Group with
multiple
subGs

Hierarchical
concept

Total

ADC 2 2 12 16
Subdue: (G1[· · ·[G5) 3 – 20 23
Subdue: (G1, . . . , G5) 12 – 30 42

Subdue, if graphs are given sequentially (as in ADC) or when all
the graphs are given at the same time as a single graph. The second
column, Group with singleton, refers to groups with a single sub-
graph, Group with multiple subGs, refers to groups with multiple
sub-graphs, and Hierarchical Concept, refers to concept definitions
that include previously learned concepts.

In Subdue, if the graphs are given sequentially, as in our learning
setting, a large number of isolated sub-graphs are induced, many
of which represent equivalent concepts. This behavior is reduced,
to a certain extent, when all the graphs are given to Subdue at the
same time as a single graph, as it is able to join some equivalent
sub-graphs from different graphs. Nevertheless, it still suffers from
creating too specific concepts.

Among the concepts learned by ADC, a user could identify
concepts such as ‘‘room’’ (C1 in the figure) and ‘‘set of rooms’’ (C4
in the figure) among others, illustrated in Fig. 7. The definitions of
these discovered concepts are:

c1(A,B,C,D,E):- wall(A),wall(B),wall(C),wall(D),wall(E),
touches(A,B),touches(B,C),touches(C,D),touches(D,E).

c4(A,B,C,D):- c1(A),c1(B),c1(C),c1(D),touches(A,B),
touches(B,C),touches(C,D).

The interpretation and successful application of these concepts
depends on the way that the basic elements (objects and their
relations) are identified by the robot in an environment. In this
domain, the robot was able to measure its orientation, coordinates
and distance to other objects to identify correctly the different
elements of the definitions given. For example, although the
definition in c1 does not include an explicit verification to ensure
that the walls are different, during the exploration, the robot uses
its sensors to identify five different instances of walls as input to
the concept c1.

4.2. Polygons

In this case, we artificially created five graphs, shown in Fig. 8,
to learn different concepts related with polygons. The number of

Fig. 6. This scene illustrate the background knowledge used in the floors domain.

Fig. 7. Examples of induced concepts in the floors.

nodes in the graphs is 26, 55, 41, 61, and 56, respectively. The
predicates used as background knowledge are line, curve and two
relations representing concave and convex angles (see Table 4 and
Fig. 9).

ADC was able to discover five general concepts: ‘‘triangle’’,
‘‘pentagon’’, ‘‘square’’, ‘‘hexagon’’ and ‘‘irregular polygon with
a concave angle’’. The remainder of the learned concepts had
these simple concepts among their elements. The total number of
concepts induced by ADC is given in Table 5, some of which are
illustrated in Fig. 10.

4.3. Furniture

In the last experiment, we used four graphs based on a real
‘‘Reading and Internet’’ room, shown in Fig. 11. The number of
nodes in the graphs is 77, 70, 31, and 22, respectively.

The predicates provided as background knowledge (see Table 6
and Fig. 12) represent several objects that can be identified in
rooms, like flat surfaces, legs, lamps, etc., and relations among
them, like next-to, above, etc.

Table 5 presents the number of concepts discovered by ADC.
Again, they are arranged as groups with singletons, groups
with several sub-graphs, and hierarchical concepts. Some of the

Table 4

Background knowledge provided to learn concepts about polygons.

BK Name Description

Object line/1 Representing a line segment.
curve/1 Representing a curve segment.

Each object has one argument that is an identifier (constant or variable) of an instance.

Relation angccN/2 A relation between two elements forming an angle greater than 180°, where N is the angle.
angcxN/2 A relation between two elements forming an angle less than 180°, where N is the angle.

Each relation has two arguments that are identifiers (constants or variables) of two instances (line, curve or concept).

A.C. Tenorio-González, E.F. Morales / Robotics and Autonomous Systems 83 (2016) 1–14 9

Fig. 8. Five figures used in the first domain, in the learning of concepts about polygons, are illustrated.

Table 5

Concepts learned by ADC in the polygons and the furniture domains.

Domain Group with
singleton

Group with
multiple subGs

Hierarchical
concept

Total

Polygons 5 5 24 34
Furniture 1 5 18 24

concepts discovered by ADC were: ‘‘table’’ (a flat board on four
legs), ‘‘footstool’’ (a footstool on four legs), ‘‘chair’’ (back and
seat on four legs), ‘‘lamp on table’’ (lampshade on light bulb
base on a table), ‘‘chair in front of table’’, and ‘‘table next to
table’’. The remainder of the concepts learned, as well as in the
previous domain, had simple concepts among their elements.
Some examples are illustrated in Fig. 13. In this domain the concept
of ‘‘chair’’ also includes ‘‘armchair’’ and ‘‘sofa’’.

The learned concepts, in the three domains, could be used by
a robot to characterize states of the world. In the first domain, it
could help a robot to reason, for instance, in terms of rooms rather
than corners. These kinds of concepts could be useful in tasks such
as navigation to identify parts of an environment. In the second
domain, the concepts can be useful given that geometric figures are
commonly encountered in robotic applications (e.g. classification
of objects, navigation, reconstruction of environments, among
others). The concepts learned in the third domain to identify
common furniture can also be useful for service robots.

4.4. Evaluation of concepts

So far, we have shown that ADC is capable of inducing
several concepts, from different domains, and that the learned
concepts can be more general than those produced by a graph-
based discovery system like Subdue, even is all the graphs are
given simultaneously. However, it is not clear how useful or
intuitive are these concepts. Evaluation is not easy for automatic
discovery systems. ADC automatically induces several concepts
while exploring its environment and some of them may not
correspond to what the user is expecting. In this section we
evaluate the concepts discovered by ADC following two strategies:

1. Compare the concepts discovered by ADC with those concepts
expected by independent users.

2. See if the concepts discovered by ADC can be effectively used in
new environments which are labeled by independent users.

We performed these experiments in the three domains: floors,
polygons and furniture.

Ten independent non-expert users, without computer science
knowledge, and one independent expert user, with computer
science knowledge, identified concepts in the different domains to
compare them with those discovered by ADC. They also evaluated
the concepts learned by ADC. These comparisons are presented
below.

The new floor maps and the respective labels given by the
expert user are shown in Fig. 14. As can be seen, the expert user
identified 29 structures of two concepts (hallways and rooms).

Fig. 9. This scene illustrate the background knowledge used in the polygons
domain.

Fig. 10. Examples of induced concepts in polygons.

Fig. 11. Drawings based on a real ‘‘Internet and Reading’’ room used as basis for
create four graphs of the furniture domain.

The concepts discovered by ADC for polygons were tested in
Fig. 15. The expert user identified 16 objects in the new graph and
gave 43 labels.

The scene used to construct a graph and evaluate the concepts
of furniture learned from ADC is shown in Fig. 16. The expert
user identified 16 objects and produced 27 labels of simple objects

10 A.C. Tenorio-González, E.F. Morales / Robotics and Autonomous Systems 83 (2016) 1–14

Table 6

Background knowledge provided to learn concepts about furniture.

BK Name Description

Object flat_board/1 Top of a table.
leg/1 Legs as those present in tables, chairs, sofa, armchair or footstool.
light_bulb_base/1 Bottom of a lamp.
lampshade/1 Top of a lamp.
framed_picture/1 A framed picture.
footrest/1 Top of a footstool.
seat/1 A seat for a chair, sofa or armchair.
back/1 The back of a sofa, armchair or chair.
arm_support/1 A support for arms in armchairs and sofas.

Each object has one argument that is an identifier (constant or variable) of an instance.

Relation On/2 When one object is on another object.
next_to/2 When one object is next to another object.
behind/2 When one object is behind another object.
in_front_of/2 When one object is in front of another object.
above/2 When one object is above another object.

All relations have two arguments that are identifiers (constants or variables) of two
instances (simple objects of furniture or concepts). All relations are absolute among
objects.

Fig. 12. This scene illustrate the background knowledge used in the furniture
domain.

Fig. 13. Examples of induced concepts in the furniture domain.

Fig. 14. Unknown floor maps used to evaluate the concepts discovered by ADC
with those labeled by an independent expert user. Labels of different sections of
the environments given by an expert user are shown in the image with the letters
R and H (Room or Hallway respectively).

Fig. 15. The figure used to evaluate the learned concepts of polygons is illustrated.
A graph was formed describing the basic figures in this scene. Labels of different
figures given by the expert user are shown in the image (T = triangle, R =
rectangle, S = square,H = hexagon, P = pentagon, I = irregular polygon, C =
curve, A = angle).

Fig. 16. The scene of a real living/dinner room used to evaluate the concepts
learned about furniture is illustrated. A graph was formed describing the basic
relations in this scene. Labels of different elements of furniture and their relations
given by the expert user are shown in the image (Objects : F = framed picture,D =
door, C = chair, L = lamp, T = table,W = window, R = foot rest, S = sofa;
Relations : b = behind, o = on, i = in front of , n = next to (e.g. WbS =
window behind sofa)).

(e.g., chair, table, lamp, etc.) and basic relations among the objects
(e.g., The lamp is on the table) for this scene.

Table 7 shows the number of different concepts discovered by
ADC in the original graphs divided by the number of concepts
identified by the expert user (second column), the number of
common concepts between ADC and the expert user (third
column), and the concepts discovered by ADC that were validated
by the expert user (last column). It can be seen that ADC identified
half of the expected concepts of the expert user in twodomains and
about one third in the other domain. Also, when the expert user
was presented with the concepts discovered by ADC, s/he was able
to validate a large proportion of them. For example, for the floors

A.C. Tenorio-González, E.F. Morales / Robotics and Autonomous Systems 83 (2016) 1–14 11

Table 7

Comparison of concepts. The table shows the number of concepts induced by ADC
and identified by an independent expert user (2nd. column), the number of common
concepts (3th. column), and the number of concepts induced by ADC that were
easily identified by the independent expert user (last column).

Domain ADC/user ADC \ user ADC concepts
validated by user

Floors 8.00 (16/2) 1 (1/2) 6
Polygons 2.13 (34/16) 5 (5/16) 15
Furniture 4.00 (24/6) 3 (3/6) 12

Table 8

Comparison of concepts. In this case an average of tenusers results is comparedwith
the results obtained by ADC. The table shows the number of concepts induced by
ADC and identified by the independent non-expert users (2nd. column), the number
of common concepts (3th. column), and the number of concepts induced by ADC
that were easily identified by the independent non-expert users (last column).

Domain ADC/users ADC \ users ADC concepts
validated by users

Floors 8.00 (16/2) 1 (1/2) 3
Polygons 4.25 (34/8) 5 (5/8) 5
Furniture 3.43 (24/7) 4 (4/7) 4

domain (second row in Table 7), ADC induced 16 concepts and the
expert user identified 2 (room and hallway) in the same graphs.
The ratio 8.0 (16/2) (in the second column in Table 7) indicates
that ADC discovered eight times more concepts than the expert
user (16/2 = 8.0). The expert user labeled 2 concepts (room and
hallway) in the graph, but among the 16 concepts induced by ADC
in the same graph, only one, the room was found in common (1
of 2, in the third column of the Table 7: 1 (1/2)). ADC was not
able to discover hallway due to the way the graphs are constructed
(i.e., it is not able to identify an empty space), but it discovered
the concept of room, among others. When the expert user was
presented with the 16 concepts discovered by ADC s/he decided
that 6 of them were valid/useful concepts (the 6 in the fourth
column in Table 7).

In a similar way, the rest of users (ten) performed similar
analysis in the different domains. Their labeled figures of each
domain (floors, polygons and furniture) are shown in Figs. 17–19.
The average results (common concepts identified by the majority
of users) compared with ADC are shown in Table 8. Here, the
majority was defined as at least half plus one, so the user concepts
compared with ADC were those identified by at least six users.
They were able to identify a similar number of concepts as
the expert user did, except in one domain (polygons). However,
these users identified/validated less concepts learned by ADC in
the three domains. Although a basic explanation of the concept
representation and structure was provided to all users, these
second results may be due to their lack of knowledge of a first-
order language (the users were given the clausal definitions of
the concepts) and the presence of complex hierarchical concept
definitions.

From these experiments we can conclude that ADC is able to
automatically discover concepts that could in principle beusedby a
robot and that are identifiable by independent users. This opens the
possibility for the development of incremental learning systems for
robots that require little user intervention. ADC can also be used to
automatically discover new concepts, or at least concepts that did
not come into the mind of the user, but that may be useful to a
user. It should be noted that ADC also discovers concepts without
any apparent utility.

We also tested if the concepts learned by ADC could be used to
identify them in new environments labeled by independent non-
expert users using their own expected concepts. Tables 9 and 10
show the results. It compares the discovered concepts identified
by ADC with the labels assigned by the users.

Table 9

Precision, recall, and a comparison among the number of concepts identified byADC
in new instances and the concepts labeled by an independent expert user for the
three domains.
Domain Precision Recall ADC/user ADC \

user

Floors 0.95 (19/20) 0.79 (19/24) 0.66 (19/29) 1 (1/2)
Polygons 0.95 (22/23) 0.95 (22/23) 0.51 (22/43) 5 (5/14)
Furniture 0.71 (10/14) 0.59 (10/17) 0.37 (10/27) 6 (6/13)

Table 10

Precision, recall, and a comparison among the number of concepts identified byADC
in new instances and the concepts labeled by independent non-expert users for the
three domains.
Domain Precision Recall ADC/user ADC \

user

Floors 0.85 (17/20) 0.65 (17/26) 0.44 (17/39) 1 (1/2)
Polygons 0.91 (21/23) 0.75 (21/28) 0.66 (21/32) 6 (6/7)
Furniture 0.79 (11/14) 0.92 (11/12) 0.58 (11/19) 4 (4/7)

For example, in the first Table 9, in the new floors the expert
user produced 29 labels, out of which 24 were labeled as rooms
(which is the common concept between ADC and the expert user).
ADC labeled 20 spaces as rooms, out of which 19 were labeled
by the expert user as rooms (precision) and identified 19 of the
24 rooms labeled by the expert user (recall). The fourth column
shows the number of common concepts identified by ADC divided
by the number of labels produced by the expert user and the fifth
column shows the common concepts between ADC and the expert
user that were used to label the environments. The second table
shows similar results but comparing the average opinion of the
ten independent non-expert users against the ADC results. In this
second table, precision and recall were lower than those obtained
by the expert user. In this case, just one domain (furniture)
obtained better results when compared to the first evaluation of
concepts.

Tables A.11–A.13 show the definitions of concepts learned by
ADC which were identified by the expert and non-expert users.
The label given to each concept is also provided. According to
the results, the representation of hierarchical concepts was more
difficult to understand by the non-expert users. All users identified
additional concepts in the outputs from ADC from those originally
identified in the three domains. Some concepts were not explicitly
illustrated in the scenes given to the users. For example, the expert
user labeled a concept learned by ADC as stool, where there were
no stools illustrated in the furniture scenes. In the floors, the
users identified additional concepts including more than one room
(see Table A.11: c4,c8,c9,c15). In the polygons, additional concepts
including more than one polygon and elements of polygons (see
Table A.12: c9,c11,c19–c32, e.g., two triangles, two squares, angles)
were identified among the discovered concepts of ADC by the
users. In the furniture, some additional concepts with elements
of furniture and concepts with more than one piece of furniture
involved were identified by the users (see Table A.13: c2,c7–c16,
e.g. stool or chair of two legs).

ADC was also able to recognize with high precision and recall
the concepts that were common with the different users in new
environments.

5. Conclusions and future work

Robots are becoming increasingly popular and it will be
desirable to provide themwith more autonomy. A key component
will be to enable them to learn by themselves new concepts that
could be used to perform their tasks. Automatic concept discovery
has been a difficult task in machine learning. In this paper,

12 A.C. Tenorio-González, E.F. Morales / Robotics and Autonomous Systems 83 (2016) 1–14

Fig. 17. Unknown floor maps used to evaluate the concepts discovered by ADC with those labeled by 10 independent non-expert users. Labels of different sections of the
environments given by the users are shown in the image with the letters R and H (Room or Hallway respectively).

Fig. 18. The figure used to evaluate the learned concepts of polygons is illustrated.
Labels of different figures given by 10 independent non-expert users are shown
in the image (T = triangle, R = rectangle, S = square,H = hexagon, P =
pentagon, I = irregular polygon, C = curve).

we presented a novel algorithm that incrementally discovers
relational concepts while exploring an unknown environment.
It identifies instances of potential concepts using a graph-based
representation and a sub-graph discovery algorithm. Similar sub-
graphs discovered are grouped together and general concept
definitions are induced using an ILP algorithm. We tested the
approach on three domains with encouraging results.

As future work we would like to include an intelligent
exploration strategy that could be coupled with the concept
learning algorithm, borrowing some ideas from intrinsically
motivated reinforcement learning. We are currently not inducing
recursive definitions, including functional symbols or negated
literals but we plan to incorporate them in the future. Also, an
extension to produce definitions of concepts from unconnected
sub-graphs can be done. We would also like to test the usefulness
of the learned concepts to perform simple navigation and

Fig. 19. The scene of a real living/dinner room used to evaluate the concepts
learned about furniture is illustrated. Labels of different elements of furniture and
their relations given by 10 independent non-expert users are shown in the image
(Objects : F = framed picture, C = chair, L = lamp, T = table,W = window, R =
foot rest, S = sofa; Relations : o = on (e.g. LoT = lamp on table)).

manipulation tasks. Also, we are exploring how to learn compound
actions to learn complex tasks.

Acknowledgment

This work was done under partial support of CONACYT
(Ph. D. Scholarship 224491).

Appendix. Definitions of the concepts identified by the users

See Tables A.11–A.13.

Table A.11

Floors. Definitions of the concepts identified by the expert user and the majority of the non-expert users. For presentation purposes, the number of arguments of previously
learned concepts used in the definition of new concepts is reduced to one.

Floors

Concepts Expert Users

c1(A,B,C,D,E):-wall(A),wall(B),wall(C),wall(D),wall(E),
touches(A,E),touches(B,C),touches(C,D),touches(D,E).

room

c3(e1,e2):-c1(e1),wall(e2),touches(e1,e2). room with wall room
c4(A,B,C,D):-c1(A),c1(B),c1(C),c1(D),touches(A,D),touches(B,C),touches(C,D). set of rooms
c8(q1,q2,q3,q4):-c1(q1),c1(q2),wall(q3),wall(q4),
touches(q3,q4),touches(q1,q4),touches(q1,q2).

two rooms and wall

c9(s1,s2,s3,s4,s5):-c1(s1),c1(s2),c1(s3),c1(s4),wall(s5),
touches(s1,s5),touches(s2,s5),touches(s2,s3),touches(s1,s4).

set of rooms and wall

c10(d1,d2,d3):-c1(d1),wall(d2),wall(d3),touches(d2,d3),touches(d1,d3). room and two walls room
c15(b1,b2,b3):-c4(b1),c1(b2),c1(b3),touches(b2,b3),touches(b1,b3). two rooms and set of rooms set of rooms

A.C. Tenorio-González, E.F. Morales / Robotics and Autonomous Systems 83 (2016) 1–14 13

Table A.12

Polygons. Definitions of the concepts identified by the expert user and themajority of the non-expert users. For presentation purposes, the number of arguments of previously
learned concepts used in the definition of new concepts is reduced to one.

Polygons

Concepts Expert Users

c1(A,B,C,D):-line(A),line(B),line(C),line(D),
angcx90(A,B),angcx90(A,D),angcx90(B,C),angcx90(C,D).

square square

c5(A,B,C,D,E,F): line(A),line(B),line(C),line(D),line(E),line(F),
angcx120(A,B),angcx120(A,F),angcx120(B,C),angcx120(C,D),angcx120(D,E),angcx120(E,F).

hexagon hexagon

c7(A,B,C,D,E):-line(A),line(B),line(C),line(D),line(E),
angcx108(A,B),angcx108(A,E),angcx108(B,C),angcx108(C,D),angcx108(D,E).

pentagon pentagon

c8(A,B,C):-line(A),line(B),line(C),angcx60(A,B),angcx60(A,C),angcx60(B,C). triangle triangle
c9(t1,t2):-c1(t1),c1(t2),angcx90(t1,t2),angcx90(t1,t2). two squares
c11(y1,y2):-c8(y1),c8(y2),angcx90(y1,y2). two triangles
c18(v1,v2,v3,v4,v5):-c1(v1),line(v2),line(v3),line(v4),line(v5),
angcc315(v2,v3),angcx67(v1,v3),angcx90(v1,v4),angcx67(v2,v4),angcx90(v1,v5).

irregular polygon

c19(t1,t2):-line(t1),line(t2),angcx130(t1,t2). 130° angle
c21(A,B):-line(A),line(B),angcx45(A,B). 45° angle
c23(y1,y2):-c21(y1),line(y2),angcc315(y1,y2). 45° angle and 315° angle
c26(o1,o2):-line(o1),line(o2),angcx67(o1,o2). 67° angle
c27(s1,s2):-c26(s1),line(s2),angcx108(s1,s2). 67° angle and 108° angle
c28(c1,c2):-c7(c1),line(c2),angcx108(c1,c2). pentagon and 108° angle
c29(w1,w2):-c1(w1),c8(w2),angcx90(w1,w2). square and triangle
c30(v1,v2):-c8(v1),c8(v2),angcx60(v1,v2). two triangles
c32(m1,m2):-c5(m1),c5(m2),angcx120(m1,m2). two hexagons

Table A.13

Furniture. Definitions of the concepts identified by the expert user and themajority of the non-expert users. For presentation purposes, the number of arguments of previously
learned concepts used in the definition of new concepts is reduced to one.

Furniture

Concepts Expert Users

c1(A,B,C,D,E):-flat_board(A),leg(B),leg(C),leg(D),leg(E),on(A,B),on(A,C),on(A,D),on(A,E). table table
c2(A,B,C,D):-back(A),seat(B),leg(C),leg(D),behind(A,B),on(B,C),on(B,D). chair of two legs part of chair
c3(A,B,C,D,E):-footrest(A),leg(B),leg(C),leg(D),leg(E),on(A,B),on(A,C),on(A,D),on(A,E). footrest footrest
c4(A,B,C):-c2(A),leg(B),leg(C),on(A,B),on(A,C). chair
c5(o1,o2,o3):-c1(o1),lampshade(o2),light_bulb_base(o3),on(o2,o3),on(o3,o1). lamp on table
c7(A,B,C):-seat(A),leg(B),leg(C),on(A,B),on(A,C). chair of two legs
c8(j1,j2):-c7(j1),leg(j2),on(j1,j2). stool
c10(y1,y2):-c5(y1),c2(y2),in_front_of(y1,y2). chair in front of table with lamp
c13(y1,y2):-c2(y1),c2(y2),next_to(y1,y2). two chairs
c16(l1,l2):-c2(l1),arm_support(l2),next_to(l1,l2). chair and arm support
c17(j1,j2):-c13(j1),framed_picture(j2),above(j2,j1). framed picture above chairs
c18(o1,o2,o3,o4):-lampshade(o1),light_bulb_base(o2),
flat_board(o3),leg(o4),on(o1,o2),on(o2,o3),on(o3,o4).

lamp on table lamp on table

References

[1] R. Sutton, A. Barto, Introduction to Reinforcement Learning, first ed., MIT Press,
Cambridge, MA, USA, 1998.

[2] G. Bekey, Autonomous Robots: From Biological Inspiration to Implementation
and Control, MIT Press, 2005.

[3] S. Wrobel, Concept formation during interactive theory revision, Mach. Learn.
14 (2) (1994) 169–191.

[4] I. Stahl, Predicate invention in inductive logic programming, in: L.D. Raedt
(Ed.), Advances in Inductive Logic Programming, IOS Press, Ohmsha,
Amsterdam, 1996, pp. 34–47.

[5] S. Muggleton, W. Buntine, Machine invention of first-order predicates by
inverting resolution, in: Proceedings of the 5th International Conference on
Machine Learning, Morgan Kaufmann, Los Altos. CA, USA, 1988, pp. 339–352.

[6] R. Wirth, Learning by failure to prove, in: D. Sleeman (Ed.), Proceedings of
the 3rd European Working Session on Learning, Pitman, London, UK, 1988,
pp. 237–251.

[7] J. Wogulis, P. Langley, Improving efficiency by learning intermediate concepts,
in: Proceedings of the 11th International Joint Conference on Artificial
Intelligence, Vol. 1, Morgan Kaufmann, San Francisco, CA, USA, 1989,
pp. 657–662.

[8] P. Flach, Predicate invention in inductive data engineering, in: Proceedings of
the European Conference onMachine Learning, in: Lecture Notes in Computer
Science, vol. 667, Springer-Verlag, London, UK, 1993, pp. 83–94.

[9] K. Morik, S. Wrobel, J. Kietz, W. Emde, Knowledge Acquisition and Machine
Learning: Theory, Methods, and Applications, Knowledge-Based Systems,
Academic Press, 1993.

[10] M. Bain, S. Muggleton, Non-monotonic learning, in: Inductive Logic Program-
ming, Academic Press, London, 1992, pp. 145–161.

[11] H. Bostrom, Predicate invention and learning from positive examples only,
in: Proceedings of the Tenth European Conference on Machine Learning,
in: Lecture Notes in Computer Science, vol. 1398, Springer, London, UK, 1998,
pp. 226–237.

[12] J. Davis, E. Berg, D. Page, V.S. Costa, P. Peissig, M. Caldwell, Discovering latent
structure in clinical databases, in: Proceedings from NIPS 2011 Workshop:
From Statistical Genetics to PredictiveModels in PersonalizedMedicine, 2011.

[13] K. Inoue, K. Furukawa, I. Kobayashi, Abducing rules with predicate invention,
in: Proceedings of the 19th International Conference on Inductive Logic
Programming, in: Lecture Notes in Artificial Intelligence, vol. 667, Springer-
Verlag, 2009, pp. 83–94.

[14] K. Stanley, P. Domingos, Statistical predicate invention, in: Proceedings of the
24th International Conference onMachine Learning, ACM, New York, NY, USA,
2007, pp. 433–440.

[15] U. Schmid, M. Hofmann, E. Kitzelmann, Inductive programming: Example-
driven construction of functional programs, Kúnst. Intell. 23 (2) (2009) 38–41.

[16] N. Li, D. Stracuzzi, P. Langley, Learning conceptual predicates for teleoreactive
logic programs, in: Proceedings of the Late-Breaking Papers Track at the
Eighteenth International Conference on Inductive Logic Programming, 2008,
pp. 75–80.

[17] G. Leban, J. Zabkar, I. Bratko, An experiment in robot discovery with
ilp, in: F. Zelezn˝, N. Lavrac (Eds.), Proceedings of the 18th International
Conference on Inductive Logic Programming, in: Lecture Notes in Computer
Science, vol. 5194, Springer, Berlin, Heidelberg, 2008, pp. 77–90.

[18] A. Kosmerlj, I. Bratko, J. Zabkar, Embodied concept discovery through
qualitative action models, Internat. J. Uncertain. Fuzziness Knowledge-Based
Systems 19 (3) (2011) 453–475.

[19] K. Stanley, P. Domingos, Statistical predicate invention, in: Proceedings
of the 24th Annual International Conference on Machine Learning, 2007,
pp. 433–440.

[20] G. Leban, J. Zabkar, I. Bratko, An experiment in robot discovery with ILP,
in: F. Zelezn˝, N. Lavrac (Eds.), Inductive Logic Programming, in: Lecture Notes
in Computer Science, vol. 5194, Springer, Berlin, Heidelberg, 2008, pp. 77–90.

[21] L. Holder, D. Cook, S. Djoko, Substructure discovery in the subdue system,
in: Proceedings of the AAAI Workshop on Knowledge Discovery in Databases,
AAAI Press, 1994, pp. 169–180.

http://refhub.elsevier.com/S0921-8890(16)30354-2/sbref1
http://refhub.elsevier.com/S0921-8890(16)30354-2/sbref2
http://refhub.elsevier.com/S0921-8890(16)30354-2/sbref3
http://refhub.elsevier.com/S0921-8890(16)30354-2/sbref4
http://refhub.elsevier.com/S0921-8890(16)30354-2/sbref5
http://refhub.elsevier.com/S0921-8890(16)30354-2/sbref6
http://refhub.elsevier.com/S0921-8890(16)30354-2/sbref7
http://refhub.elsevier.com/S0921-8890(16)30354-2/sbref8
http://refhub.elsevier.com/S0921-8890(16)30354-2/sbref9
http://refhub.elsevier.com/S0921-8890(16)30354-2/sbref10
http://refhub.elsevier.com/S0921-8890(16)30354-2/sbref11
http://refhub.elsevier.com/S0921-8890(16)30354-2/sbref13
http://refhub.elsevier.com/S0921-8890(16)30354-2/sbref14
http://refhub.elsevier.com/S0921-8890(16)30354-2/sbref15
http://refhub.elsevier.com/S0921-8890(16)30354-2/sbref17
http://refhub.elsevier.com/S0921-8890(16)30354-2/sbref18
http://refhub.elsevier.com/S0921-8890(16)30354-2/sbref20
http://refhub.elsevier.com/S0921-8890(16)30354-2/sbref21

14 A.C. Tenorio-González, E.F. Morales / Robotics and Autonomous Systems 83 (2016) 1–14

[22] B. Chien, C. Hu,M. Ju, Learning fuzzy concept hierarchy andmeasurementwith
node labeling, Inf. Syst. Front. 11 (2009) 551–559.

[23] J. Rosca, Hierarchical learning with procedural abstraction mechanisms (Ph.D.
thesis), Department of Computer Science, The College of Arts and Sciences,
University of Rochester, Rochester, NY 14627, USA, 1997.

[24] R. Rivest, R. Sloan, A formal model of hierarchical concept learning, Inform.
Comput. 114 (1994) 88–114.

[25] B. Zupan, M. Bohanec, I. Bratko, J. Dem≤ar, Learning by discovering concept
hierarchies, Artificial Intelligence 109 (1999) 211–242.

[26] J. Tani, S. Nolfi, Learning to perceive the world as articulated: An approach
for hierarchical learning in sensory-motor systems, Neural Netw. 12 (1999)
1131–1141.

[27] L. Fu, B. Buchanan, Learning intermediate concepts in constructing a
hierarchical knowledge base, in: Proceedings of the 9th International Joint
Conference on Artificial intelligence, Vol. 1, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1985, pp. 659–666.

[28] S. Muggleton, D. Lin, N. Pahlavi, A. Tamaddoni-Nezhad, Meta-interpretive
learning: application to grammatical inference, Mach. Learn. 94 (1) (2014)
25–49.

[29] S. Muggleton, D. Lin, A. Tamaddoni-Nezhad, Meta-interpretive learning of
higher-order dyadic datalog: predicate invention revisited, Mach. Learn. 100
(1) (2015) 49–73.

[30] A. Cropper, S. Muggleton, Learning efficient logical robot strategies involving
composable objects, in: Proceedings of the 24th International Joint Conference
on Artificial Intelligence, 2015, pp. 3423–3429.

[31] S. Muggleton, Inverse entailment and progol, New Gener. Comput. 13 (3–4)
(1995) 245–286.

[32] J. Sowa, Conceptual Graphs, Elsevier B. V., 2008, pp. 213–237. (Chapter 5).
[33] D. Cook, L. Holder, Substructure discovery using minimum description length

and background knowledge, J. Artificial Intelligence Res. 1 (1) (1994) 231–255.
[34] S. Cook, The complexity of theorem-proving procedures, in: Proceedings of the

Third ACM Symposium on Theory of Computing, ACM, New York, NY, USA,
1971, pp. 151–158.

[35] L. Holder, D. Cook, Subdue, graph based knowledge discovery, 1994. URL http:
//ailab.wsu.edu/subdue/.

[36] A. Tenorio, Automatic discovery of concepts, 2015. URL https://sites.google.
com/site/automaticdiscoveryconcepts/.

[37] R.V. Gerkey, B.A. Howard, The player/stage project: Tools for multi-robot
and distributed sensor systems, in: Proceedings of the 11th International
Conference on Advanced Robotics, 2003, pp. 317–326.

[38] V. Nguyen, S. Gächter, A. Martinelli, N. Tomatis, R. Siegwart, A comparison
of line extraction algorithms using 2D range data for indoor mobile robotics,
Auton. Robots 23 (2) (2007) 97–111.

Ana C. Tenorio-González received a B.E. degree in
Computational Systems from the Instituto Tecnológico
Superior de Xalapa, Mexico in 2008, and a M.Sc. degree
in Computer Science from the Instituto Nacional de
Astrofísica, Optica y Electrónica (INAOE), Mexico in 2010.
She is interested in the areas of machine learning,
pattern recognition and robotics. She has worked on
reinforcement learning with reward shaping and intrinsic
motivation; and concept learning, both topics applied to
robotics. Currently, she is Ph.D. student at INAOE.

Eduardo F. Morales received his B.Sc. degree in Physics
Engineering from Universidad Autonoma Metropolitana,
Mexico City, his M.Sc. degree in Information Technology:
Knowledge-based Systems from the University of Edin-
burgh, and his Ph.D. degree in Computer Science from the
Turing Institute—University of Strathclyde, Scotland. He
has been responsible for more than 18 research projects
sponsored by different funding agencies and has more
than 100 articles in journals, book’s chapters and confer-
ence proceedings. He is currently a research scientist of
the Instituto Nacional de Astrof±ica, Optica y Electrónica

(INAOE) in Mexico where he conducts research in Machine Learning and Robotics.

http://refhub.elsevier.com/S0921-8890(16)30354-2/sbref22
http://refhub.elsevier.com/S0921-8890(16)30354-2/sbref23
http://refhub.elsevier.com/S0921-8890(16)30354-2/sbref24
http://refhub.elsevier.com/S0921-8890(16)30354-2/sbref25
http://refhub.elsevier.com/S0921-8890(16)30354-2/sbref26
http://refhub.elsevier.com/S0921-8890(16)30354-2/sbref27
http://refhub.elsevier.com/S0921-8890(16)30354-2/sbref28
http://refhub.elsevier.com/S0921-8890(16)30354-2/sbref29
http://refhub.elsevier.com/S0921-8890(16)30354-2/sbref31
http://refhub.elsevier.com/S0921-8890(16)30354-2/sbref32
http://refhub.elsevier.com/S0921-8890(16)30354-2/sbref33
http://refhub.elsevier.com/S0921-8890(16)30354-2/sbref34
http://ailab.wsu.edu/subdue/
http://ailab.wsu.edu/subdue/
http://ailab.wsu.edu/subdue/
http://ailab.wsu.edu/subdue/
http://ailab.wsu.edu/subdue/
http://ailab.wsu.edu/subdue/
http://ailab.wsu.edu/subdue/
https://sites.google.com/site/automaticdiscoveryconcepts/
https://sites.google.com/site/automaticdiscoveryconcepts/
https://sites.google.com/site/automaticdiscoveryconcepts/
https://sites.google.com/site/automaticdiscoveryconcepts/
https://sites.google.com/site/automaticdiscoveryconcepts/
https://sites.google.com/site/automaticdiscoveryconcepts/
http://refhub.elsevier.com/S0921-8890(16)30354-2/sbref38

