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Summary. Motor activity in physical and psychological stress exposure
has been studied almost exclusively with self-assessment questionnaires
and from reports that derive from human observer, such as verbal rat-
ing and simple descriptive scales. However, these methods are limited
in objectively quantifying typical behaviour of stress. We propose to use
accelerometer data from smartphones to objectively quantify stress lev-
els. Used data was collected in real-world setting, from 29 employees in
two different organisations over 5 weeks. To improve classification per-
formance we propose to use intermediate models. These intermediate
models represent the mood state of a person which is used to build the
final stress prediction model. In particular, we obtained an accuracy of
78.2% to classify stress levels.

Key words: Motor activity, stress prediction, smartphones

1 Introduction

Over the last decades there has been rising concern worldwide about the
growth and negative impact of work-related stress. The prevalence of stress-

related illnesses such as burnout has increased dramatically in the European
Union (EU) [1, 2]. Recent studies show that stress is ranked as a second most
common work-related health problem across the members of the EU. In the
Fourth European Working Conditions Survey conducted in 2015, 22% of workers
from the EU have reported the impact of work-related stress [2]. Furthermore, a
high prevalence of stress has also been reported in USA, where 55% of employees
have reported increased workload having a significant impact on physical and
mental health [3]. Recent studies show that individuals with high-stress were ac-
companied by physical and psycho-social complaints and decreased work-control
[4].
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To date, current approaches for measuring stress rely mostly on self-reported
questionnaires [1]. This presents an issue for effective measurements, due to sub-
jectivity factors. For example, employees might be more predisposed to report
information in their favour or in the favour of their organisation, rather than
reporting their true health state. To overcome these issues, smartphones are
becoming suitable means to carry out these kinds of studies, due to their avail-
ability, rich set of embedded sensors and their capacity to be unobtrusive for the
subjects [5, 6, 7, 8].

Motor activity-related behaviour (i.e. body hyperactivity, trembling, un-
controllable movement, hand movement) has shown association with perceived
stress[9]. In the context of our study, the following research questions are put
forth:

– Is there a relationship between motor activity features that can be automat-
ically extracted from a accelerometer sensor embedded on smart phones and
the self-reported stress levels?

– Is it possible to improve stress detection by incorporating intermediate, hidden,
variables related to the subjects’ mood, before building the final model for
predicting stress?

The present work tries to answer both these research questions by comparing
standard stress measurement questionnaires and motor activity behaviour during
phone conversations.

We performed an experimental analysis using real world data. While, we have
previously reported on the use of accelerometer data to estimate stress levels [5],
this study differs from that work in two important aspects:

– The use semi-supervised learning to complete the models for subjects with
missing data.

– The induction of intermediate models to predict mood variables, which are
incorporated in the final model in order to improve the accuracy of the pre-
dictions.

Our results show that using standard supervised models we achieved an ac-
curacy of ≈ 65%. This measure is increased to ≈ 69% when using the semi-
supervised methods and to ≈ 71% when using intermediate models. Finally,
combining semi-supervised learning and intermediate models we achieve an ac-
curacy of ≈78.2%; a notable improvement over the initial score.

The rest of this paper is organized as follows. Section 2 reviews related work
on stress detection based on current technology. The study methodology, data
acquisition, and feature extraction are presented in Section 3. The proposed
approach of intermediate models is presented in Section 4 and experiments are
presented in Section 5. Finally, the conclusions of the study are presented in
Section 6.
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2 Related Work

Several methods have tried to infer stress based on physiological signals, such as
heart-rate variability, blood pressure, body temperatures and respiration [10],[11].
However, the use of physiological sensors has some limitations:

– sensors may have a large size to cover many signal types [10],
– sensors (e.g., skin conductance sensor) limit the movement of the subjects [11]
– sensors increase the discomfort [12] since they need to be carried all the time.

The miniaturization of wearable sensors has made it possible to include them
in smartphones. Recently, there is interest in inferring stress using those sensors,
since they are a personal and common accessory among people. A summary
of the works aiming at stress detection are described in Table 1. The work in
[13] proposed a method for detecting stress based on speech analysis and the
variation of speech articulation using smartphones. The authors have reported
a predictive accuracy of stress of 81% and 76% for indoor and outdoor envi-
ronments, respectively, using the vocal production of 14 subjects. However, in
real-life activities this approach may lead to misinterpretation of speech and
therefore of emotion.

In order to infer relationship dynamics of people and behaviour changes in
daily activities, smartphones have been suggested as a promising candidate to
obtain user’s context. Research work using smartphones for long-term stress
monitoring has collected many types of contextual data (e.g., physical activities,
social activities and locations) that could help in inferring stress from behaviour
changes. In this line, “MoodScope”[14] is a self tracking system to help users
manage their mood. The system detects user’s mood from smartphones usage
data, such as email messages, calls and SMS logs, application usage, web brows-
ing histories and location changes. The authors reported an initial 66% accuracy
of subjects’ daily mood, improving to 93% after two months of training.

In another relevant work, Bauer and Lukowicz [15] aimed at recognizing stress
from 7 students before and after an exam period. The assumption is that students
are likely to be under stress during the exam sessions. They acquired data from
smartphones (location, social proximity through Bluetooth, phone calls and SMS
logs) reporting an average accuracy of 53% during the exam session. In [16] the
authors monitored 18 subjects for a period of 5 days. In addition to smartphone
features they included a wrist sensor. In order to recognize stress levels, the
authors applied correlation analysis and reached a 75% accuracy using machine
learning techniques to classify stress moments.

Similarly, Muaremi et al. [17] measured smartphone mobility data (phone-
calls, SMS, location and physical activity) and wearable Heart Rate Variability
(HRV) sensor data to classify perceived stress. The authors emphasize the im-
portance of recording human voice as a potential source for non-intrusive stress
detection. The authors at [16] propose to infer work-relevant stress events us-
ing an external hardware (i.e., HRV) and sensor measurements obtained from
smartphones. Furthermore, in [18] the authors used context information from
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the environment, such as weather condition, social proximity obtained by Blue-
tooth scanning, call logs, SMS logs, and self-reported surveys about personality
traits to predict stress events.

Table 1: Main related works in Stress Detection showing the features and
details.

Study Items measured Controlled/
Uncontrolled
Setting

Obtrusiveness
Level

Kim et al.[19] Heart Rate Variability (HRV) controlled High
Lu et al.[13] Smartphone (Speech analysis) Both High
Bauer et al.[15] Smartphone (Location, bluetooth,

phone-call and SMS)
Uncontrolled Medium

Likamwa et al.[14] Smartphone (E-mails, Call and SMS
logs, application usage, web browsing
histories and location changes)

Unknown High

Sano et al.[16] Wrist sensors and Smartphone
(Phone usage duration, phone calls
and SMS logs)

Uncontrolled Medium

Muaremi et al.[17] HRV and Smartphone (Phone- and
SMS logs, Location, Audio Stress Re-
sponse)

Uncontrolled High

Bogomolov et al.[18] Smartphone (Call logs, SMS, blue-
tooth and weather)

Uncontrolled Medium

As presented in Table 1, recent studies have explored the potential of phys-
iological signals for measuring stress related signs from sensor data (e.g., Gal-
vanic Skin Response (GSR), Electro-Cardiogram (ECG)) and smartphone sen-
sors (e.g., location, audio recording). However, there are several concerns about
using physiological sensors, basically due to their obtrusiveness. In contrast, we
explore the potential of using a single sensor with the aim of detecting perceived
stress levels. We choose to use accelerometer sensor due to their advantages
(non-visual and non-auditory) and thus mitigate privacy concerns [20, 21].

2.1 Motor Activity Monitoring

Currently, the clinicians assess motor activity in laboratory settings. Studies
measuring level of motor activity in psychological stress have typically used
traditional monitoring with paper and pencil diaries, and questionnaires [22].

Monitoring motor activity during sleep may be measured by actigraphs [23]
(using piezoelectric accelerometer). However, little is known if data captured
from an actigraph could provide motor activity characteristics in perceived stress
level in working environments.

Smartphones are a good candidate for monitoring motor activity behaviour
patterns in daily activities. Information from smart phones enables easier moni-
toring and tracking of people than traditional methods, as most people already
carry a smartphone so no additional sensors are required. Another benefit of
using this technology is that other information (such as phone calls, location,
use of social networks) can be obtained and included. In this paper, we collect
data from accelerometers during phone calls to infer motor activity changes in
working employees.
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3 Data preparation

This section presents how the data was collected and the feature extraction
process.

3.1 Data Collection

In this research work, we focus on analysing accelerometer raw data during phone
conversation, where we are sure that the subjects are holding their smartphones.
This type of measurement has the advantage of their availability and unobtru-
siveness. We believe that analysing data collected from accelerometer readings
during the phone conversations provide adequate information for classifying the
perceived stress that can be also used to show the trajectory of perceived stress
(e.g., low-to-high, high-to-low) in working environments.

The second type of data includes subjective information related to subjects’
perceived stress, job-demands and mood states. We developed a questionnaire
in a smart phone application to assess psychological variables related to work
stress. The questionnaire is clinically validated to capture users perceived stress
and mood states of the employees at work. Three times a day the questionnaires
appeared automatically (9am -at the beginning of the work, 2pm -around noon,
and 5pm -before leaving workplace). The questionnaire was derived from the
POMS (Profile of Mood State) scale [24] which has two dimensions related to
affect of mood states, including, “Positive Affect” (PA) (e.g., Cheerful, Energetic,
Friendly) and “Negative Affect” (NA) (e.g., Tensed, Anxious, Sad, Angry) and
the rest measures disengagement from work, where questions were presented in
mixed order. Each question has five response alternatives, ranging from 1 (abso-
lutely agree) to 5 (absolutely disagree). The answers were stored on the mobile
device and constituted part of the analysis. For the purpose of our analyses, the
score distribution has been segmented into three regions, which in our case cor-
respond to three ordinal classes: (“low” or “poor”), when score < 3; (“moderate”
or “fair” ), when score = 3; and (“high” or “sufficient”), when score > 3.

For this study, we analysed the information from 29 subjects1 in their work
environments, with data collected during their phone conversation and self-
reported stress. In total, we obtained 7189 phone calls, however, we have only
5767 labeled instances or 80.22% useful data of the total phonecalls.

Table 2 shows the number of times that are associated with each stress level
(“high”, “moderate”, and “low”). Results show that half of the time the user
perceived some level of stress and that during stress-less days the subjects have
a higher amount of phone calls.

3.2 Feature Extraction

From the raw accelerometer data a total of 30 features (10×3 - for all Minimum,
Maximum and Mean) from the frequency domain were extracted (as shown

1 One of the subjects had very few phone calls recorded during the trial and was
removed from the study.
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Table 2: Number of Phone-Calls by Perceived Stress Level (SL).
Nr.Phone Calls High SL Moderate SL Low SL

Incoming: 1696 (100%) 355 (20.9%) 511 (30.1%) 830 (48.9%)
Outgoing: 2912 (100%) 547 (18.7%) 839 (28.8%) 1526 (52.4%)

Missing: 1159 (100%) 220 (18.9%) 405 (34.9%) 534 (46.1%)
Total instances: 5767 1122 1755 2890

% 100% 19.46% 30.43% 50.11%

Table 3: Frequency domain features used in the study, where the lower row
means that we extracted the minimum, maximum and mean values for all the

frequency domain features.
Frequency Domain

FFT Sum Energy FFT Mean Energy
FFT Std.Dev. Energy Peak Power
Peak with DFT Bin Peak Magnitude
Entropy DFT Energy
Frequency Domain Entropy Frequency Domain with DFT

For all: Min, Max, Mean

in Table 3). Feature extraction was performed on non-overlapping fixed length
windows of 128 samples (25.6 seconds each). We used Fast Fourier Transform
(FFT) and discrete Fourier Transform (DFT) to investigate the strength of mo-
tor activity signals during phone conversations2. Since we aim at understanding
motor activity behaviour around the phone conversation, we keep the following
accelerometer segments:

– One minute before the phone conversation,
– The reading from the entire duration of the phone call.
– One minute after the conversation ended.

Figure 1 depicts the data collection, feature extraction (intensity of phone
handling during phone conversation by computing features from frequency do-
main) and prediction process presented in this work.

4 Stress modelling using intermediate models

In this section we describe the proposed approach that combines intermediate
models and semi-supervised learning for estimating stress levels based on smart
phones.

4.1 Intermediate Models

The information provided by the users through the questionnaires is useful, how-
ever, it is a tedious task for each user. In this research we propose to predict

2 Phone conversations with less than 10 seconds were discarded in our dataset.
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Fig. 1: Proposed approach: data collection, feature extraction and prediction
for classifying stress at work of employees.

the mood variables associated to the questionnaires using the data from the
smartphone to alleviate the user from this burden. Then, we use the predicted
mood variables with the rest of the data from the smartphones to predict the
stress levels. We call the models that predict the mood variables from the ques-
tionnaire intermediate models as their are used as input for the final predictive
model. Although the use of additional variables, such as latent variables, have
been previously used in the literature, we are not aware of research that aims
at building an intermediate model that can then be used as input for the final
model. Figure 2 illustrates the procedure for building the intermediate models.
We train a classifier to predict the information from the questionnaires using
the features extracted from the smartphone (feature extraction and Q′

1 in the
figure, to create a model – intermediate model – that can predict the variables
of the questionnaire). We then use the information from the smarphones and the
predicted values from the intermediate model (q′

1 in the figure) to create model
that can predict the level of stress.

In this study, we used six variables derived from NA and PA (3 per each mood
affect) to build 6 intermediate models. We train each classifier separately using
each the self-reported questionnaires derived from the ’Positive Mood Affect
(PA)’ and the ’Negative Mood Affect (NA)’.

In the prediction stage, the intermediate models use the information from the
smartphones to predict a weighted set of mood variables based on the accuracy
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of each model. Then all the data from the smartphones and the mood variables
are used as input for the final stress model.

Features 

Extraction

S
1

Q'
1 Model  Q'

1

Model  S
1q'1

Fig. 2: Intermediate Models. Based on the accelerometer data from the smart
phones, 30 frequency domain features are extracted. These are used to build
the intermediate models for the mood variables, Q1; and the model for stress,

S1. In the prediction stage both models are combine via a weighted linear
combination to predict the stress level.
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Fig. 3: Semi-Supervised Learning Method (SSL), where L represents labeled
instance, U unlabeled instances, and t number of iterations, L = Lt ∪ Ut

4.2 Semi-supervised learning

In real applications missing labeled instances are a common issue and the stan-
dard supervised approaches ignore the unlabeled instances. But this information,
even when it is not complete, can be helpful and should not be discarded. Semi-
supervised learning (SSL) [25] has been suggested as a method aiming to address
this issue. The main objective of semi-supervised learning is to learn from both
labeled and unlabeled data, i.e. by exploiting unlabeled samples to improve the
learning performance.

For this study we consider one of the most common methods of SSL called
Self-Training [25]. This method works by building a classifier using the labeled
examples and use it to predict the class of all the unlabeled instances. The
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predicted classes with high confidence from the classifier are added as new labeled
examples. This augmented labeled set is used to build a new classifier and the
cycle is repeated until all the unlabeled instances have been incorporated into
the training set or until there is no more examples in the unlabeled set with high
confidence (see Figure 3).

5 Experiments

Our experiments have the following objectives:

– Compare the performance of different classifiers on the data.
– Assess the effect of intermediate models to enhance the knowledge of perceived
stress in employees.

– Use SSL to address the problem on how to use information from unlabeled
data to enhance classification accuracy.

For all the experiments, we used Weka’s [26] classifiers with their default
parameters. We build a model for each subject and performed a 10-fold cross
validation for all the experiments; we report the global accuracy, precision, recall
and f-score values. Table 4 show the results using different classifiers. In the first
experiment we compare the performance of the classifiers using a supervised
and a semi-supervised learning (SSL) algorithms. In the second experiment we
analyse the impact of using the intermediate models, with and without SSL.

In our data set, more than 27.6% of the phone conversation did not have an
associated stress level (the user did not answer the questionnaire). To address
this issue, we used the Self-Training Method described above. We followed a
simple approach where we divided the data into ten folds, where the training
data was used to classify the unlabeled data (as shown in Figure 3), as threshold
for the confidence we used ≥ 80% for the highest classified value. Then we used
all the classified data with the original training set to produce an extended
training set. As can be seen from the results adding information from generated
from SSL and intermediate models improves the results in terms of accuracy,
precision, recall and F-measure for all the classifiers, in some cases as for C4.5
the improvement is nearly 10%.

By incorporating the intermediate models, a further improvement is obtained
in both cases, with and without SSL. As it can be observed in Table 4, the best
results are obtained by combining SSL and the intermediate models, and in
particular with the random forest classifier.

6 Conclusions

In this paper we presented a study of how to classify the perceived stress of
employees from accelerometer data extracted from smart phones during phone
conversations. We used real data from employees during 8 working weeks on
unconstrained conditions. We extracted several features to analyse the motor
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Table 4: Comparison in terms of accuracy, precision, recall and F-measure of
supervised learning (Sup), semi-supervised learning (SSL) and using

intermediate models (IM) with different classifiers for predicting perceived
stress.

Algorithm Sup (%) SSL (%) Sup+IM (%) SSL+IM (%)
C4.5 Accuracy: 59.24 68.66 67.51 77.24

(±SD) (±15.40) (±15.53) (±15.21) (±16.80)
Precision: 58.43 68.12 66.20 74.43

Recall: 59.23 69.07 67.51 74.66
F-Measure: 58.68 68.72 66.47 73.81

Random Accuracy: 65.50 69.21 71.68 78.20
Forest (±SD) (±12.72) (±12.91) (±12.98) (±12.00)

Precision: 61.49 65.76 68.15 73.09
Recall: 65.50 69.21 71.49 75.45

F-Measure: 61.71 65.56 68.58 72.74
AdaBoost.M1 Accuracy: 61.88 63.51 66.51 75.18

(±SD) (±17.21) (±15.57) (±16.40) (±16.76)
Precision: 54.19 54.91 59.82 65.14

Recall: 61.88 63.51 64.29 56.33
F-Measure: 56.24 56.91 59.95 57.36

SVM Accuracy: 60.59 61.70 68.70 77.11
(±SD) (±16.81) (±16.53) (±15.84) (±15.84)

Precision: 48.29 52.96 63.42 69.03
Recall: 60.59 61.71 66.60 72.67

F-Measure: 51.91 54.09 63.62 68.89
Bagging Accuracy: 64.67 69.48 68.70 77.11

(±SD) (±15.15) (±13.62) (±15.80) (±15.84)
Precision: 58.46 64.85 63.24 68.80

Recall: 64.67 69.47 66.42 68.13
F-Measure: 60.26 65.56 63.36 67.67

activity-related behaviour from different users. To deal with unlabeled data we
propose the use of semi-supervised learning techniques. Additionally, we devel-
oped a novel approach to incorporate unobserved variables, intermediate models.
We experimentally evaluated the impact of using SSL, intermediate models and
both of them, using different base classifiers. The proposed approach for creating
intermediate models has been shown to increase the prediction of the stress level
of the users using the data derived from motor activity; from 61.5% using the
standard supervised methods to ≥78% after applying intermediate models and
SSL.

A future work we would like to analyse in more depth the models obtained
from each person in order to obtain clusters of people who behave similarly; this
could help to build prediction models for new users with few data.
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