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Abstract. Robots are becoming increasingly popular, however, they
normally require careful programming by the user, of identifiable con-
cepts, to perform simple tasks. In this paper, we describe a system,
called ADC, that automatically discovers concepts in a robotic’s domain,
performing predicate invention. The robot creates an incremental graph-
based representation with the information it gathers while exploring its
environment, from which common sub-graphs are identified and rela-
tional concepts are induced using Inductive Logic Programming. Several
concepts can be induced concurrently and the learned concepts can form
arbitrarily hierarchies. The approach was tested for learning concepts of
polygons, furniture in rooms, and places, like rooms and corridors, from
office-like environments with a simulated robot.

1 Introduction

There is an increasing number of robots with more capabilities, however, before
they can be used to perform simple tasks, the user normally needs to do some
programming effort to simplify the reasoning process of the robot. This can be
a time consuming process and involve several iterations until the robot is able
to achieve the intended goals. In this paper, we describe how concepts can be
automatically learned by a robot while it is exploring its environment.

Robot learning has been a very active research area. Much of the research has
been based on reinforcement learning and programming by demonstration and,
to a smaller extend, on concept learning. In concept learning, however, normally
the agent learns a single concept at a time and the user is heavily involved in
carefully preparing the learning settings.

Among the most commonly used approaches for concept discovery are those
based on Inductive Logic Programming (ILP) with predicate invention. Systems
using predicate invention can be classified into approaches based on reformula-
tion and demand-driven approaches [21]. Systems using reformulation introduce
new predicates produced by combining or restructuring other predicates to pro-
duce a more compact and precise theory (e.g., [13,24, 25, 5]). The demand-driven
approaches introduce new predicates when the vocabulary is not enough to in-
duce a theory (e.g., [12,1,2,4,9,22,19,11,10]).

Although these systems have been successful for inducing concept definitions,
there is a strong dependency on the user, the data is in many cases collected by
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the user before the learning process, the learning scenarios must be prepared,
and there is no simultaneous concept learning, i.e., only one concept is learned at
a time. In our research, we learn several concepts at the same time with demand-
driven predicate invention, what the system learns depends on the information
it gathers during its exploration and it is not known in advance, and we are able
to learn hierarchies of concepts.

Other approaches have been proposed to learn hierarchical concepts (e.g.,
[4,8,3,18,17,26,23,6]. But, these approaches usually are designed to work on
databases or in controlled environments. In this paper, we proposed an algorithm
for the discovery of concepts in a robotic domain. The robot gathers information
while exploring its environment, identifies similar instances of potential concepts
and learns relational concepts using ILP. Unlike previous systems, the proposed
algorithm is designed to learn multiple concepts about objects and their rela-
tions, building hierarchies of concepts, based on data obtained incrementally
from the direct experience of an agent with an unknown environment. We ap-
plied the proposed approach to learn concepts involving polygons, furniture,
and spaces in an office-like environment that could be used for manipulation
and navigation tasks.

The rest of the paper is organized as follows. In Section 2, the proposed
system is described in detail. Section 3 presents the experimental results and
Section 4 gives general conclusions and future research directions.

2 Automatic discovery of concepts through exploration

In our approach, called ADC, an agent automatically finds and collects ins-
tances of potentially relevant concepts while exploring its environment. Similar
instances are clustered together and new concepts are induced from the clusters.
These steps allow to learn concepts by demand-driven predicate invention from
exploration. More specifically, given a set of primitive predicates to describe the
environment (objects and relations among objects), ADC performs the following
steps:

1. Explore: Traverse and sense the environment following an exploration stra-
tegy.

2. Transform: Given the information from the sensor readings verify which of
the known predicates are satisfied with those readings, and represent them
in an incrementally constructed graph, with arcs corresponding to relations
and nodes to objects.

3. Induce: After reaching a goal state, find approximately equal frequent sub-
graphs from the constructed graph and create sets of similar subgraphs.
For each set induce a new concept using an Inductive Logic Programming
algorithm.

4. Simplify: Replace the induced concept in the original graph by a node and
repeat the process until no more common subgraphs can be found.

The pseudo code of the proposed method is presented in Algorithm 1. These
steps are detailed in the following subsections.
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Algorithm 1 The ADC algorithm.

Given definitions for objects O and relations among objects R as background knowl-
edge BK, a set of primitive actions A, an exploration strategy F, and a set of target
goals T'
Set groups Cl = () and graph G = null
repeat
Perform action a € A to explore the environment using F
Capture information from the robot’s sensors and identify objects and their rela-
tions in the environment using its current BK and add them to graph G, where
objects/attributes = nodes, relations = edges
until current state € T'
while A frequent subgraph g is found in G do
if g is similar to the instances of an existing group ¢; € Cl then
Add g to group ¢;
Let D = Induce Concept(g,ci,Cl) and BK = DU BK
else
Create a new group ¢; = {g}, Cl = ¢; UCI
Let D = Induce Concept(g,cj,Cl) and BK = DU BK
end if
G < Compress graph G using D (with instantiated variables)
if G can not be compressed using D then
G < Compress graph G using g
end if
end while

2.1 Graph Construction

During the first step, ADC incrementally builds a graph representing objects
and relations identified in the environment. A set of basic objects (O) and re-
lations (R) between objects identified from sensor readings (e.g., touches, on,
near etc.) is provided as background knowledge by the user as well as some basic
actions (e.g., move-forward, turn-right, etc.) to explore the environment. While
the agent is exploring its environment with its current actions, it applies its cur-
rent relations and use them to incrementally build a graph-based representation
where objects and their attributes are represented as vertices and relations as
edges. When the arity of a relation is greater than two and there is not direct
mapping to a simple graph, we use conceptual graphs [20] to represent objects
and their relations as concepts and conceptual relations (both, as vertices of a
graph). In this way, the agent incrementally builds a graph until it reaches an
intrinsic goal (defined by a function that considers the current state interesting
in some way) or an extrinsic goal (defined normally by the user representing a
goal of the current task), this process is ilustrated in the Figure 1.

2.2 Identification of Potential Concepts

Given the graph-based representation from the previous step, we use Subdue
[8] to discover frequent subgraphs which best compress an input graph using
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Fig. 1. A robot explores a structural environment, using an initial background knowl-
edge identifies basic elements and builds a graph from which frequent substructures
are identified as instances of potential concepts.

an inexact matching measure and the minimum description length principle
(MDL). The similarity between the substructures found by Subdue depends on
a threshold value, which measures the fraction of the size (vertexes and edges)
by which graphs can differ. A value of 0 (default value) implies that the graphs
must match exactly. In our experiments this value was empirically set to 0.1 to
promote finding similar (with small differences) instances of the same concept.
All similar subgraphs are grouped together.

2.3 Grouping substructures in sets

When a substructure is discovered, it is added to an existing group or it is used
to create a new group. Each group has similar subgraphs representing instances
of potential new concepts. We use two similarity measures for adding a subgraph
into a group.

With the first measure, a subgraph g; is added to a group of subgraphs Gy,
if most of the objects and relations of g; can also be found in the most common
objects and relations (Ry) found in the instances of that group. Each subgraph
has its representation as first-order clause, where objects (vertices) and relations
(edges) are literals in the body of the clause. In this way, given a new subgraph
g; with L, literals. Let Rj be the most common literals in the subgraphs of
group Gy, (according to certain threshold value ths). Let CL be the number of
literals in g; that are common to Rj. g; is added to group Gy if there is a large
proportion of the literals in g; that is common to Ry, i.e.: CL/|Lg4| > thy, and
if a large proportion of the most common literals in Gy (i.e., Ry) is part of the
common literals in g;, i.e.: CL/|Ry| > tho.
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With the second measure, a subgraph g; is added to a group of subgraphs Gy,
if the average cost of structural changes (deletion, insertion and substitution of
vertices and edges) to make gi = g € Gy, for all the subgraphs in G, is smaller
than a threshold value, i.e.: matchcost(g;, gr) < ths. The matchcost(g;, gx) is
calculated based on the inexact matching measure of Subdue [8].

2.4 Induction of definitions of potential concepts

All the graphs in a group are represented as first-order clauses too, where the
body of the clause is constructed with all elements in the subgraph, where each
object 0; € O and relation r; € R correspond to a literal of the body of a
clause, and the head of the clause is defined with a new predicate name with its
arguments composed by the distinctive arguments used in the body of the clause.
Each time a new subgraph is included in a group, for inducing a new definition
for the group, a set of negative examples is formed. This set includes instances
and definitions of other groups and previously learned concepts. Also, the set
includes negative examples artificially created by deleting relations from positive
examples of the group where the new graph was added. This prevents ADC from
over-generalizations from few examples. The group concept is re-induced each
time a new subgraph is added to the group. The induction process is performed
by Progol system based on inverse entailment and a general-to-specific search
[15] (see Algorithm 2).

Algorithm 2 Induce definitions of potential concept

Induce Concept(g, c, Cl)
Let Dy = clause definition constructed from g
if group c has associated a definition D in BK then
Let PEx = instances in ¢
Add existing Dy in BK and instances from other groups in C to negative exam-
ples NEx
Create artificial negative examples, guided by current instances (positive exam-
ples) of ¢, and add them to NEx
NewD < progol(PEx, NEx)
if NewD could not be induced then
Discard NewD
Create a new group ¢; = {g}, Cl =¢; UCI

Set D = D1
else
Set D = NewD
end if
else
Set D = D1
end if

Return D
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2.5 Hierarchical concepts

The new induced definition can be used to compress the current graph by sub-
stituting the whole subgraph by a simple node with its corresponding arcs. If the
new definition has variables, they must be instantiated before the concept can be
used by Subdue for compressing the graph, see Figure 2. In our case, the variable
arguments of the predicates are arbitrarily, although consistently, instantiated.
The instantiations of the graph covered by the new definition are replaced by
a single (new) predicate. The definition, with its original arguments (variables),
however, is kept and can be used for further learning. The compressed graph is
then used as new input to the algorithm to find new common subgraphs, from
which new, hierarchical concepts can be induced.
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concept o o ’ Graph compression ;
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Fig. 2. Compression of a graph and generation of a new input graph.

3 Experiments

ADC was tested in three domains: polygons, furniture in rooms and structural
domains (floors of buildings), to learn concepts that could be used for manipu-
lation and navigation tasks.

3.1 Floor Maps

The first experiments were performed on simulation using Player/Stage [7] with
a Pioneer 2 robot equipped with a laser sensor (with a range of 180°). In this
domain, the robot explored five maps of floors of buildings, shown in Figure 3.
The robot built five graphs with 24, 38, 135, 45, and 50 nodes for each map,
respectively. Different strategies can be used to explore the environment. They
can be guided by unexplored areas, using an intrinsically motivated reward func-
tion or be guided by the user. In these experiments, the user guided the robot
to cover the whole maps once.
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Fig. 3. Maps used by the robot to learn “structural” concepts.

BK Name Description

Object wall/1 representing a wall/line segment in the environment with different
lengths (short, normal, large and extra-large)

Relation touches/2 when two walls form a corner

Table 1. Background knowledge provided to learn concepts about office-like environ-

ments.

The initial background knowledge provided to the robot consisted of two
predicates, wall and touches (see Table 1). An incremental algorithm was used
for the identification of lines from laser readings [16].

In this first set of experiments we contrasted the results obtained with ADC
with those that can be obtained by Subdue, a graph-based discovery algorithm.
Many induction systems, such as in Subdue, cannot be used in an incremental
way or significantly decrease their performance if the data is given incrementally.
Table 2 shows the number of concepts induced by ADC and by Subdue if graphs
are given sequentialy (as in ADC) or when all the graphs are given at the same
time as a single graph to Subdue. In the second and third columns, Single and
HSingle refer to groups with a single subgraph and with a single hierarchical
subgraph and Multiple refers to generalized subgraphs using ILP over a set of
subgraphs in a single group.

In Subdue, if the graphs are given sequentially, as in our learning setting, a
large number of isolated subgraphs are induced, many of which represent equiva-
lent concepts. This behavior is reduced, to a certain extend, when all the graphs
are given to Subdue at the same time as a single graph, as it is able to join
some equivalent subgraphs from different graphs. Nevertheless, it still suffers
from creating too specific concepts. Among the concepts learned by ADC, a user
could identify concepts such as “room”, “hallway” and “set of rooms” among
others, some of them are illustrated in Figure 4. Some examples of definitions of
concepts:

cl(A,B,C,D,E) : —wall(A), wall(B),wall(C),wall(D),wall(E),
touches(A, E), touches(B, C), touches(C, D), touches(D, E).
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c4(A,B,C, D) : —cl(A),cl(B),c1(C),cl(D),
touches(A, D), touches(B, C'), touches(C, D).

\:Icl
[TTLF

Fig. 4. Examples of induced concepts in the floor maps domain.

Table 2. Results from the office-like environment. In ADC the graphs were incremen-
tally constructed from exploring the environment. In Subdue the complete graphs were
given either as a single graph or sequentially.

Floor Maps Single |HSingle| Multiple| Total
ADC 2 12 2 16
Subdue: Single graph (G1U...UG5) |3 20 - 23
Subdue: Sequential graphs (G1, ..., G5)|12 30 — 42

3.2 Polygons

@ < .
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Fig. 5. Five figures used in the first domain, in the learning concepts about polygons,
are illustrated.

In this case, we artificially created five graphs, shown in Figure 5, to learn
different concepts related with polygons. Geometric figures are commonly en-
countered in robotic applications, so we wanted to know if ADC could discover
basic geometric figures. The number of nodes in the graphs is 26, 55, 41, 61, and
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56, respectively. The predicates used as background knowledge are line, curve
and two relations representing angles (see Table 3).

BK Name Description
Object line/1 representing a line segment
curve/1  representing a curve segment
Relation angccN /2 a relation between two segments forming an angle greater than
180°, where N is the angle
angcxN /2 a relation between two segments forming an angle less than 180°,
where N is the angle
Table 3. Background knowledge provided to learn concepts about polygons.

ADC was able to identified several common subgraphs some of which were

REEY

grouped to learn 5 general concepts: “triangle”, “pentagon”,“square”, “hexagon”
and “irregular polygon with a concave angle”. The number of concepts induced
by ADC are given in Table 4, some of which are illustrated in Figure 6.

<:>cl Ac4 I\_/, c5
Dc2 ©c7 DDC9

%>cll @Dcw

Fig. 6. Examples of induced concepts in the geometry domain.

Table 4. Concepts learned by ADC in the polygon and the furniture domains.

Domain |Single|HSingle|Multiple| Total
Polygons |5 24 5 34
Furniture|1 18 5 24

3.3 Furniture in rooms

In the last experiment, we used four graphs based on a real “Reading and In-
ternet” room, shown in Figure 7. The number of nodes in the graphs is 77,
70, 31, and 22, respectively. The predicates provided as background knowledge
represent several objects that can be identified in rooms, like flat surfaces, legs,
lamps, etc., and relations among them, like next-to, above, etc. (see Table 5).
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Fig. 7. Drawings based on a real ”Internet and Reading” room used as basis for create
four graphs of the second domain.

Table 4 presents the number of concepts discovered by ADC. The general
concepts include: “table” (a flat board on four legs), “footstool” (a footstool on
four legs), “chair” (back and seat on four legs), “lamp on table” ( lampshade on
light bulb base on a table), “chair in front of table” and “table next to table”.
Some examples are illustrated in Figure 8. In this domain the concept of “chair”
also includes “armchair” and “sofa”.

ﬁdﬁ?d ﬁ%d
ﬁ%ﬁclo ﬁﬁm

Fig. 8. Examples of induced concepts in the furniture domain.

4 Conclusions and future work

We presented an algorithm that incrementally learns concepts, by predicate in-
vention, while exploring an environment. It identifies potential concepts using
an incremental graph-based representation and a subgraph discovery algorithm.
Similar subgraphs are grouped together and general concept definitions are in-
duced using an ILP algorithm. We tested the approach on three domains with
encouraging results.
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BK Name Description
Object flat_board/1 top of a table
leg/1 legs as those present in tables, chairs, sofa, armchair or
footstool

light_bulb_base/1 bottom of a lamp
lampshade/1 top of a lamp
framed_picture/1 a framed picture

footrest/1 top of a footstool

seat/1 a seat for a chair, sofa or armchair

back/1 the back of a sofa, armchair or chair

arm_support/1l  a support for arms in armchairs and sofas
Relation on/2 when one object is on another object

next_to/2 when one object is next to another object

behind/2 when one object is behind another object

in_front_of/2 when one object is in front of another object

above/2 when one object is above another object

Table 5. Background knowledge provided to learn concepts about furniture.

As future work we would like to include an intelligent exploration strategy
that could be coupled with the concept learning algorithm, borrowing some
ideas from intrinsically motivated reinforcement learning. We are currently not
inducing recursive definitions, including functional symbols or negated literals.
We plan to extend the expressiveness of the induced concepts. We would also
like to test the usefulness of the learned concepts to perform simple navigation
and manipulation tasks. We are also exploring how to learn compound actions
to learn complex tasks.
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