
1st Reading
April 2, 2013 17:3 WSPC/INSTRUCTION FILE S0218213013500085

International Journal on Artificial Intelligence Tools
Vol. 22, No. 2 (2013) 1350008 (21 pages)
c© World Scientific Publishing Company

DOI: 10.1142/S0218213013500085

SYNTHETIC OVERSAMPLING OF INSTANCES

USING CLUSTERING

ATLÁNTIDA I. SÁNCHEZ, EDUARDO F. MORALES and JESUS A. GONZALEZ

Instituto Nacional de Astrof́ısica, Óptica y Electrónica,

Computer Science Department, Luis Enrique Erro 1, 72840 Tonantzintla, México

{atlantida,emorales,jagonzalez}@inaoep.mx

Received 15 August 2011
Accepted 3 January 2013

Published

Imbalanced data sets in the class distribution is common to many real world applications.
As many classifiers tend to degrade their performance over the minority class, several
approaches have been proposed to deal with this problem. In this paper, we propose two
new cluster-based oversampling methods, SOI-C and SOI-CJ. The proposed methods
create clusters from the minority class instances and generate synthetic instances inside
those clusters. In contrast with other oversampling methods, the proposed approaches
avoid creating new instances in majority class regions. They are more robust to noisy
examples (the number of new instances generated per cluster is proportional to the
cluster’s size). The clusters are automatically generated. Our new methods do not need
tuning parameters, and they can deal both with numerical and nominal attributes. The
two methods were tested with twenty artificial datasets and twenty three datasets from
the UCI Machine Learning repository. For our experiments, we used six classifiers and
results were evaluated with recall, precision, F-measure, and AUC measures, which are
more suitable for class imbalanced datasets. We performed ANOVA and paired t-tests to
show that the proposed methods are competitive and in many cases significantly better
than the rest of the oversampling methods used during the comparison.

Keywords: Imbalanced datasets; oversampling; cluster-based oversampling; jittering.

1. Introduction

In many real-world classification problems, there is a strong imbalance in the class

distribution. This means that most of the instances belong to some classes and

only a few of them belong to other classes. In such cases, users are usually more

interested in the accuracy results from the minority classes. However, some classifiers

perform poorly in them. Trying to improve the classification performance of the

minority class is important. This is relevant to many real-world applications such as

fraud detection,10 medical diagnosis of rare diseases,3 unreliable communications for

clients,9 images classification,18 detection of intestinal contractions from endoscopy

video,22 author’s identification,19 and many more.

1350008-1

http://dx.doi.org/10.1142/S0218213013500085

1st Reading
April 2, 2013 17:3 WSPC/INSTRUCTION FILE S0218213013500085

A. I. Sánchez, E. F. Morales & J. A. Gonzalez

This problem has become relevant and different ideas to deal with it have been

developed, as we can see in Refs. 1, 2, 7 and Ref. 14. These approaches were proposed

to improve the classification performance on the minority class, and they can be

broadly divided into two types: techniques that sample the data and techniques

that work at the algorithmic level. In the first case, the idea consists of sampling

the data to obtain a modified, more balanced, class distribution in order to favor

the minority class. This is the subject of this paper. The second type of technique

usually involves extensions to existing algorithms or the development of new ones

to bias them to decrease the number of classification errors on the minority class.

Some of them include cost-sensitive classifiers,20 DataBoost,11 and MetaCost.8

Sampling techniques apply oversampling algorithms on the minority class and/or

subsampling techniques on the majority class. In both cases, it is possible to ap-

ply random or “intelligent” sampling techniques. This paper focuses on intelligent

oversampling techniques. The simplest oversampling method is known as random

oversampling (ROS), which randomly duplicates instances of the minority class.

However, this method might strengthen decision regions of the learner (making

them smaller), and overfit the minority class.

In this paper we compare our methods based on Synthetic Oversampling of

Instances (SOI) against ROS, SMOTE, and Borderline-Smote. We also show that

our two proposed algorithms are significantly better than the others under different

testing conditions.

The rest of this paper is organized as follows: Section 2 describes representative

research related to working with imbalanced data, including the algorithms that

we use in the comparison with the proposed algorithms. Section 3 describes the

proposed algorithms. Section 4 provides a description of the experiments performed

to validate the proposed algorithms over different datasets, with different classifi-

cation algorithms, and several performance measures used for imbalanced datasets.

In Section 5 the main results of our experiments are presented. In Section 6 we

present a discussion of the findings of our results. Finally, Section 7 describes the

main conclusions and suggests future research directions.

2. Related Work

Working with a small number of instances of one class does not allow a learning al-

gorithm to generalize for such a class, consequently causing overfitting of the model.

A widely used solution to avoid this problem is based on sampling techniques. As it

was mentioned in the introduction section, in this research we focus on oversampling

techniques.

A popular method that avoids replicating instances (among the intelli-

gent oversampling methods) is called SMOTE (Synthetic Minority Oversampling

Technique).6 The main idea of SMOTE is to create new minority (positive) class

instances by interpolating pairs of close minority class instances (see Figure 1 left).

The pairs of close instances used to create each synthetic example are taken by

1350008-2

1st Reading
April 2, 2013 17:3 WSPC/INSTRUCTION FILE S0218213013500085

Synthetic Oversampling of Instances Using Clustering

Fig. 1. The synthetic generation of minority class instances is normally performed by interpo-
lating between a pair of minority class instances (left). However, sometimes new instances can be
created inside a majority class region (right) when the chosen pair is separated by majority class
instances.

randomly selecting a minority class instance and one of its k Nearest Neighbors

(k normally takes a value of five). This technique is described in detail in Ref. 6.

SMOTE, however, may have problems with (i) isolated instances as it may generate

instances in the majority class region by interpolating between two distant minority

instances (see Figure 1 right), (ii) when there is overlapping between classes, pos-

sibly due to noise, and (iii) the value of k needs to be determined for each domain,

which may require a computationally expensive trial-and-error process.

Recently, Han, Wang, and Mao proposed a modification of SMOTE, called

borderline-SMOTE, where new instances are created only at the border of the mi-

nority class decision region.12 This method improves SMOTE by generating new

instances only from the instances located at the borderline of the minority class. This

method has two variants: Borderline-Smote1 (borderSM1), in which the instances

are generated only with instances of the positive class, and Borderline-Smote2

(borderSM2), which interpolates between one positive and one negative class in-

stance to generate a new one. Borderline-Smote, however, may have problems when

there is a non-well defined border between instances of both classes, as it does not

generate instances in such cases.

In Ref. 5, the authors introduced the Cluster-SMOTE algorithm. Their idea is

that identifying even an approximation of the minority class regions would enhance

the performance on global classification. Cluster-SMOTE simply creates clusters

from the minority class examples with the k-means algorithm and then applies

SMOTE to each cluster. In Cluster-SMOTE the parameter k, used as seed to find

the clusters, is defined by the user. Results presented in Ref. 5 showed that, although

there was not a clear winner, Cluster-SMOTE was preferred over SMOTE when

evaluating with convex hull analysis over the ROC graph. If the selected k is smaller

1350008-3

1st Reading
April 2, 2013 17:3 WSPC/INSTRUCTION FILE S0218213013500085

A. I. Sánchez, E. F. Morales & J. A. Gonzalez

than the actual number of clusters of the minority class, Cluster-SMOTE can still

produce instances within majority class regions. The problem with Cluster-SMOTE

is that the user has to know (or find) the right number of clusters (parameter k), and

this is a really difficult task.16 In fact, this problem is known as “the fundamental

problem of cluster validity”.25 In our algorithms, the goal is to release the user from

this task.

A recent method presented in Ref. 15 shows how, by adding noise to the new

instances, the class imbalance problem can be reduced. They created an over and

undersampling technique with noise to work with boosting algorithms. Their algo-

rithm, called JOUS-Boost, combines over/undersampling with jittering. The way

in which new examples are created (to avoid only replicating instances) consists on

the addition of a small amount of random noise or jittering to the original values

of the attributes of the instances. Uniform noise (−vσj , vσj) is added according to

the standard deviation of the attributes (denoted as σ), and a parameter (v) that is

tuned to optimize performance. The value of v depends on the data set characteris-

tics. This algorithm is designed to work with AdaBoost. It considers only numerical

attributes, and the amount of jittering depends on the standard deviation of the

attributes in the whole dataset. Our algorithms work with any classical classifier,

with both numerical and nominal attributes. The amount of jittering, in the case of

SOI-CJ, depends on the standard deviation of each attribute in the whole dataset

and in each cluster, producing a more conservative strategy. Finally, they do not

depend on any tuning parameter.

In this paper, we propose two new oversampling methods called SOI-C and SOI-

CJ. In contrast with Cluster-SMOTE, our methods automatically generate clusters,

so they do not depend on the definition of a k parameter. They also avoid the

generation of instances in a majority class region. The number of new generated

instances is proportional to the size of the clusters, so they are more robust to

noise as very little oversampling will be produced around isolated (possibly noisy)

examples. Finally, our algorithms deal with both numerical and nominal attributes.

It has recently been shown that ROS may achieve better performance than

SMOTE and Borderline-Smote.21

3. Synthetic Oversampling of Instances

Our general approach, called SOI (Synthetic Oversampling of Instances), starts by

generating clusters with the minority class instances. It then creates new instances

within those clusters (see Figure 2). An advantage of the cluster-based strategy

is that it can be used to identify possibly noisy examples in singleton clusters.

The total number of instances added to each cluster is proportional to the cluster

size. This strategy is less susceptible to noisy examples as it generates very few

new instances from isolated (possibly noisy) examples. Our cluster-based strategy

also avoids creating instances in a region of the majority class, as many Smote-

based algorithms do, and it is able to create instances even when majority class

1350008-4

1st Reading
April 2, 2013 17:3 WSPC/INSTRUCTION FILE S0218213013500085

Synthetic Oversampling of Instances Using Clustering

Fig. 2. The general idea of the proposed algorithms is to construct minority class clusters (left)
and to generate instances within clusters (right).

instances are not close to the minority class instances, as opposed to Borderline-

Smote, stressing the decision regions.

3.1. Creation of clusters

Clustering commonly refers to the classification of objects into groups (called clus-

ters) where instances that belong to the same cluster are more similar to each other

than instances from different clusters. In this approach, the term cluster refers to

a group of instances belonging to the same class (the minority class). When we

generate minority class clusters, each instance is considered as a seed to create a

new cluster, while the rest of the instances are assigned to the cluster according

to their distance to the seed (as we will describe through the algorithms). In this

work, we use the Heterogeneous Value Difference Metric (HVDM) defined between

two instances x and y as follows:23

HVDM(x, y) =

√

√

√

√

m
∑

a=1

d2a(xa, ya)

wherem is the number of attributes and da returns the difference between the values

of attribute a, depending on its type (numerical or nominal) so that each attribute

contributes to the total HVDM value according to:

da(xa, ya) =

{

vdm(xa, ya) if a is nominal

Euclidean(xa, ya) if a is continuous

where vdm is evaluated as:

vdma(xa, ya) =

n
∑

i=1

√

p(ci|xa)− p(ci|ya)

1350008-5

1st Reading
April 2, 2013 17:3 WSPC/INSTRUCTION FILE S0218213013500085

A. I. Sánchez, E. F. Morales & J. A. Gonzalez

Fig. 3. Extreme instances of two clusters and their mean point (left). Potential influence area of
the merged clusters for generating minority class instances (right).

where n is the number of classes, p(ci|xa) is the probability of a particular class value

(ci) given an attribute value (xa), and Euclidean(x, y) is the Euclidean distance

between values x and y. Using the vdm distance measure, two values are considered

to be closer if they have high correlation with the output class.

For each cluster (initially represented by its seed), we add to it the set of minority

class instances closest to it (with the restriction that there cannot be a majority

class instance closer to the seed than any of the minority class instances of that

set).

Once each cluster has been assigned its closest minority class instances, the

algorithm merges clusters with common elements as follows. First, the common

elements are deleted from the smallest cluster. Then, the farthest pair of instances

between the two clusters is used to obtain the mean point between them (see Figure 3

left). This point corresponds to a new instance that takes as values the average of

the two instances values for numerical attributes and both values in the case of

nominal attributes (or one if it is the same for both instances). The algorithm then

finds all the instances that are contained in a hypersphere with its center at the

mean instance, with a radius of length equal to one of the points used to find the

mean instance (see Figure 3 right). If most of the covered instances belong to the

minority class, then the two clusters are merged. Otherwise, the clusters are not

merged (see Figure 4).

The idea is to create clusters whose predominant elements belong to the minor-

ity class. In the experiments reported in this paper, the clusters are merged if the

number of minority class instances is larger than the number of other covered in-

stances, until it is not longer possible to merge clusters (see Algorithm 1). However,

other more conservative merging criteria could be used as well.

Once the clusters have been created, new instances are generated within each

cluster. We have implemented two different strategies to generate instances. In both

1350008-6

1st Reading
April 2, 2013 17:3 WSPC/INSTRUCTION FILE S0218213013500085

Synthetic Oversampling of Instances Using Clustering

Fig. 4. Identification and merging of clusters.

Algorithm 1 Creation of minority class clusters.

Input: E: all instances and E+: Minority class instances

Output: Clusters: Cf

{Form clusters}
for all ei ∈ E+ do

Create a new cluster Ci = {ei} with instance ei as seed

Create an ascending sorted list (SL) with all the other instances (E − {ei})
according to their distance with ei.

end for

while the closest instance ek is from the minority class (ek ∈ E+) do

remove the instance from SL and

add it to the cluster Ci = Ci ∪ {ek}
end while

{Merge clusters}
while there is an intersection between clusters do

select two clusters with an intersection

remove common elements from the smaller cluster

find the mid point (m) between the most distant elements in both clusters

obtain the distance (d) between m and the distant elements

if most of the elements covered from m within distance d are from the minority

class then

merge clusters

else

discard merging and continue with another pair of clusters

end if

end while

1350008-7

1st Reading
April 2, 2013 17:3 WSPC/INSTRUCTION FILE S0218213013500085

A. I. Sánchez, E. F. Morales & J. A. Gonzalez

cases, a jittering process is used to create new instances for single element clusters,

as explained below.

3.2. SOI-C

Our first method creates new instances following an approach similar to SMOTE,

mainly by interpolating between minority class instances. Instead of considering

only the k neighbors, our approach, called SOI-C (SOI by Clustering), interpo-

lates between a randomly selected pair of minority class instances belonging to

the same cluster. In this case, we do not have to tune the number of neighbors

to consider (as SMOTE does). The number of neighbors to choose from depends

on the number of elements of each cluster. This reduces the possibility of creating

instances in the majority class area. Finally, we do not need to tune the number

of clusters, as Cluster-SMOTE does, as they are automatically constructed (see

Algorithm 2).

Algorithm 2 Synthetic generation of instances within clusters using interpolation.

Input: C: all minority class clusters, E+: minority class instances, N : number of

synthetic instances to generate

for all ci ∈ C do

Prop = N
|E+| {percentage of new instances}

Ni = Prop× |ci|

Newi = ∅

for j = 1 to Ni do

randomly select a pair of elements ej , ek ∈ ci with j 6= k

new = interpolate(ej, ek) {See Algorithm 3}

Newi = {new} ∪Newi

end for

ci = ci ∪Newi

end for

For numerical attributes, the interpolation is performed as it is done in SMOTE.

Given a pair of numerical attributes from two instances, we calculate their difference.

We then generate a random number between 0 and 1. After that, we create a new

value by adding the obtained difference, multiplied by the random number, to the

smaller value.

For nominal attributes, a new value is created according to the current distri-

bution of values of attributes, considering only the attribute values of instances

inside that cluster. This creates nominal values according to the current values in

the cluster, reducing the possibility of creating instances more similar to those of

other classes. This idea is better explained with an example: suppose that there are

ten instances in a cluster, five of them have the value “blue”, three have the value

1350008-8

1st Reading
April 2, 2013 17:3 WSPC/INSTRUCTION FILE S0218213013500085

Synthetic Oversampling of Instances Using Clustering

“red”, and two have the value “yellow” for a given attribute. Then, the value of that

attribute for the new synthetic instance will be selected as “blue” with a probability

of 50%, as “red” with 30%, and “yellow” with 20%. This process is described in

Algorithm 3.

Algorithm 3 Synthetic generation of one instance using interpolation.

Input: e1, e2, two instances, where each instance is characterized by a set of at-

tributes {a1, a2, . . . , an}.

Output: Synthetic instance (Synt)

for i = 1 to n (number of attributes) do

if ai is numerical then

diff = |ai,1 − ai,2| {Difference between the values of the i-th. attribute in

both instances}

gap = random number between 0 and 1

if ai,1 ≥ ai,2 then

Synti = ai,1 + gap ∗ diff

else

Synti = ai,2 + gap ∗ diff

end if

else if ai is nominal then

Synti = generate a new nominal value using the value distribution of ai in

the current cluster

end if

end for

3.3. SOI-CJ

The second approach, called SOI-CJ (SOI by Clustering and Jittering), uses a jit-

tering process to generate synthetic instances “around” instances inside the clus-

ter. In the case of numerical attributes, it first evaluates the standard deviation

of the minority class elements inside the cluster and then the standard deviation

of all the elements belonging to the minority class. It selects the minimum stan-

dard deviation between them and creates a new value for that attribute as follows:

new = current + random ∗ std dev, where random is a random number between

{−1, 1}. A more conservative jittering process is performed as we also consider the

standard deviation of an attribute within a cluster. For the case of nominal at-

tributes, we use the same approach that we used in SOI-C. We do not need to tune

the amount of jittering, as it depends on the available data and on the data of each

cluster (see Algorithm 4).

Our algorithms are simple, have no tuning parameters, are less sensitive to noisy

examples, and generate instances within minority class clusters. In the following

sections, we present the experimental setups and main results.

1350008-9

1st Reading
April 2, 2013 17:3 WSPC/INSTRUCTION FILE S0218213013500085

A. I. Sánchez, E. F. Morales & J. A. Gonzalez

Algorithm 4 Synthetic generation of instances within clusters using jittering.

Input: C: all minority class clusters, E+: minority class instances, N : number of

synthetic instances to generate

for all ci ∈ C do

Prop = N
|E+| {percentage of new instances}

Ni = Prop× |ci|

obtain standard deviation for all numerical attributes within cluster (~stdci) and

within E+ (~stdE+

i

).

Let ~std = min(stdci, stdE+

i

)∀i

Newi = ∅

for j = 1 until Ni do

randomly select an instance ei ∈ ci

new = jitter(ei, ~std) {see Algorithm 5}

Newi = {new} ∪Newi

end for

ci = ci ∪New

end for

Algorithm 5 Synthetic generation of one instance using jittering.

Input: e1, instance characterized by a set of attributes {a1, a2, . . . , an} and ~std a

vector with the standard deviation of all the attributes

Output: Synthetic instance (Synt)

for i = 1 to n (number of attributes) do

if ai is numerical then

random = random value in {−1, 1}

std devi ∈ ~std standard deviation of attribute ai

Synti = current+ random ∗ std devi

else if ai is nominal then

Synti = generate a new nominal value using the value distribution of ai in

the current cluster

end if

end for

4. Experiments

In our experimental setting, we worked with problems of two classes and generated

as many synthetic instances as needed to balance the classes (for all the oversam-

pling methods). In the case of datasets with more than two classes, we selected the

minority class and merged the rest of the classes into a single majority class.

We tested our methods with forty three datasets. Twenty three were obtained

from the UCI Machine Learning Repository3 and twenty were artificially con-

structed. The datasets from UCI show different imbalance ratios, number of at-

1350008-10

1st Reading
April 2, 2013 17:3 WSPC/INSTRUCTION FILE S0218213013500085

Synthetic Oversampling of Instances Using Clustering

tributes, and have continuous and categorical attributes. The artificial datasets

were generated to test the performance of the algorithms with a variety of con-

trolled conditions.

For the artificial datasets, we considered different conditions as explained by

Japkowicz et al.
13 We generated ten datasets with two continuous attributes (con-

tinuous); five datasets with two nominal attributes (nominal); and five datasets with

one continuous and one nominal attribute (mixed). The ten continuous datasets

were generated as follows: each instance belongs to a bi-dimensional domain in

which each attribute is in the [0, 1] range, and each instance is associated with one

of two classes. The input range for each dimension is divided in 2n regular intervals,

where n is a complexity parameter that takes values from 1 to 5. With this configu-

ration, there are 2(2n) areas in the bi-dimensional domain to create instances where

adjacent areas have opposite output classes. The instances in the 2(2n) areas are

randomly generated. We consider an imbalance ratio of 1:10 for five datasets and

1:20 for the other five datasets. In order to create the five nominal datasets, we con-

sidered two nominal attributes with four possible values each. The values for each

attribute of an instance were randomly selected. We considered an imbalance ratio

of 1:10 for the five nominal datasets. For the creation of the five combined datasets,

we used the same technique used in the continuous datasets for the first attribute,

and the same technique used in the nominal datasets for the second attribute. The

characteristics of all datasets are shown in Table 1.

Although accuracy is typically used to evaluate the performance of machine

learning algorithms, this is not appropriate when the data classes are imbalanced.

This is because accuracy averages the performance of all the classes, hiding the

accuracy on the minority class. The evaluation metrics used for imbalanced domains

are typically obtained from the confusion matrix. The results of our experiments

were obtained using recall, precision, F-measure, and AUC (Area under the ROC

curve) of the minority class. These measures have shown to give a better estimate

of the result for the minority class classification.

We decided to use well-known and commonly-used learning algorithms to eval-

uate our oversampling methods that have also been tested on class imbalanced

problems. The following algorithms from WEKA24 were used in the tests: J48 (the

Weka implementation of C4.5), Naive Bayes, IBK with k=3, PART, Multilayer

perceptron, and AdaBoostM1 with J48.

We performed an ANOVA test to verify if the use of our oversampling technique

produced a significant improvement in the performance of the algorithms. Addi-

tionally, we performed paired t-tests between our proposed algorithms and the rest

of the oversampling algorithms with 95% of confidence.

We performed a ten-fold cross validation experiment ten times in which we

created synthetic instances only for the training set, and averaged the results. This

process is repeated for all the oversampling methods (ROS, SMOTE, borderSM1,

borderSM2, SOI-C, and SOI-CJ) and all the performance metrics (Recall, Precision,

F-measure, and AUC) over all the datasets.

1350008-11

1st Reading
April 2, 2013 17:3 WSPC/INSTRUCTION FILE S0218213013500085

A. I. Sánchez, E. F. Morales & J. A. Gonzalez

Table 1. Description of the datasets used in the experiments, with its name, its type indicated
in parenthesis for the non-artificial datasets, M for Mixed, C for continuous and N for nominal,
the size (number of instances), the percentage of minority class instances (M.C.) and the number
of attributes.

Name Size M.C. Attr. Name Size M.C. Attr.

Mixed01 110 9.09% 2 Continuos01 110 9.09% 2

Mixed02 110 9.09% 2 Continuos02 110 9.09% 2

Mixed03 110 9.09% 2 Continuos03 264 9.09% 2

Mixed04 110 9.09% 2 Continuos04 352 9.09% 2

Mixed05 221 9.05% 2 Continuos05 671 8.94% 2

Nominal01 110 9.09% 2 Continuos06 315 4.76% 2

Nominal02 110 9.09% 2 Continuos07 420 4.76% 2

Nominal03 120 16.67% 2 Continuos08 420 4.76% 2

Nominal04 120 16.67% 2 Continuos09 840 4.76% 2

Nominal05 300 16.67% 2 Continuos10 660 9.09% 2

Abalone1 (M) 600 16.66% 9 Escalon (C) 100 19% 3

Balloons (N) 76 46.05% 5 Glass (C) 214 7.94% 10

BreastCancer (C) 198 23.74% 33 Haberman (C) 306 26.47% 4

Bupa (C) 345 42.03% 7 Hayes-Roth (N) 132 22.72% 4

Car1 (N) 700 10% 7 Heart (N) 267 20.60% 23

Car2 (N) 700 10% 7 Hepatitis (M) 128 20.31% 20

CardioVasc (C) 312 17.63% 6 Imayuscula (C) 100 12% 3

Cinco (C) 106 18.87% 3 PostOpPatient (M) 88 27.27% 9

Coil (M) 184 19.57% 18 Raro (C) 82 29.26% 3

Cpu (C) 162 4.32% 9 Servo (N) 161 31% 5

Diabetes (C) 768 35% 9 Wine (C) 178 27% 14

Ecoli (M) 332 10.54% 8

5. Results

We present the results of our experiments for the J48 algorithm in Tables 2 to 9.

It is important to mention that although in this paper we only show results for the

J48 algorithm, similar tables were produced for all the datasets, for each classifier,

and for each performance metric. All these tables are reported in Ref. 17, in which

we show one table for each combination of performance metric, kind of data, and

classifier.

In these tables, the first column corresponds to the dataset name. The second,

to the percentage of oversampling performed over the minority class. The third

column shows the original performance of the algorithm (without oversampling).

The rest of the columns show the name of the oversampling technique used (ROS,

SMOTE, borderSM1, borderSM2, SOI-C, and SOI-CJ) for each of the datasets of

the corresponding row. A “**” in the first column means that the ANOVA test

found that the results are in general, statistically significant and they are not a

consequence of randomness introduced by the oversampling methods. In the rest

of the columns, a “*” means a statistically significant difference with a confidence

level of 95% with SOI-C and a “+” means a statistically significant difference with

SOI-CJ. The best results are shown in bold face.

1350008-12

1st Reading
April 2, 2013 17:3 WSPC/INSTRUCTION FILE S0218213013500085

Synthetic Oversampling of Instances Using Clustering

Table 2. Recall results with artificial datasets for the J48 classification algorithm.

Dataset %over Original ROS SMOTE BSM1 BSM2 SOI-C SOI-CJ

Nominal01** 900 0.000 0.490 0.440 0.030*+ 0.030*+ 0.500 0.500

Nominal02** 900 0.000 0.320 0.200*+ 0.000*+ 0.000*+ 0.330 0.330

Nominal03** 400 0.000 0.530 0.430*+ 0.035*+ 0.035*+ 0.515 0.515

Nominal04** 400 0.000 0.520 0.440*+ 0.015*+ 0.040*+ 0.520 0.520

Nominal05** 400 0.000 0.622*+ 0.482*+ 0.010*+ 0.010*+ 0.624 0.624

Numeric01 800 0.900 1.000 1.000 1.000 1.000 1.000 1.000

Numeric02** 800 0.000 0.185*+ 0.695+ 0.605*+ 0.675+ 0.690+ 0.750*

Numeric03** 800 0.008 0.015*+ 0.220*+ 0.322*+ 0.348*+ 0.575 0.588

Numeric04** 800 0.000 0.038*+ 0.057*+ 0.180*+ 0.173*+ 0.248 0.235

Numeric05** 800 0.000 0.000*+ 0.732*+ 0.573 0.517 0.485 0.525

Numeric06 300 0.950 1.000 1.000 1.000 1.000 1.000 1.000

Numeric07** 300 0.000 0.412*+ 0.838 0.810 0.860 0.782 0.815

Numeric08** 300 0.261 0.094*+ 0.150*+ 0.408*+ 0.381*+ 0.571 0.580

Numeric09** 300 0.000 0.067*+ 0.192*+ 0.274*+ 0.248*+ 0.598 0.615

Numeric10** 300 0.000 0.002*+ 0.182*+ 0.257*+ 0.267*+ 0.614 0.634

Mixed01** 900 0.900 0.900+ 0.900+ 0.900+ 0.900+ 0.900+ 1.000*

Mixed02** 900 0.000 0.640*+ 0.680*+ 0.250*+ 0.270*+ 0.730 0.740

Mixed03** 900 0.210 0.610+ 0.670+ 0.430*+ 0.530+ 0.660+ 0.810*

Mixed04 900 0.470 0.720 0.730 0.730 0.750 0.710 0.750

Mixed05** 900 0.290 0.645 0.570 0.505 0.560 0.615 0.625

Table 3. Precision results with artificial datasets for the J48 classification algorithm.

Dataset %over Original ROS SMOTE BSM1 BSM2 SOI-C SOI-CJ

Nominal01** 900 0.000 0.098 0.126 0.009 0.009 0.089 0.089

Nominal02** 900 0.000 0.053 0.070 0.000 0.000 0.052 0.052

Nominal03** 400 0.000 0.217 0.209 0.021*+ 0.017*+ 0.205 0.205

Nominal04** 400 0.000 0.201 0.208 0.009*+ 0.022*+ 0.190 0.190

Nominal05** 400 0.000 0.166 0.146 0.017*+ 0.017*+ 0.161 0.161

Numeric01** 800 0.900 1.000 1.000 1.000 0.893*+ 1.000 0.995

Numeric02** 800 0.000 0.338*+ 0.303*+ 0.398*+ 0.379*+ 0.492+ 0.415*

Numeric03** 800 0.020 0.043*+ 0.059*+ 0.131*+ 0.137*+ 0.117 0.105

Numeric04** 800 0.000 0.132 0.080*+ 0.097*+ 0.114 0.106 0.128

Numeric05** 800 0.000 0.000*+ 0.088 0.100 0.092 0.093 0.089

Numeric06** 300 1.000 0.995 0.995 0.995 0.920 0.995 0.995

Numeric07 300 0.000 0.623 0.596 0.539 0.530 0.633 0.619

Numeric08** 300 0.298 0.285 0.155*+ 0.330*+ 0.317*+ 0.247 0.244

Numeric09 300 0.000 0.314 0.285 0.330 0.343 0.280 0.280

Numeric10** 300 0.000 0.020*+ 0.176 0.117 0.144 0.157 0.158

Mixed01** 900 0.900 0.860 0.855 0.860 0.813 0.873 0.932

Mixed02** 900 0.000 0.133 0.153 0.145 0.122 0.159 0.173

Mixed03** 900 0.210 0.560 0.595 0.388 0.428 0.499 0.471

Mixed04 900 0.410 0.303 0.302 0.361 0.321 0.348 0.297

Mixed05** 900 0.371 0.257 0.364 0.309 0.262 0.306 0.224

1350008-13

1st Reading
April 2, 2013 17:3 WSPC/INSTRUCTION FILE S0218213013500085

A. I. Sánchez, E. F. Morales & J. A. Gonzalez

Table 4. F-measure results with artificial datasets for the J48 classification algorithm.

Dataset %over Original ROS SMOTE BSM1 BSM2 SOI-C SOI-CJ

Nominal01** 900 0.000 0.162*+ 0.190*+ 0.014*+ 0.014*+ 0.150 0.150

Nominal02** 900 0.000 0.090 0.094 0.000*+ 0.000*+ 0.089 0.089

Nominal03** 400 0.000 0.300 0.271 0.026*+ 0.023*+ 0.282 0.282

Nominal04** 400 0.000 0.279 0.268 0.011*+ 0.028*+ 0.273 0.273

Nominal05** 400 0.000 0.260 0.222*+ 0.012*+ 0.012*+ 0.254 0.254

Numeric01** 800 0.900 1.000 1.000 1.000 0.927 1.000 1.000

Numeric02** 800 0.000 0.236*+ 0.399*+ 0.442* 0.456* 0.540+ 0.487*

Numeric03** 800 0.011 0.022*+ 0.088*+ 0.175 0.186 0.171 0.166

Numeric04** 800 0.000 0.057 0.050 0.101 0.109 0.093 0.093

Numeric05** 800 0.000 0.000*+ 0.156 0.162 0.148 0.120 0.127

Numeric06** 300 0.967 0.997 0.997 0.997 0.950 0.997 0.997

Numeric07** 300 0.000 0.459*+ 0.674 0.618 0.628 0.673 0.674

Numeric08** 300 0.271 0.131*+ 0.141*+ 0.345 0.314 0.304 0.313

Numeric09** 300 0.000 0.108*+ 0.159*+ 0.203*+ 0.210*+ 0.283 0.287

Numeric10** 300 0.000 0.003*+ 0.137*+ 0.145*+ 0.154*+ 0.228 0.236

Mixed01** 900 0.900 0.873+ 0.870+ 0.873+ 0.845+ 0.882+ 0.954*

Mixed02** 900 0.000 0.216 0.240 0.172*+ 0.157*+ 0.255 0.271

Mixed03** 900 0.210 0.577 0.618*+ 0.402*+ 0.460*+ 0.547 0.568

Mixed04 900 0.428 0.396 0.403 0.455 0.420 0.441 0.391

Mixed05** 900 0.312 0.340 0.426 0.357 0.336 0.385 0.308

Table 5. AUC results with artificial datasets for the J48 classification algorithm.

Dataset %over Original ROS SMOTE BSM1 BSM2 SOI-C SOI-CJ

Nominal01** 900 0.500 0.541 0.602 0.636 0.634 0.532 0.532

Nominal02** 900 0.507 0.405 0.420 0.471 0.471 0.404 0.404

Nominal03 400 0.499 0.577 0.565 0.563 0.556 0.590 0.590

Nominal04 400 0.496 0.499 0.522 0.518 0.535 0.497 0.497

Nominal05 400 0.500 0.526 0.518 0.523 0.523 0.537 0.537

Numeric01 800 0.950 1.000 1.000 1.000 1.000 1.000 1.000

Numeric02** 800 0.500 0.361*+ 0.798 0.708*+ 0.725*+ 0.845 0.874

Numeric03** 800 0.507 0.555 0.494 0.569 0.579 0.508 0.520

Numeric04 800 0.500 0.496 0.456 0.440 0.459 0.467 0.452

Numeric05** 800 0.500 0.417 0.414 0.486 0.460 0.427 0.443

Numeric06 300 0.975 1.000 1.000 1.000 1.000 1.000 1.000

Numeric07** 300 0.500 0.569*+ 0.893 0.832 0.859 0.878 0.870

Numeric08 300 0.640 0.567 0.482 0.608 0.587 0.483 0.498

Numeric09 300 0.500 0.517 0.475 0.529 0.518 0.505 0.540

Numeric10 300 0.491 0.474 0.459 0.458 0.470 0.445 0.462

Mixed01 900 0.950 0.998 0.997 0.999 0.998 0.997 0.999

Mixed02** 900 0.491 0.702 0.672 0.754 0.736 0.699 0.724

Mixed03** 900 0.642 0.970 0.897 0.692*+ 0.772*+ 0.953 0.930

Mixed04 900 0.716 0.741 0.744 0.757 0.753 0.764 0.759

Mixed05 900 0.674 0.748 0.684 0.686 0.700 0.716 0.722

1350008-14

1st Reading
April 2, 2013 17:3 WSPC/INSTRUCTION FILE S0218213013500085

Synthetic Oversampling of Instances Using Clustering

Table 6. Recall results with real datasets for the J48 classification algorithm.

Dataset %over Original ROS SMOTE BSM1 BSM2 SOI-C SOI-CJ

Abalone1 100 0.385 0.465 0.460 0.455 0.450 0.465 0.470

Balloons** 100 0.774 0.731*+ 0.797*+ 0.806 0.817 0.823 0.823

Breast Cancer 200 0.186 0.320*+ 0.388 0.390 0.386 0.404 0.404

Bupa** 100 0.512 0.539*+ 0.673*+ 0.670*+ 0.683*+ 0.724 0.718

Cardiovascular 400 0.052 0.193*+ 0.510 0.537 0.543 0.470 0.458

Coil 200 0.247 0.172*+ 0.244 0.236 0.264 0.242 0.244

Cpu 1000 0.871 0.086*+ 0.843 0.586*+ 0.629*+ 0.771+ 0.871*

Ecoli** 600 0.547 0.724*+ 0.816 0.800 0.816 0.818 0.829

Glass** 700 0.033 0.006*+ 0.506 0.211 0.206 0.467 0.517

Heart** 300 0.477 0.515*+ 0.615+ 0.600*+ 0.665 0.633 0.658

Hepatitis** 300 0.478 0.581 0.600 0.626 0.670 0.596 0.648

Postoperative 100 0.104 0.104 0.154 0.133 0.154 0.142 0.137

Car1** 700 0.916 0.920 0.946 0.947 0.980 0.934 0.974

Car2** 700 0.850 0.991 0.943 0.951 0.900*+ 0.970 0.940

Cinco** 300 0.445 0.200*+ 0.525*+ 0.555*+ 0.635 0.615 0.630

Diabetes** 100 0.557 0.515*+ 0.638*+ 0.683*+ 0.732 0.738 0.721

Escalon** 300 0.105 0.365*+ 0.805 0.785 0.840 0.795 0.825

Haberman** 200 0.417 0.467*+ 0.736 0.844*+ 0.840*+ 0.701 0.733

Hayes-roth** 200 0.473 1.000 1.000 0.987 0.980 1.000 0.997

Imayuscula** 600 0.042 0.058*+ 0.667 0.392*+ 0.450*+ 0.567 0.633

Raro** 100 0.692 0.383*+ 0.746 0.679*+ 0.762 0.704 0.700

Servo** 100 0.772 0.788+ 0.802 0.804 0.814 0.814 0.888

Wine 100 0.883 0.981 0.990 0.990 0.990 0.988 0.988

As can be seen from these tables, all the tested algorithms win in some datasets

and lose in others. Similar results are obtained when we used other classifiers. In

order to present our results in a clearer way we also made a summary of the results

obtained according to each performance metric. For the twenty artificial datasets

with six classifiers, there are one hundred and twenty results for each performance

metric to show the performance of the six oversampling methods (four in the state of

the art, SOI-C, and SOI-CJ). In the case of the twenty three UCI datasets, there are

one hundred and thirty eight results. In Tables 10 to 13 we only show a summary of

those results in which the ANOVA or pair-t tests showed statistical significance. The

results of these tables are presented in pairs Nr/Nc, where Nr denotes the number

of times that the oversampling method of that row is better than the oversampling

method of that column, and Nc denotes the times that the oversampling method

of that column is better than the oversampling method of that row. For example,

in Table 10 the number of times that SOI-C is significantly better/worse than the

other algorithms in the artificial datasets is: 56/1 for ROS, meaning that SOI-

C is significantly better (with 95% of confidence level) than ROS fifty six times

and significantly worse only once, 63/7 for SMOTE, 75/3 for borderSM1, 70/4 for

borderSM2 and 2/19 for SOI-CJ. This means that although the number of overall

wins and ties for SOI-C is roughly equivalent to that of the other algorithms, when

1350008-15

1st Reading
April 2, 2013 17:3 WSPC/INSTRUCTION FILE S0218213013500085

A. I. Sánchez, E. F. Morales & J. A. Gonzalez

Table 7. Precision results with real datasets for the J48 classification algorithm.

Dataset %over Original ROS SMOTE BSM1 BSM2 SOI-C SOI-CJ

Abalone1 100 0.640 0.743 0.646 0.585*+ 0.552*+ 0.639 0.687

Balloons** 100 0.737 0.736 0.691 0.718 0.637 0.637 0.632

Breast Cancer 200 0.257 0.289*+ 0.302 0.315 0.289*+ 0.347 0.342

Bupa** 100 0.609 0.692 0.602 0.592 0.603 0.579 0.585

Cardiovascular 400 0.097 0.279 0.181 0.189 0.177 0.212 0.200

Coil 200 0.222 0.192 0.176 0.225 0.206 0.196 0.192

Cpu 1000 0.729 0.055*+ 0.369 0.285 0.252 0.345 0.413

Ecoli** 600 0.724 0.709 0.616 0.683 0.653 0.606 0.595

Glass** 700 0.043 0.004*+ 0.220 0.164 0.135 0.145 0.159

Heart** 300 0.511 0.492 0.479 0.500 0.498 0.509 0.511

Hepatitis** 300 0.526 0.604 0.539 0.647 0.606 0.533 0.561

Postoperative 100 0.179 0.137 0.150 0.155 0.165 0.174 0.162

Car1** 700 0.879 0.932 0.918 0.887 0.812 0.882 0.772

Car2** 700 0.789 0.989 0.856 0.846 0.694 0.929 0.732

Cinco 300 0.580 0.312 0.245 0.259 0.284 0.341 0.342

Diabetes** 100 0.662 0.641 0.621 0.554 0.540 0.585 0.620

Escalon 300 0.123 0.467 0.586 0.552 0.508 0.508 0.487

Haberman** 200 0.420 0.456*+ 0.347 0.294*+ 0.288 0.372 0.361

Hayes-roth** 200 0.967 1.000 1.000 0.919 0.764*+ 1.000 0.971

Imayuscula** 600 0.037 0.097*+ 0.245 0.399 0.330 0.225 0.193

Raro** 100 0.860 0.424 0.447 0.606 0.563 0.444 0.457

Servo** 100 0.814 0.820 0.810 0.818 0.807 0.829 0.677

Wine 100 0.925 0.966 0.969 0.968 0.968 0.966 0.969

compared with each algorithm, its superiority is clearly shown as it has more results

that are significantly better than the other algorithms.

In case of SOI-CJ we have the following results: ROS 67/1, SMOTE 80/6,

borderSM1 84/1, borderSM2 81/1, SOI-C 19/2. Similar results are reported for

precision, F-measure and AUC for both types of datasets. It means that when our

proposed methods loose, their difference in results are not statistically significant,

while they are when they have better results.

6. Discussion

Although we have only presented complete tables for one classifier, in this case

for J48 from Weka, similar results are obtained for the rest of the classifiers. As

expected, some classifiers tend to have better performance than others but they are

not consistently better in all measures or for all datasets. The complete tables for

all the algorithms can be consulted in Ref. 17.

As it can be seen from Tables 10 to 13, our cluster-based algorithms perform

better than the other oversampling methods in most datasets and for most of the

performance metrics, except for AUC for which they have very similar results. Our

algorithms are not always better, but in general when they win, their difference

1350008-16

1st Reading
April 2, 2013 17:3 WSPC/INSTRUCTION FILE S0218213013500085

Synthetic Oversampling of Instances Using Clustering

Table 8. F-measure results with real datasets for the J48 classification algorithm.

Dataset %over Original ROS SMOTE BSM1 BSM2 SOI-C SOI-CJ

Abalone1 100 0.468 0.558 0.516 0.490*+ 0.484*+ 0.528 0.541

Balloons** 100 0.742 0.710 0.727 0.746 0.706 0.707 0.703

Breast Cancer 200 0.199 0.295*+ 0.329 0.335 0.321 0.357 0.354

Bupa** 100 0.547 0.589*+ 0.627 0.618 0.629 0.636 0.637

Cardiovascular 400 0.062 0.212 0.261 0.275 0.263 0.283 0.271

Coil 200 0.221 0.171 0.200 0.222 0.221 0.207 0.209

Cpu 1000 0.776 0.064*+ 0.480 0.355*+ 0.336*+ 0.438 0.522

Ecoli** 600 0.589 0.694 0.686 0.716 0.708 0.681 0.679

Glass** 700 0.034 0.005*+ 0.297 0.173 0.154*+ 0.217 0.239

Heart** 300 0.474 0.493 0.526 0.534 0.560 0.552 0.561

Hepatitis** 300 0.467 0.564 0.541 0.607 0.614 0.537 0.574

Postoperative 100 0.176 0.109 0.143 0.128 0.145 0.143 0.135

Car1** 700 0.886 0.916 0.923 0.907 0.879 0.895 0.851

Car2** 700 0.804 0.990 0.891* 0.890* 0.775*+ 0.945 0.814

Cinco** 300 0.480 0.235*+ 0.294*+ 0.327 0.366 0.397 0.395

Diabetes** 100 0.595 0.567*+ 0.628 0.606 0.619 0.650 0.665

Escalon** 300 0.103 0.373*+ 0.651 0.618 0.612 0.584 0.587

Haberman** 200 0.407 0.446 0.466 0.434 0.427 0.473 0.470

Hayes-roth** 200 0.621 1.000 1.000 0.946 0.844*+ 1.000 0.982

Imayuscula** 600 0.036 0.071*+ 0.306 0.354 0.326 0.287 0.274

Raro** 100 0.741 0.363 0.524 0.590 0.597 0.519 0.504

Servo** 100 0.774 0.787 0.790 0.796 0.793 0.806 0.756

Wine 100 0.897 0.971 0.978 0.977 0.977 0.975 0.976

with respect to the other algorithms is statistically significant, while when they

lose, their difference is not significant. On average, half of the time our algorithms

produce significantly better results than the rest of the oversampling methods.

It is interesting to note that the proposed cluster-based method that generates

new instances using a jittering process is a very clear winner over the rest of the

algorithms, SOI-CJ even outperforms SOI-C. One possible explanation for this be-

havior could be that the merging process for clusters allows for the introduction of

a large number of instances of the majority class. Consequently, the method that

interpolates between elements in the clusters for oversampling (SOI-C) may still be

generating instances in a majority class region, while the jittering approach gener-

ates instances between jittered instances. SOI-C, however, still outperforms ROS,

SMOTE, and Borderline-SMOTE.

The proposed algorithms scale poorly with the number of attributes and size

of the data since they have to evaluate the distances between all the data and

all the minority class examples. In the performed tests, their running times, how-

ever, were equivalent to those of Borderline-SMOTE, although they were larger

than ROS and SMOTE. Faster running times can be achieved, for instance, with

better data structures to find similar examples faster (e.g., kd-trees) or with parallel

1350008-17

1st Reading
April 2, 2013 17:3 WSPC/INSTRUCTION FILE S0218213013500085

A. I. Sánchez, E. F. Morales & J. A. Gonzalez

Table 9. AUC results with real datasets for the J48 classification algorithm.

Dataset %over Original ROS SMOTE BSM1 BSM2 SOI-C SOI-CJ

Abalone1** 100 0.690 0.816 0.838 0.809 0.799 0.804 0.818
Balloons** 100 0.747 0.779 0.797 0.781 0.782 0.804 0.802
Breast Cancer 200 0.521 0.596 0.604 0.606 0.585 0.636 0.632
Bupa** 100 0.649 0.735 0.728 0.722 0.732 0.726 0.728
Cardiovascular 400 0.527 0.582 0.532 0.524 0.514 0.549 0.558
Coil 200 0.554 0.576 0.552 0.582 0.575 0.570 0.566
Cpu 1000 0.932 0.945 0.947 0.938 0.943 0.945 0.955

Ecoli** 600 0.785 0.945 0.941 0.940 0.943 0.938 0.943
Glass 700 0.589 0.660 0.788 0.735 0.733 0.730 0.739
Heart** 300 0.759 0.797 0.808 0.802 0.794 0.814 0.816

Hepatitis** 300 0.659 0.810 0.762 0.824 0.817 0.769 0.783
Postoperative 100 0.412 0.362 0.356 0.358 0.368 0.363 0.375

Car1 700 0.966 0.995 0.998 0.993 0.989 0.990 0.992
Car2** 700 0.948 0.999 0.993 0.994 0.983 0.998 0.987
Cinco 300 0.706 0.506 0.497 0.559 0.569 0.584 0.571
Diabetes 100 0.756 0.782 0.795 0.774 0.774 0.804 0.802
Escalon** 300 0.540 0.648 0.912 0.904 0.911 0.848 0.844
Haberman** 200 0.614 0.656 0.677 0.662 0.669 0.691 0.696

Hayes-roth** 200 0.660 1.000 1.000 0.997 0.994 1.000 0.999
Imayuscula** 600 0.476 0.363 0.577 0.612 0.633 0.621 0.610
Raro** 100 0.853 0.614 0.650 0.718 0.728 0.657 0.649
Servo** 100 0.885 0.940 0.938 0.935 0.932 0.940 0.930
Wine 100 0.930 0.999 0.999 0.999 0.999 0.999 0.999

Table 10. Recall: Comparison among the oversampling methods with artificial datasets (top
table) and with real datasets (bottom table) considering statistical significance.

ROS SMOTE borderSM1 borderSM2 SOI-C SOI-CJ

Artificial Datasets

SOI-C 56/1 63/7 75/3 70/4 – 2/19
SOI-CJ 67/1 80/6 84/1 81/1 19/2 –

Real Datasets

SOI-C 92/0 25/3 37/5 27/3 – 0/6
SOI-CJ 95/1 30/0 40/4 27/4 6/0 –

Table 11. Precision: Comparison among the oversampling methods with artificial datasets (top
table) and real datasets (bottom table) considering statistical significance.

ROS SMOTE borderSM1 borderSM2 SOI-C SOI-CJ

Artificial Datasets

SOI-C 24/2 22/3 30/10 33/9 – 6/5
SOI-CJ 26/3 25/3 35/10 35/9 5/6 –

Real Datasets

SOI-C 26/14 13/0 29/12 38/1 – 5/4
SOI-CJ 24/21 10/8 24/19 37/5 4/5 –

1350008-18

1st Reading
April 2, 2013 17:3 WSPC/INSTRUCTION FILE S0218213013500085

Synthetic Oversampling of Instances Using Clustering

Table 12. F-measure: Comparison among the oversampling methods with artificial datasets (top
table) and real datasets (bottom table) considering statistical significance.

ROS SMOTE borderSM1 borderSM2 SOI-C SOI-CJ

Artificial Datasets

SOI-C 48/2 35/10 58/2 59/1 – 9/7

SOI-CJ 48/4 40/10 57/4 56/3 7/9 –

Real Datasets

SOI-C 47/0 8/0 17/3 21/3 – 1/0

SOI-CJ 47/2 4/1 14/5 22/3 0/1 –

Table 13. AUC: Comparison among the oversampling methods with artificial datasets (top table)
and real datasets (bottom table) considering statistical significance.

ROS SMOTE borderSM1 borderSM2 SOI-C SOI-CJ

Artificial Datasets

SOI-C 12/0 0/0 9/0 9/0 – 0/0

SOI-CJ 12/0 0/0 9/0 9/0 0/0 –

Real Datasets

SOI-C 16/0 4/0 2/0 3/0 – 0/0

SOI-CJ 16/0 4/0 2/0 3/0 0/0 –

computing architectures, such as CUDA. We leave the implementation of faster

versions of our algorithms as future work.

7. Conclusions

Imbalanced datasets are common to many real-world applications. However, many

classifiers tend to perform poorly on the minority class, which is often the class

of interest. Several approaches have been previously proposed to improve the per-

formance of algorithms in the minority class. These approaches, however, tend to

perform similarly or worse than random oversampling, generate examples in ma-

jority class regions, and have problems with noisy examples. This paper presents

two new cluster-based oversampling methods. The idea is to form clusters with the

minority class instances and oversample within each cluster avoiding some of the

problems of previous approaches. In the experiments performed, the results from

the proposed algorithms are, on average, half of the time significantly better than

the rest of the oversampling methods.

There are several research directions that are worth exploring. In particular, we

would like to distinguish with some confidence noisy instances from truly minority

class instances. The identification of singleton clusters can be a first step in this

direction. We would like to test similar ideas for undersampling algorithms based

1350008-19

1st Reading
April 2, 2013 17:3 WSPC/INSTRUCTION FILE S0218213013500085

A. I. Sánchez, E. F. Morales & J. A. Gonzalez

on clustering. Finally, we would like to test other merging criteria for clusters and

assess their effect in the results.

Acknowledgments

The first author would like to thank CONACyT for the student grant number 3732.

The authors would also like to thank the anonymous reviewers for their helpful

comments in a previous version of this paper.

References

1. Rehan Akbani, Stephen Kwek, and Nathalie Japkowicz, Applying support vector
machines to imbalanced datasets, European Conference of Machine Learning, LNCS,
Vol. 3201, 2004, pp. 39–50.

2. Gustavo E. A. P. A. Batista, Ronaldo C. Prati, and Maria Carolina Monard, A study
of the behavior of several methods for balancing machine learning training data,
ACM SIGKDD Explorations Newsletter – Special Issue on Learning from Imbalanced

Datasets 6(1) (June 2004).
3. C. Blake and C. Merz, UCI Repository of machine learning databases, Depart-

ment of Information and Computer Sciences, University of California, Irvine, 1998.
http://www.ics.uci.edu/mlearn/mlrepository.html.

4. A. Bradley, The use of the area under the ROC curve in the evaluation of machine
learning algorithms, Pattern Recognition 30(7) (1997) 1145–1159.

5. D. A. Cieslak, N. V. Chawla and A. Striegel, Combating imbalance in network intru-
sion datasets, IEEE International Conference on Granular Computing (2006) 732–737.

6. N. V. Chawla, K. W. Bowyer, L. O. Hall and W. P. Kegelmeyer, SMOTE: Synthetic
minority oversampling technique, JAIR 16, 2002, pp. 321–357.

7. Nitesh V. Chawla, Nathalie Japkowicz, and Aleksander Kotcz, Editorial: Special issue
on learning from imbalanced data sets, ACM SIGKDD Explorations Newsletter –

Special Issue on Learning from Imbalanced Datasets 6(1) (June 2004).
8. P. Domingos, Metacost: A general method for making classifiers cost-sensitive, Pro-

ceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, 1999, pp. 155–164.
9. K. J. Ezzawa, M. Singh, and S. W. Norton, Learning goal oriented bayesian networks

for telecommunications management, Proceedings of the International Conference on

Machine Learning, ICML’96, Bari, Italy, Morgan Kafmann, 1996, pp. 139-147.
10. T. Fawcett and F. Provost, Combining data mining and machine learning for effective

user v profile, Proceeding of the 2nd International Conference on Knowledge Discovery

and Data Mining, Portland OR, AAAI Press, 1996, pp. 8-13.
11. H. Guo and H. L. Viktor, Learning from imbalanced data sets with boosting and data

generation: The DataBoost-IM approach, SIGKDD Explorations 6(1) (2004) 30–39.
12. H. Han, W. Y. Wang and B. H. Mao, Borderline-smote: A new oversampling method in

imbalanced data sets learning, In International Conference on Intelligent Computing

(ICIC’05), Lecture in notes in Computer Science, Vol. 3644 (2005), pp. 878–887.
13. N. Japkowicz and S. Stephen, The class imbalance problem: A systematic study, In-

telligent Data Analysis 6(5) (2002) 429–450.
14. Sotiris Kotsiantis, Dimitris Kanellopoulos, and Panayiotis Pintelas, Handling imbal-

anced datasets: A review, GESTS International Transactions on Computer Science

and Engineering 30 (2006) 25–36.

1350008-20

1st Reading
April 2, 2013 17:3 WSPC/INSTRUCTION FILE S0218213013500085

Synthetic Oversampling of Instances Using Clustering

15. D. Mease, A. J. Wyner and A. Buja, Boosted classification trees and class probability/
quantile estimation, Journal of Machine Learning Research 8 (2007) 409–439.

16. N. Mishra, R. Schreiber, I. Stanton, and R. E. Tarjan, Finding strongly-knit clusters
in social networks, Internet Mathematics 5(12) (2008) 155–174.

17. A. I. Sánchez, Synthetic instances generation for imbalanced classes, Master of Science
Thesis, National Institute of Astrophysics, Optics, and Electronics (2008).

18. A. V. Sousa, A. M. Mendonsa, and A. Campilho, The class imbalance problem in TLC
image classification, Image Analysis and Recognition, LNCS 4142, 2006, pp. 513–523.

19. E. Stamatatos, Text sampling and re-sampling for imbalanced author identifica-
tion cases, Proceedings of the 17th European Conference on Artificial Intelligence

(ECAI’06), 2006.
20. P. Turney, Types of cost in inductive concept learning, Proceedings of the ICML’2000

Workshop on Cost Sensitive Learning, 2000, pp. 15–21.
21. J. Van Hulse, M. T. Khoshgoftaar, and A. Napolitano, Experimental perspectives on

learning from imbalanced data, ICML 2007, 2007, pp. 935–942.
22. F. Vilariño, P. Spyridonos, J. Vitriá, and P. Radeva, Experiments with SVM and

stratified sampling with an imbalanced problem: Detection of intestinal contractions;
S. Singh et al. (Eds.), ICAPR, LNCS 3687, Springer-Verlag, (ISI 0,402), 2005, pp. 783–
791.

23. D. R. Wilson and T. R. Mart́ınez, Improved heterogeneous distance functions, Journal
of Artificial Intelligence Research 6 (1997) 1–34.

24. I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Tech-

niques, 2nd edn. (Morgan Kaufmann, 2005).
25. Jun Wang, Xi-Yuan Peng, and Yu Peng, Validity index for clustering with penalizing

method, Third International Symposium on Systems and Control in Aeronautics and

Astronautics, (ISSCAA), 8–10 June, 2010, pp. 706–710.

1350008-21

