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Abstract. Production data in petroleum engineering is often affected
by errors occurring during data acquisition and recording. As interven-
tions in the well alter the natural exponential decay of the production
curve, the errors made during the data acquisition and recording are
concealed. Automatic data validation techniques can help in cleaning
production data. In this paper we propose solutions for three common
problems that can be found in oil well production data; (i) detection of
outliers in non-stationary signals, (ii) detection of sudden changes alter-
ing the natural trend of the signal and (iii) detection of rogue values
disrupting signal trend in the light of statistically related variables. The
solutions proposed make use of advanced computational solutions such
as wavelets and Bayesian networks. The algorithms proposed are ap-
plied to an exemplary real well production dataset for illustration of the
concepts.
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1 Introduction

Data validation is concerned with finding erroneous data in a time series and
when appropriate, suggesting a plausible alternative value [11]. Data validation
can be defined as a systematic process in which data is compared with a set
of acceptance rules defining its validity. Often, the validation process is domain
specific [6,4]. In petroleum engineering causes for erroneous data include noise,
sensor failures, data manipulation mistakes, etc.

In this paper we address three common types of errors that can be found in
oil well production data, namely; (i) the detection of outliers in non-stationary
signals, (ii) the detection of sudden changes altering the natural trend of the
signal, and (iii) the detection of rogue values disrupting signal trend in the light
of statistically related variables. For each of these problems we propose a generic
solution and apply this solution to real production data.

Outliers are observations numerically distant from the rest of data. Surpris-
ingly there is not a standard method for identifying them. Often data is assumed
to comply with a Gaussian distribution and a distance criterion e.g. deviation,



from the distribution descriptor determines the outlier condition of a data sam-
ple. Oil well production data is a non-stationary process, and thus the naive
approach does not suffice. However, upon looking at a sample neighbourhood,
stationarity can be assumed. Here we propose a local solution for outlier identi-
fication.

Atypical sudden changes deviating from the natural trend of the signal often
correspond to noise, or failures in data recording. Noise in the context of oil well
production can often be associated to well interventions. There already exist a
number of approaches for the detection of sudden changes as for instance the use
of the Laplacian of a Gaussian operator [7]. A discussion of existing approaches
to detect signal discontinuities is beyond the scope of this paper. Here we use
Haar wavelets for the detection of sudden changes in the signal proposing a
variant from an existing approach developed for neuroimaging data [9].

The final validation problem addressed here is the detection of suspicious
values which may be in range and agree with the signal trend but that contradict
the trend in statistically dependent variables. In order to catch these rogue values
we present an approach based on Bayesian networks. The use of a Bayesian
network for validating data by related variables capitalises on the following idea;
the trend of statistically related variables must grossly follow each other. When
this premise is violated, the observation is likely to be a rogue value.

The paper first introduces the technique to address each of the validation
challenges in Section 2. Then, in Section 3 the proposed techniques are applied
to exemplary oil production data from a real well. Finally, the paper closes
summarizing the conclusions in Section 4.

2 The validation framework: Techniques

2.1 Local outlier detection

Perhaps the easiest form of outlier detection consist of imposing a valid data
range within which variable data is allowed, and labelling values outside the
range as outliers. Often this range is established from the data distribution as
defined by equations 1 and 2 :

lower limit = m — 30, (1)

upper limit = m + 30, (2)

where m is the distribution median and o, is the deviation from the median.

If stationarity does not hold, the above solution is not satisfactory. Notwith-
standing, upon accepting that the decay of the oil well production curve is slow,
local stationarity holds and the above solution can be reused. A local outlier
detection can be constructed upon windowing the data. The basic idea is then
to shift the window along the data and compute the lower and upper limits of
the data range only for the visible data within the window.

The question that remains is how large should the window be. The answer
depends on how quickly the signal change, and we make here no attempt at



providing an automatic window size determination. Instead this remains a free
parameter of the method.

2.2 Abrupt change detection

The wavelet transform [1] decomposes a signal in its time-scale components
re-expressing the original function in terms of the wavelet family basis. The
continuous wavelet transform (CWT) of a signal z(t) is defined by equation 3.
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where a and b are the scale and shift parameters respectively, and ¥(t) is the
wavelet function used for the decomposition of x(t). Among the wavelets func-
tions families, Haar wavelets [1,9] are especially suitable for the detection of
discontinuities.

For each a and b i.e. time-scale pair, a wavelet coefficient captures the sim-
ilarity if the signal z(t) and an stretched and shifted version of ¥(¢). It is from
these coeflicients that it is possible to discriminate sudden changes in the sig-
nal. Application of the median filter to the coefficients independently at each
scale emphasises the characteristics of the sudden changes as well as reduces the
impact of white noise. To establish the limit between acceptable changes and
inappropriate changes a threshold T is imposed in the matrix of coefficients.
Here we chose to set the threshold automatically using the Universal Threshold
[3] according to equation 4:

T=0-v2-lnn (4)

where o is the absolute deviation over the median and n is the number of coef-
ficients.

2.3 Rogue values detection with related variables

A Bayesian network is a probabilistic graphical model in which domain entities
form the nodes of a directed graph and the conditional dependence assumptions
between the variables are represented in the arcs.

Before validation can take place the Bayesian network must be constructed
in a process known as structure learning. For this and abstracting of the training
algorithm details, the joint probability distribution of each pair of variables must
be found. The discretization of the variables ranges into a set of discrete inter-
vals facilitates the determination of such joint probability distribution and paves
the way for inference. The determination of the discrete intervals is a non-trivial
problem and some common approaches include [5]; equi-distance where the vari-
able data range is split in a predetermined number of equally distant intervals,
and equi-frequency where the splitting of the intervals ensure that each interval
holds the same number of samples. Here we propose a more sophisticated interval
discretization approach based on a Gaussian mixture model. Under this interval



discretization approach the data is assumed to be generated by a mixture of
Gaussian distributions, each one characterized by its mean p and its variance o2
as illustrated in Figure 1. The model is formally defined by equation 5.
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Fig. 1: Exemplification of the interval discretization by 3 Guassian distributions.

K

p(e) = 3 N (e, o) (5)

k=1

where K is the number of Gaussians considered, N (z|uy, 07) represents a Gaus-
sian with mean py, and variance cr,% and 7 are the mixing coefficients, i.e. weights
for the Gaussians. The algorithm has K as a single parameter, and the classical
Expectation-Maximization algorithm [2] is used to optimize the fitting of the
distributions.

After the intervals have been established for every variable in the model,
the one being validated and the related variables, a Bayesian network is learned
using a training algorithm, e.g. PC [10].

The learned Bayesian network capturing relations among the variables per-
mits identification of rogue values using a two step process [8]:

1. Identification of error candidates: Every node (variable) in the net is an-
alyzed, instantiating its Markov Blanket (MB) (the parents, the children and
the parents of his children) and propagating evidence on the net. The poste-
rior probability distribution of the variable is obtained and the probability
of the analyzed value is determined to be a corrupted data if its probability
is less than a threshold (p_value). A set of possible errors is obtained after
all nodes have been analyzed.



2. Isolation of real errors: A new causal network is built with two levels.
Both levels contains all the nodes in the original network. The upper level
represents true errors in the given variable and the lower level represent
possible errors. The relation between upper and lower nodes is given by
the Extended Markov Blanket of each node [8]. Every node in lower layer is
instantiated as true if this is a possible error (detected in the previous phase),
the rest of the nodes is instantiated as false. With this evidence propagation is
performed over the network and posterior probability distribution for every
real node is read. If the true state of a real node is higher than a given
threshold (pF’) then we conclude that this variable represent corrupted data
given the evidence in his relational variables.

3 Results and discussion

For results illustration purpose, data from an oil well from the Jujo field in
Mexico has been used. The data contains three time series; Oil_Net, Water_Net
and RGA describing the oil, water and gas production respectively, the latter
express as the oil to gas relation.

3.1 Local outlier detection

For the purpose of this paper, examples were tested with a window worth 10%
of samples. Figure 2 illustrates the difference in applying global and local outlier
detection to a real oil well production curve.

3.2 Abrupt change detection

Figure 3 shows the matrix of Haar wavelets coefficients.

Figure 4 summarises the results from detecting sudden changes using the
Haar wavelets with universal threshold in a given production data series. It can
be appreciated how the method nicely agrees with the intuitive visual inspection
of the data.

3.3 Rogue values detection with related variables

A Bayesian Network has been constructed to model the relations between pro-
duction’s variables: Oil_Net, Water_Net and RGA (Gas-Oil relation). We have
chosen a randomly pick subset of 20% of samples of production data constraint
to those free of other errors for training. Figure 5 summarise the intervals found
for the production variable Oil_Net using the Gaussian mixture model based dis-
cretization. Analogous intervals were also calculated for Water_Net and RGA.
Figure 6 shows the learned Bayesian network and dependencies found between
the three variables. The 80% rest of the production data were validated using
this model. Detection thresholds were set as: p_value = 0.01 and pF = 0.7.
These thresholds values were chosen based upon experience of the researcher.
Figure 7 illustrates an example of the detection process.
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Fig.2: Global (top) and local (bottom) approaches to outlier detection. The
orange lines indicate the upper and lower limits respectively (whether global
or local). Red crosses correspond to samples marked as outliers. For the local
outlier detection a window sized 10% of the signal length was chosen.
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Fig.3: The matrix of wavelet coefficients, represented in logarithmic scale for

better appreciation.

4 Conclusions

We presented a framework for oil well production data validation underpinned
by advanced computational solutions such as wavelets, Bayesian networks and
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Fig.4: a): The wavelets coefficients at the discrete scale (2) smoothed with the
median filter and the threshold selected to discriminate sudden changes. b): The
oil well production data signal with the sudden changes as captured with the
Haar wavelets approach afore described.

Gaussian mixture models. Although the application is for petroleum engineering
the methods are generic and thus generalizable to other domains. The current
work has focus in the detection of errors but has obviated the suggestion of
alternative values for the suspicious samples. While of course interpolation is a
clear candidate, in the presence of statistically dependent information the use
of Bayesian networks may surpass the interpolation capabilities for suggesting
plausible values. We are now investigating this potential use of Bayesian networks
and preliminary results are promising.
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Fig.5: Intervals detected by the discretization with Gaussian mixture model
interval discretization approach for the data in Figure 4 (b). An arbitrary 5
intervals were chosen
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Fig. 7: Timecourses of production variables Oil_Net, Water_Net and RGA The
red cross points the zoomed data for exemplification. In Water_Net and RGA
the red labelled interval indicated the fixated value. In Oil_Net the lower green
squares indicate a probability above p_value. In this case, the validated value is
considered correct.
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