
Hybrid Binary–Chain Multi-label Classifiers

Pablo Hernandez-Leal, Felipe Orihuela-Espina, L. Enrique Sucar and Eduardo F. Morales
Instituto Nacional de Astrof́ısica, Óptica y Electrónica
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Abstract
In multi-label classification the goal is to assign an instance to a set of di↵erent classes.
Several approaches have been proposed to deal with multi-label classification problems,
ranging from considering each class independently from the other (binary relevance meth-
ods) to considering all the possible combinations of values of the original classes into
a single compound class (power-set approach). In between, other methods have been
proposed to consider dependencies among classes whilst trying to keep computational
complexity of the method low. In this paper, instead of finding probabilistic dependencies
among classes, we focused on finding independencies among classes using a simple correla-
tion approach. We first build a correlation matrix among classes and use it to build chain
classifiers among correlated sub-sets of classes while learning independent classifiers for
uncorrelated classes. It is experimentally shown that this simple hybrid approach exhibits
very competitive predictive performance among state-of-the-art multi-label classifiers with
lower time complexity.

1 Introduction

Multi-label classifiers (MLCs) have gained an
increasing attention in recent years, as di↵erent
important problems can be seen as multi-label
classification (Zhang and Zhou, 2007; Vens et
al., 2008), such as text classification (assigning a
document to several topics), HIV drug selection
(determining the optimal set of drugs), among
others.

There are basically two types of approaches
that have been proposed for solving an MLC
problem with binary classes: binary relevance
and label power-set (Tsoumakas and Katakis,
2007). In the binary relevance approach (Zhang
and Zhou, 2007), an MLC problem is trans-
formed into d binary classification problems,
one for each class variable, C1, . . . , Cd. A classi-
fier is independently learned for each class vari-
able, and the results are combined to determine
the predicted class set. The problem with this
approach is that it is unable to capture the in-
teractions among classes and, in general, the
most likely class of each classifier will not match

the most likely set of classes due to possible in-
teractions among them.

The label power-set approach (Tsoumakas
and Katakis, 2007) on the other hand trans-
forms the multi-label problem into a single-class
version by defining a new class variable whose
possible values are all of the possible combi-
nations of values of the original classes. In
this case the interactions between the di↵erent
classes are implicitly considered. One disad-
vantage of this approach is its computational
complexity, as the size of the new class vari-
able increases exponentially with the number of
classes.

Recently, alternative approaches have been
proposed to consider dependencies among
classes without incurring in high computational
costs. One of these approaches is chain classi-
fiers (Read et al., 2011), that consist of d bi-
nary classifiers which are linked in a chain, such
that each classifier incorporates the class pre-
dicted by the previous classifiers as additional
attributes. This approach combines the compu-
tational advantages of binary-relevance meth-
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ods while incorporating dependencies among
classes considered in the chain. The chain or-
der, however, is randomly selected and does
not necessarily capture the actual dependencies
among classes while incorporating much irrele-
vant information from independent classes. A
related approach is presented in (Zaragoza et
al., 2011), where the authors use a probabilistic
approach to establish a dependency class struc-
ture to build chain classifiers.

In this work, instead of looking for depen-
dencies among classes, we look for independen-
cies between classes using a simple correlation
analysis. We first build a matrix of pairwise
correlations between classes. Since uncorrelated
classes can be considered independent, we build
independent classifiers for them. For each sub-
set of correlated classes, we group them and in-
duce a simple chain classifier among them. We
show, experimentally, that by identifying inde-
pendent classes, we are able to significantly re-
duce the computation time while achieving com-
petitive predictive performance results against
state-of-the art multi-label classifiers.

2 Multi-Label Classifiers

The multi-dimensional classification problem
corresponds to searching for a function h that
assigns to each instance represented by a vec-
tor of m features x = (x1, . . . , xm) a vector of d
class values c = (c1, . . . , cd):

h : ⌦X
1

⇥ · · ·⇥ ⌦Xm ! ⌦C
1

⇥ · · ·⇥ ⌦Cd

(x1, . . . , xm) 7! (c1, . . . , cd)

where there are d class variables, C1, . . . , Cd.
We assume that Ci|i=1,...,d and Xj|j=1,...,m are
discrete, and that ⌦Ci and ⌦Xj respectively rep-
resent their sample spaces.

Under a 0 � 1 loss function, the h function
should assign to each instance x the most likely
combination of classes, that is:

h(x) = argmax
c
1

,...,cd

p(C1 = c1, . . . , Cd = cd|x)

This assignment amounts to solving a total
abduction inference problem and corresponds

to the search for the most probable explana-
tion (MPE), a problem that has been proved to
be an NP-hard problem for Bayesian networks
(Shimony, 1994).

3 Related Work

3.1 Multi-label Classification

In multi-label classification domains each in-
stance is associated with a subset of labels from
a set of d labels. This multi-label classification
problem can be seen as a particular case of a
multidimensional classification problem where
all class variables are binary, that is |⌦Ci | = 2
for i = 1, . . . , d.

An overview of multi-label classification is
given in (Tsoumakas and Katakis, 2007). Two
main approaches are distinguished: (a) prob-
lem transformation methods, which transform
the multi-label classification problem into either
one or more single-label classification problems
and (b) algorithm adaptation methods, which
extend specific learning algorithms to handle
multi-label data directly.

Other related approaches are multidimen-
sional Bayesian network classifiers (MBCs). A
MBC is a Bayesian network B = (G,⇥), where
G is an acyclic directed graph with vertexes
Zi and ⇥ is a set of parameters ✓z|pa(z) =
p(z|pa(z)), where pa(z) is a value for the set
Pa(Z), parents variables of Z in G.

The set of vertexes V is partitioned into two
sets VC = {C1, . . . , Cd}, d � 1, of class vari-
ables and VX = {X1, . . . ,Xm}, m � 1, of fea-
ture variables. The set A of arcs is also par-
titioned into three sets, AC , AX , ACX , such
that AC ✓ VC ⇥ VC is composed of the arcs be-
tween the class variables, AX ✓ VX ⇥ VX is
composed of the arcs between the feature vari-
ables and finally, ACX ✓ VC ⇥ VX is composed
of the arcs from the class variables to the fea-
ture variables. The corresponding induced sub-
graphs are GC = (VC ,AC), GX = (VX ,AX ) and
GCX = (V,ACX ), called respectively class, fea-
ture and bridge subgraphs.

Di↵erent graphical structures for the class
and feature subgraphs lead to di↵erent families
of MBCs. For instance, a simple approach is to
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learn trees for both subgraphs (van der Gaag
and de Waal, 2006). Another work is (Qazi et
al., 2007) in which the authors use a directed
acyclic graph for the class subgraph, an empty
graph for the features, and a bridge subgraph
where features receive arcs from some class vari-
ables, without sharing any of them. (Bielza et
al., 2011) present the most general models since
any Bayesian network structure is allowed in the
three subgraphs. Moreover they use all the pos-
sibilities for learning from data: wrapper, filter
and hybrid score+search strategies.

Finally, another algorithm for multi-label
classification is named RAKEL (Random K-
Labelsets) (Tsoumakas and Katakis, 2007).
RAKEL obtains m random subsets of size k and
for each one a power set is constructed. A voting
scheme with a user defined threshold determines
the classification. One disadvantage of this ap-
proach is the random process used for obtaining
the subsets, since no information is guiding the
process.

3.2 Chain Classifiers

(Read et al., 2011) introduce chain classifiers
as an alternative method for multi-label clas-
sification that incorporates class dependencies,
while it tries to keep the computational e�-
ciency of the binary relevance approach. Chain
classifiers consist of d binary classifiers which
are linked in a chain, such that each classifier
incorporates the classes predicted by the pre-
vious classifiers as additional attributes. Thus,
the feature vector for each binary classifier, Li,
is extended with the labels (0/1) of all pre-
vious classifiers in the chain. Each classifier
in the chain is trained to learn the associa-
tion of label li given the features augmented
with all previous binary predictions in the chain,
l1, l2, . . . , li�1. For classification, it starts at L1,
and propagates along the chain such that for
i 2 L (where L = {l1, l2, . . . , ld}) it predicts
p(li | x, l1, l2, . . . , li�1). As in the binary rele-
vance approach, the class vector is determined
by combining the outputs of all the binary clas-
sifiers in the chain. They combine several chain
classifiers by changing the order for the labels,
building an ensemble of chain classifiers. The

final label vector is obtained using a voting
scheme; each label li receives a number of votes
from the m chain classifiers, and a threshold is
used to determine the final predicted multi-label
set. They used support vector machines as the
base binary classifier.

3.3 Bayesian Chain Classifiers

Given a multi-label classification problem
with d classes, a Bayesian chain classifier
(BCC)(Zaragoza et al., 2011) uses d classifiers,
one per class, linked in a chain. The objective
of this problem can be posed as finding a joint
distribution of the classes C = (C1, C2, . . . , Cd)
given the attributes x = (x1, x2, . . . , xl):
p(C|x) =

Qd
i=1 p(Ci|pa(Ci),x) where pa(Ci)

represents the parents of class Ci. In this set-
ting, a chain classifier can be constructed by
inducing first the classifiers that do not de-
pend on any other class and then proceed with
their sons, according to the dependence struc-
ture which can be represented as a Bayesian net-
work.

(Zaragoza et al., 2011) build a tree–
structured dependency model. They simplify
the problem by considering the marginal de-
pendencies between classes, using (Chow and
Liu, 1968) algorithm, that is, a maximum weight
undirected spanning tree (MWST ). Then they
take a class (node) as root of a tree and as-
sign directions to the arcs starting from this
root node to build a directed tree. The chain-
ing order of the classifiers is given by traversing
the tree following an ancestral ordering. Based
on this order they construct chain classifiers in
which each base classifier incorporates one ad-
ditional attribute, its parent class in the tree.

3.4 Other approaches

In (Kang et al., 2006) the authors describe a
method to explicitly model correlations between
class labels. The multi-label problem is posed
as an optimization problem that considers how
similar the training samples are with the test-
ing samples considering subsets of classes at
the same time. It needs to assign a weight
to the classes given by their frequency. The
method follows a greedy strategy that depends
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on the relative order of the weights of the classes
which are given in reverse order of the class fre-
quency. In (Ji et al., 2010) the authors describe
a method to extract shared structures (sub-
spaces) in multi-label classification problems
to capture the correlation information among
classes. In this framework, a subspace is as-
sumed to be shared among multiple labels, and
a linear transformation is computed to discover
this subspace. The shared structure is obtained
by solving an eigenvalue problem using a regu-
larization term to reduce the complexity.

In (Zhang and Zhang, 2010) the authors use
a Bayesian network to encode the conditional
dependencies of the labels as well as the fea-
ture set, with the feature set as the common
parent of all labels. Their approach first con-
structs classifiers for all the labels indepen-
dently. This produces some errors. They then
learn a Bayesian network structure guided by
these errors. Finally, they construct a new clas-
sifier for each label incorporating their parents
in the Bayesian network as additional features.

4 Hybrid Binary–Chain Classifiers

Constructing chain classifiers with a random
class order, as in (Read et al., 2011), can in-
troduce irrelevant information and unnecessary
computation, as many of the classes used as
additional attributes in the chain may be in-
dependent of the current class. On the other
hand, trying to find the probabilistic dependen-
cies among classes given a set of attributes, can
be computationally expensive. In this paper we
find the independent groups of classes, using a
simple correlation analysis, and use that infor-
mation to significantly reduce the computation
time while achieving competitive predictive per-
formance results.

4.1 Correlation and Class Dependency

Correlation and statistical independence are
two basic concepts denoting a relation among
events. While both concepts express a notion
of the link among processes they are fundamen-
tally di↵erent (Mari and Kotz, 2001). It is a
common mistake to deduce statistical indepen-
dency from a lack of correlation and even worse,

to infer statistical dependency from a strong
correlation. The latter is not true and the for-
mer is valid as long as the relationship is lin-
ear, although zero correlation can be obtained
when non-linear relations exist. In this paper,
we assume a linear relationship among classes to
identify independencies. Of course, other mea-
sures can be used instead such as mutual infor-
mation for instance.

4.2 HBCC

To build a Hybrid Binary–Chain Classifier
(HBCC) we start by obtaining the pairwise lin-
ear correlation coe�cients between each pair of
classes. Uncorrelated classes are considered in-
dependent and consequently, independent clas-
sifiers can be built from them. Correlated
classes are grouped together and for each group
a chain classifier is built. Groups with common
members are merged into a single group. In the
worst case, all the classes are grouped together
and therefore this would degenerate in a chain
using all the classes as proposed in (Read et al.,
2011). By grouping only the correlated classes,
we substantially reduce the computation time
and eliminate irrelevant information from in-
dependent classes that is normally included in
chain classifiers. Also, by focusing on identi-
fying independent classes, we can apply a sim-
pler approach based on correlation, rather than
a more sophisticated approach such as struc-
ture learning of Bayesian networks. Algorithm 1
provides a description of the HBCC algorithm.
The algorithm requires a parameter, �, which
defines the threshold used to consider two vari-
ables (classes) independent. If this threshold is
too high the algorithm reduces to the binary rel-
evance approach, if it is too low the result is a
chain classifier (Read et al., 2011).

5 Experiments and Results

The experiments were performed on 9 di↵erent
benchmark multi-label datasets1; each of them
with di↵erent dimensions ranging from 6 to 983
labels, and from about 600 examples to more

1The data sets can be found at mulan.sourceforge.
net/datasets.html and at www.cs.waikato.ac.nz~/
jmr30/\#datasets.
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Algorithm 1 Learning a Hybrid Binary-Chain
Classifier.

Input: a multi-label dataset (BD), a thresh-
old value (�)
Obtain a correlation matrix (CM) among all
classes in BD
for each e 2 CM do

if e < � then
e 0

else
e 1

end if
end for
Obtain G groups of correlated classes
for each g 2 G do

if size(g) = 1 then
Create a Binary classifier for class g

else
Create a Chain Classifier using the
classes in g.

end if
end for

than 40, 000. All class variables of the datasets
are binary, however, in some of the datasets the
feature variables are numeric. In these cases
we used a static, global, supervised and top-
down discretization algorithm (Cheng-Jung et
al., 2008). The details of the datasets are sum-
marized in Table 1.

For the purpose of comparison we used four
di↵erent multi-label precision measures (Bielza
et al., 2011; Read et al., 2011):

1. Mean accuracy over the d class variables
(accuracy per label):

M-Acc =
1
d

d
X

j=1

Accj =
1
d

d
X

j=1

1
N

N
X

i=1

�(c0ij , cij)

(1)

where �(c0ij , cij) = 1 if c0ij = cij and 0 oth-
erwise. Note that c0ij denotes the Cj class
value outputted by the model for case i and
cij is its true value.

2. Global accuracy over the d-dimensional

Table 1: Multi-Label datasets used in the ex-
periments. N is the size of the dataset, d is
the number of binary classes or labels, m is
the number of features. ⇤ indicates numeric at-
tributes.

No. Dataset N d m Type

1 Emotions 593 6 72⇤ Music

2 Scene 2407 6 294⇤ Vision

3 Yeast 2417 14 103⇤ Biology

4 Medical 978 45 1449 Text

5 Enron 1702 53 1001 Text

6 TMC2007 28596 22 500 Text

7 Bibtex 7395 159 1836 Text

8 MediaMill 43907 101 120⇤ Media

9 Delicious 16105 983 500 Text

class variable (accuracy per example):

G-Acc =
1
N

N
X

i=1

�(c0i, ci) (2)

where �(c0i, ci) = 1 if c0i = ci and 0 oth-
erwise. Therefore, we call for a total co-
incidence on all of the components of the
vector of predicted classes and the vector
of real classes.

3. Multilabel accuracy as defined in
(Tsoumakas and Katakis, 2007):

ML-Acc =
1
N

N
X

i=1

ci ^ c0i
ci _ c0i

(3)

In this measure, accuracy is micro-averaged
across all examples.

4. F measure is the harmonic mean between
precision and recall.

F-measure =
1
d

d
X

i=1

2⇥ pj ⇥ rj

(pj + rj)
(4)

where pj and rj are the precision and recall
for all Cj . Here, the accuracy is calculated
per label and then averaged.

We estimated the performance measures us-
ing 10-fold cross-validation2. We used the Naive

2In a Core 2 Duo at 2.4 GHz with 8 GB of RAM.
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Bayes, J48 and SVM implementations of Weka
(Witten et al., 2011) software.

We compared HBCC against binary relevance
(all the classes are considered to be independent
of each other) and chain classifiers (as proposed
in (Read et al., 2011)). We applied the Kruskal-
Wallis test for testing statistical significance,
which is an extension of the Wilcoxon rank sum
test for more than two groups (↵ = 5%).

We first performed experiments with di↵er-
ent values for � (threshold value for building the
correlation matrix) ranging from � = 0.1 with
almost all classes grouped together (⇡ Chain-
NB) to � = 0.9 with almost all classes indepen-
dent (⇡ BR). We only show the average results
for all the datasets and for each performance
metric (see Table 2).

As can be seen from the experiments, con-
sidering some form of correlation improves the
performance over the binary relevance method
and is very competitive with chain classifiers.

For the next experiments we set � = 0.6,
which is the value that obtained the best results
on average, for all the datasets.

Table 3 summarizes the accuracy results for
HBCC, Chain-NB classifiers (Read et al., 2011),
and binary relevance (BR) methods. Since
dataset Delicious did not produce an output us-
ing Chain-NB after 48 hrs, the results of this
dataset are not used for obtaining the average
of the three approaches. From the results we
can observe that HBCC obtained the best score
in Mean and Global measures. Also there are
some results in which HBCC obtained statis-
tical significant di↵erence with respect to the
other two approaches.

We also quantified how much saving, in terms
of attributes and in terms of processing time,
are obtained with HBCC in comparison with a
chain classifier.

Table 4 shows the number of extra attributes
added in all the classifiers constructed for each
dataset and the average size of the groups ob-
tained with HBCC. From this table we can see
that our proposed method greatly reduces the
number of added attributes when compared to
Chain-NB approach.

Finally, Table 5 indicates the processing time

Table 4: Number of attributes added when
classifying a dataset using Correlated-Based
chain classifier (HBCC) and Chain-NB ap-
proach. Also the average size of the chains ob-
tained by HBCC are presented.

Data set Attributes added Average
chain size

HBCC Chain-NB HBCC
Emotions 1 15 1.16
Scene 0 15 1
Yeast 12 91 1.85
Medical 0 990 1
Enron 12 1378 1.22
TMC2007 1 231 1.04
Bibtex 26 12561 1.16
MediaMill 59 5050 2.71
Delicious 4568 482653 5.64
Average 519.88 55887.11 1.86

of a HBCC, including the time to evaluate the
correlation matrix using Matlab; which is com-
pared to the time obtained by the Chain-NB
and binary relevance approaches. The savings
in time obtained by the proposed algorithm
are notable and becomes more pronounced with
larger datasets. In particular, for the largest
dataset, our approach is at least 5 times faster
in comparison to Read’s approach.

Table 6 shows the performance of the pro-
posed approach with two other base classifiers,
C4.5 and SVM (implementations taken from
Weka). We only show the average results for
all the datasets and for each of the performance
metrics. With C4.5 classifier our approach ob-
tained the best results for all the measures.
With SVM classifier HBCC obtained the best
results in two measures and competitive results
in the rest.

6 Conclusions and Future Work

In this paper we have introduced a Hybrid
Binary-Chain Classifier for multi-label classifi-
cation. The proposed approach is simple and
easy to implement, and yet is highly competitive
in terms of classification performance against a
chain classifiers, and more e�cient. We consider
that this approach provides a practical and pow-
erful alternative for building multidimensional
classifiers.
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Table 2: Average results with di↵erent threshold values for all the datasets and each performance
metric.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 BR Chain-NB
Mean 0.859 0.859 0.860 0.859 0.860 0.860 0.860 0.859 0.858 0.858 0.859
Global 0.210 0.210 0.209 0.207 0.208 0.208 0.208 0.207 0.207 0.207 0.200
ML 0.411 0.412 0.412 0.410 0.411 0.412 0.411 0.411 0.410 0.410 0.413
F-measure 0.388 0.388 0.389 0.389 0.390 0.389 0.390 0.388 0.387 0.387 0.392

Table 3: Classification accuracies for HBCC, (Read et al., 2011) approach (using Naive Bayes
as base classifier) and binary relevance (BR) method. A “†” indicates statistically significant
di↵erences between HBCC and Chain-NB and a “*” indicates statistically significant di↵erences
between HBCC and BR.

Data set Mean Accuracy Global Accuracy
HBCC BR Chain-NB HBCC BR Chain-NB

Emotions 0.8454 0.8460 0.8449 0.3879 0.3895 0.3879
Scene 0.9058 0.9058 0.9055 0.5343 0.5343 0.5301
Yeast 0.8727* 0.8641 0.8673 0.2768† 0.2702 0.2586
Medical 0.9746 0.9746 0.9739 0.2648 0.2648 0.2587
Enron 0.7811 0.7811 0.7762 0.0012† 0.0006 0.0000
TMC2007 0.8888 0.8888 0.8803 0.1435† 0.1435 0.1136
Bibtex 0.9130 0.9126 0.9107 0.0594 0.0592 0.0549
MediaMill 0.7003 0.6963 0.7168† 0.0003 0.0003 0.0001
Delicious 0.8937 0.8871 - 0.0000 0.0000 -
Average 0.8602 0.8587 0.8594 0.2085 0.2078 0.2005
Data set Multi-Label Accuracy F-measure

HBCC BR Chain-NB HBCC BR Chain-NB
Emotions 0.6689 0.6695 0.6679 0.7655 0.7663 0.7646
Scene 0.7161 0.7161 0.7157 0.7845 0.7845 0.7848
Yeast 0.6733* 0.6571 0.6699 0.5935 0.5730 0.6307†
Medical 0.3663 0.3663 0.3596 0.0865 0.0865 0.0840
Enron 0.1937 0.1935 0.1869 0.1460 0.1459 0.1472
TMC2007 0.4829 0.4829 0.4333 0.4717 0.4717 0.4522
Bibtex 0.1879† 0.1872 0.1755 0.1851 0.1840 0.1817
MediaMill 0.0114 0.0110 0.0982† 0.0868 0.0847 0.0941
Delicious 0.1352 0.1249 - 0.0702 0.0620 -
Average 0.4126 0.4105 0.4134 0.3899 0.3871 0.3924

Table 5: Time (seconds) required to build a multi-label classifier using HBCC, Chain-NB and BR
approaches. The first column shows the time to build a correlation matrix using Matlab, the third
column shows the total time used for HBCC, the fourth shows the total time used for the Chain-NB
approach and the fifth shows the total time for the BR approach.

Data set HBCC Chain-NB BR
Matrix HBCC Total Total Total

Emotions 0.01 0.27 0.28 0.44 0.27
Scene 0.01 1.34 1.35 2.46 1.30
Yeast 0.04 1.57 1.61 5.55 1.29
Medical 0.38 23.10 23.48 91.30 22.28
Enron 0.56 41.08 41.63 245.93 41.14
TMC2007 0.28 122.00 122.28 228.65 120.24
Bibtex 7.16 1064.58 1071.74 4770.54 1002.00
MediaMill 10.09 714.61 724.71 12120.53 615.646
Delicious 364.30 30638.98 31003.28 >172800.00 25200.02
Total 382.83 32607.52 32990.36 >190265.40 27004.19
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Table 6: Performance with C4.5 and SVM
C4.5 SVM

HBCC-0.6 BR Chain HBCC-0.6 BR Chain
Mean Acc. 0.9108 0.9023 0.9087 0.9280 0.9230 0.9283
Global Acc. 0.2239 0.2178 0.2225 0.3509 0.3451 0.3556
ML Acc. 0.4072 0.3900 0.4031 0.5760 0.5658 0.5718
F-measure 0.3618 0.3246 0.3405 0.5173 0.5041 0.5125

As future work we plan to incorporate
Bayesian chain classifiers for each group. Also
we plan to use other clustering alternatives
like spectral clustering or agglomerative cluster-
ing, as well as other measures such as Hilbert
Schmidt independence criterion.
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