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Abstract. Service robots are becoming increasingly available and it is
expected that they will be part of many human activities in the near
future. It is desirable for these robots to adapt themselves to the user’s
needs, so non-expert users will have to teach them how to perform new
tasks in natural ways. In this paper a new teaching by demonstration al-
gorithm is described. It uses a Kinect R© sensor to track the movements of
a user, eliminating the need of special sensors or environment conditions,
it represents the tasks with a relational representation to facilitate the
correspondence problem between the user and robot arm and to learn
how to perform tasks in a more general description, it uses reinforcement
learning to improve over the initial sequences provided by the user, and
it incorporates on-line feedback from the user during the learning process
creating a novel dynamic reward shaping mechanism to converge faster
to an optimal policy. We demonstrate the approach by learning simple
manipulation tasks of a robot arm and show its superiority over more
traditional reinforcement learning algorithms.
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1 Introduction

The area of robotics is rapidly changing from controlled industrial environments
into dynamic environments with human interaction. To personalize service ro-
bots to the user’s needs, robots will need to have the capability of acquiring new
tasks according to the preferences of the users and non-expert users will have to
be able to program new robot tasks in natural and accessible ways. One option
is to show the robot the task and to let the robot imitate the user’s movements
in what is called Programming by Demonstration (PbD) [4]. This approach, ho-
wever, normally uses sophisticated hardware and can only reproduce the traces
provided by the user, so the performance of the robot depends on the perfor-
mance of the user in the task. An alternative approach is to use reinforcement
learning (RL) and let the robot explore the environment to learn the task [12].
This, however, normally results in long training times.

In this paper, the user shows the robot how to perform a task. To capture the
user’s demonstration, rather than using a sophisticated arrangement of sensors
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or special purpose environments, we use a Kinect R© sensor to capture the depth
information of obstacles and to detect the movements follow by the arm when
showing how to perform a particular task. Instead of trying to reproduce exactly
the same task, we use reinforcement learning to refine the traces produced by
the user. Rather than waiting for the RL algorithm to converge, the user can
provide, during the learning process, on-line feedback using voice commands that
are translated into additional rewards. We demonstrate the approach in a simple
manipulation task.

The rest of the paper is organized as follows. Section 2 reviews the most
closely related work. Section 3 describes the proposed method. In Section 4 the
experimental set-up is described and the main results presented. Finally Section 5
gives conclusions and future research directions.

2 Background and Related Work

Programing by Demonstration (PbD), Learning from Demonstration (LfD) or
Learning by Imitation (LbI), is a mechanism that combines machine learning
techniques with human-robot interaction. The idea is to derive control policies
of a particular task from traces of tasks performed by a user [3]. One of the ad-
vantages of this approach is that the search space is significantly reduced as it is
limited to the space used in the demonstration [4]. Several approaches have been
used for PbD, however, in most cases the user needs to wear special equipment
under particular conditions, limiting its applicability to restricted environments.
In this paper, we use a Kinect R© sensor which is relatively cheap and robust
to changes in illumination conditions. Also, in most of these developments the
performance of the system strongly depends on the quality of the user’s demons-
trations. In this paper, we couple the user’s demonstration with a reinforcement
learning algorithm to improve over the demonstrations given by the users.

Reinforcement Learning (RL) is a technique used to learn in an autonomous
way a control policy in a sequential decision process. The general goal is to
learn a control policy that produces the maximum total expected reward for
an agent (robot) [12]. Learning an optimal control policy normally requires the
exploration of the whole search space and very large training time. Different
approaches have been suggested to produce faster convergence times, such as
the use of abstractions, hierarchies, function approximation, and more recently
reward shaping [11, 9, 10, 1, 8, 5]. In reward shaping, most of these methods re-
quire domain knowledge to design an adequate reward shaping function, or try to
learn the reward functions with experience, which can take long training times.
In our case, the user can provide feedback to the robot and change the reward
function. Some authors also have provided feedback from the user and incorpo-
rated it into the reinforcement learning algorithm [6, 2, 7]. In [2] the robot first
derives a control policy from user’s demonstrations and the teacher modifies the
policy through a critiquing process. A similar approach is taken in [6], however
the user’s critique is incorporated into the optimization function used to learn
the policy. In [7], the authors combine TAMER, an algorithm that models a hy-
pothetical human reward function, with eight different reward shaping functions.
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Contrary to these approaches, in our work the user can provide, through voice
commands, feedback that can be given at any time during the learning process
and that directly affects the reward function (see also [13]). We extend this last
work with traces given by the user and observed by the robot, and with a more
powerful representation language to create more general policies, as explained
in the next section.

3 Method and System Design

Fig. 1. The imitation and feedback learning

Our approach, illustrated in Figure 1, has three main modules: 1) demonstra-
tion, perception and representation of the task, 2) reproduction and refinement,
and 3) on-line user feedback.

The interaction between the different components of the system is shown in
Figure 2, where the initial demonstrations are used to seed the initial Q-values
and the system follows a process where the user can intervene during the RL
process.

3.1 Demonstration, perception and task representation

In the demonstrations, the instructor shows the robot the task to learn with
his/her arm movements. The 3D positions of the hand and of the objects in
the environment are tracked using the Kinect R© sensor. These 3D coordinates
sequences are obtain from a previously calibrated working area that includes
all the arm movements. The sequences are processed to obtain relational state-
action pairs. Each state s ∈ S is described by a six-term tuple with the following
elements: s = (H, W, D, dH, dW, dD), where:

– H = Height: {Up,Down}
– W = Width: {Right, Left}
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Fig. 2. Training phases of the proposed approach

– D = Depth: {Front,Back}
– dH = Height distance to target: {V eryFar, Far, Close, V eryClose,Over}
– dW = Width distance to target: {V eryFar, Far, Close, V eryClose,Over}
– dD = Depth distance to target: {V eryFar, Far, Close, V eryClose,Over}

Each action a ∈ A is described as a movement in one direction with infor-
mation of how much to move the manipulator, a = (D, pD), where:

– D : Direction {Up,Down,Right, Left, Front,Back}
– pD : a real value that defines the magnitude of the movement performed by

the robot according to how close it is from an object. For example, a right
movement will have a greater displacement to the right when it is far from
the target object than a right movement when it is close to the target object.

The main advantage of this representation is that, since it is a relative posi-
tion between the human or robotic arm with the target place or object, it does
not need to have any special transformation between the traces shown by the
user and the traces used by the robot. On the other hand, the states and the
learned policies, as it will be shown later, are consequently relative to the target
object so the initial position of the robot arm and the initial and final position of
the target object or place can be completely different from the positions shown
by the user, and the learned policy is still suitable for the task.

3.2 Reproduction and refinement

The goal of this stage is to improve over the traces performed by the user. Given
a set of initial traces by the user, these are transformed into the state-action pairs
with the previously described representation and directly used by the robot to
initialize the Q-values of the visited state-action pairs. The robot then follows a
normal RL algorithm using Q-learning to improve over the initial policy. During
the exploration moves, the robot can reach previously unvisited states that are
incrementally added to the state space.
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Also, during the execution of actions it is possible to produce continuous
actions by combining the discrete actions of the current policy. This is performed
as a lineal combination of the discrete actions with the larger Q-values. The lineal
combination is proportional to the magnitude of the used Q-values. The updating
function over the Q-values is also proportionally performed over all the involved
discrete actions.

3.3 On-line feedback

While the robot is exploring the environment to improve over its current policy,
the user can provide on-line voice feedback to the robot. We build over the work
described in [13], where a fixed vocabulary was defined for the user’s commands.
The user feedback can be in the form of action commands or as qualifiers over
particular states that are transformed into rewards and added to the current
reward function.

Our reward function is defined as: R = RRL+Ruser where RRL is the normal
reward function and Ruser is the reward obtained from the voice commands given
by the user. The main difference with previous reward shaping functions is that
in our case the rewards can be given sporadically and can be contrary to what
it is needed for achieving a goal. Nevertheless, we assume that when they are
given correctly they reinforce the movements where the agent is moving towards
the goal and satisfy a potential-based shaping framework. So even with noisy
feedback from the user we can still guarantee convergence towards an adequate
policy as long as the agent receives in average correct rewards (see [13] for more
details).

4 Experiments and Results

We used a 6 DOF robot manipulator, named Armonic Arm 6M (see Figure 3
right), in our experiments and the task was to pick-up an object and place it in
a new position.

Fig. 3. Robot Katana Armonic Arm 6M
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In front of the Kinect sensor, the user simply picks up an object from a spa-
tial position and places it in a different location. The sensor is responsible for
identifying the 3D location of the user hand and object and track the hand mo-
vements. From the Kinects tracking system we get a sequence of 3D coordinates
to define distances and locations with respect to the object and to determine
relational states to characterize the task. Figure 4 shows a human demonstra-
tion used to pick-up a object and place it in a different location (up) and the
information obtained by the Kinect sensor (down).

Figure 3 shows to the left a sequence performed by the robot after learning
this task.

Fig. 4. Human demonstration for picking-up and placing a particular object

For the experiments, we designed different conditions to test the individual
parts of the proposed system including a simulator for training during 50 episo-
des:

1. Using only Reinforcement Learning (RL)
2. Reinforcement Learning + Human demonstration (HD)
3. Reinforcement Learning + Simulation (S) + Human demonstration
4. Reinforcement Learning + Simulation + Human demonstration + User’s

Feedback (FB)

Figure 5 shows the performance of the different experiments and table 4
shows the total computer times. As can be seen, using human demonstration
and user’s feedback during the learning process can significantly reduced the
convergence times for the RL algorithm. It should be noted that each episode



Teaching a robot to perform tasks 7

shown in the figure started from random initial positions and ended in random
(reachable) object positions.

Fig. 5. Performance of the different experimental conditions. (i) RL = reinforcement
learning, (ii) HD + RL = RL + human demonstration, (iii) HD + S + RL = RL +
simulation traces + human demonstrations, and (iv) HD + S + RL + FB = RL +
simulation traces + human demonstrations + user’s feedback.

Table 1. Total computing times: The second row shows the time of HD (˜5 min) and
the time of RL. The third and fourth rows show the time of HD, S, and RL respectively
in each column; FB does not require additional time. The last column shows the total
time spent for each experimental condition.

Time (s) Total time (s)

RL 16168.896 16168.896

HD + RL ˜300 11056.56 11356.56

HD + S + RL ˜300 25.628 6729.399 7055.027

HD + S + RL + FB ˜300 19.348 3242.273 3561.621

5 Conclusions and Future Work

Teaching a robot how to perform new tasks will soon become a very relevant
topic with the advent of service robots. We want non-expert users to be able to
teach robots in natural ways how to perform a new task. In this paper, we have
described how to teach a robot to perform a task by combining demonstration
performed by the user with voice feedback over the performance of the robot
during its learning phase. Our main contributions are: the simple PbD setup
with Kinect sensor, the representation used for the demonstration which is used
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also in RL and the incorporation of on-line voice feedback from the user during
the learning process.

There are several research directions that we would like to pursue. So far we
have focused our approach in the displacement of the hand and of the end effec-
tor. This is suitable in environment; without obstacles or in static environments.
As future work, we would like to incorporate information from the movements of
all the articulations. We would also like to enrich the vocabulary for other stages
in the learning process, like assigning particular names to learned sub-tasks and
then re-using them for learning more complex tasks. Finally we would like to
test our approach in other maniplation tasks and with different objects.
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