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Abstract

Service robots are becoming increasingly
available and it is expected that they will be
part of many human activities in the near fu-
ture. It is desirable for these robots to adapt
themselves to the user’s needs, so non-expert
users will have to teach them how to perform
new tasks in a natural way. In this paper a
new teaching by demonstration algorithm is
described. It uses a Kinect R© sensor to track
the movements of a user, it represents the
tasks with a relational representation to fa-
cilitate the correspondence problem between
the user and robot arm and to learn a more
general policy, it uses reinforcement learning
to improve over the initial sequences provi-
ded by the user, and it incorporates on-line
feedback from the user during the learning
process creating a novel dynamic reward sha-
ping mechanism to converge faster to an opti-
mal policy. We demonstrate the approach by
learning simple manipulation tasks of a robot
arm and show its superiority over more tra-
ditional reinforcement learning algorithms.

1. Introduction

The area of robotics is rapidly changing from con-
trolled industrial environments into dynamic environ-
ments with human interaction. To personalize service
robots to the user’s needs, robots will need to acquire
new tasks according to the preferences of the users,
so non-expert users will have to be able to program
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new robot tasks in natural and accessible ways. Se-
veral approaches have been proposed for learning how
to perform tasks in robotics, but perhaps the most
widely used have been Programming by Demonstra-
tion (PbD) and Reinforcement Learning (RL). In Pro-
gramming by Demonstration the task to learn is shown
to the robot and the goal for the robot is to imitate
the demonstration to complete the task (Billard et al.,
2008). PbD combines machine learning techniques
with human-robot interaction and the idea is to de-
rive control policies of a particular task from traces of
tasks performed by a teacher (Argall et al., 2009). One
of the advantages of this approach is that the search
space is significantly reduced as it is limited to the
space used in the demonstration (Billard et al., 2008).

Several approaches have been proposed in PbD, ho-
wever, in most cases the user needs to wear special
equipment under particular conditions (Ijspeert et al.,
2002; Aleotti & Caselli, 2007; Calinon & Billard, 2007),
limiting its applicability to restricted environments. In
this paper, rather than using a sophisticated arrange-
ment of sensors or special purpose environments, we
use a Kinect R© sensor to capture the depth informa-
tion of obstacles and to detect the movements follow
by the arm when showing how to perform a particu-
lar task. The Kinect R© sensor is relatively cheap, it is
robust to changes in illumination conditions, and it is
not attached to the user. Also, in most of the research
work in PbD the performance of the system strongly
depends on the quality of the user’s demonstrations.
In this paper, instead of trying to reproduce exactly
the same task, we use reinforcement learning to refine
the traces produced by the user.

Reinforcement Learning is another popular approach
that has been used in robotics to learn how to per-
form a task. RL can be characterized as an MDP
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< S,A,R, P > where: S is a set of state, A is a set of
actions, R is a reward function, and P a probability
state transition function. The general goal is to learn
a control policy that produces the maximum total ex-
pected reward for an agent (robot) (Sutton & Barto,
1998). Learning an optimal control policy normally
requires the exploration of the whole search space and
very large training time and different approaches have
been suggested to ameliorate this, such as the use of
abstractions, hierarchies, function approximation, and
more recently reward shaping (Ng et al., 1999; Laud,
2004; Mataric, 1994; Abbeel & Ng, 2004; Konidaris &
Barto, 2006; Grzes & Kudenko, 2009). In reward sha-
ping, most of the previous work define a fixed reward
shaping function that is used during the whole lear-
ning process. In this paper, rather than waiting for
RL to converge to an optimal policy, the robot tries to
perform the task with its current (suboptimal) policy
and, the user can provide on-line feedback using voice
commands that are translated into additional rewards.
This creates a novel dynamic reward shaping approach
that can be used to accelerate the learning process and
to correct the initial traces. We demonstrate the ap-
proach in a simple manipulation task.

The remainder of the paper is structured as follows.
Section 2 reviews the most closely related work. Sec-
tion 3 describes the proposed method. In Section 4 the
experimental set-up is described and the main results
presented. Finally Section 5 gives conclusions and fu-
ture research directions.

2. Related work

Several approaches have been proposed in PbD. In
(Ijspeert et al., 2002), a Locally Weighted Regression
(LWR) approach is used to show how to perform tasks
to an anthropomorphic robot. The tasks are based on
desired trajectories that can be imitated using kine-
matics variables. The system described can combine
several trajectories; re-use trajectories previously lear-
ned and deal easily with the correspondence problem.

A similar work is presented in (Calinon & Billard,
2007), where a fujitsu HOAP-3 humanoid robot can
learn basketball referee signals from human demons-
tration. It uses Gaussian Mixture Regression (GMM)
to reconstruct the shown task. The approach combines
programming by human demonstration and kinesthe-
tic teaching that allows naturally looking trajectories
and also tackle the correspondence problem as the pre-
vious work.

Some advantages of these works are that a human tea-
cher is involved to demonstrate the task to a robot

Figure 1. The imitation and feedback learning

with her/his own body, and can significantly reduce
the correspondence problem. However, in both cases
special wearable sensors are needed to detect and re-
cord human movements which limit their applicability
to restricted environments. Also in most of the PbD
research, the performance of the system strongly de-
pends on the quality of the user’s demonstrations.

Some authors have provided feedback from the user
and incorporated it into the reinforcement learning al-
gorithm (Judah et al., 2010; Argall et al., 2007; Knox
& Stone, 2010). In (Argall et al., 2007) the robot first
derives a control policy from user’s demonstrations
and the teacher modifies the policy through a criti-
quing process. A similar approach is taken in (Judah
et al., 2010), however the user’s critique is incorpora-
ted into the optimization function used to learn the
policy. In (Knox & Stone, 2010), the authors combine
TAMER, an algorithm that models a hypothetical hu-
man reward function, with eight different reward sha-
ping functions. In (Tenorio-Gonzalez et al., 2010), the
user provides, through voice commands, feedback that
can be given at any time during the learning process
acting as a dynamic reward shaping function. In this
paper, this last work is extended by incorporating de-
monstrations from the user observed by the robot and
by using a more powerful representation language to
create more general policies.

3. Learning from Human
Demonstration and Feedback

Our approach, illustrated in Figure 1, has three main
modules: 1) demonstration, perception and represen-
tation of the task, 2) reproduction and refinement, and
3) on-line user feedback.

In the stage of demonstrations, the instructor shows
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the robot the task to learn with his/her arm move-
ments. The 3D positions of the hand and of the objects
in the environment are tracked using the Kinect R© sen-
sor. The sequences are processed to obtain for each
frame relational state-action pairs. Each state s ∈ S
is a six-term tuple describing the 3D position and dis-
tance of the hand or end effector with respect to the
target object or target place.

s = (H,W,D, dH, dW, dD) where:

Position of hand or end effector with respect to the
target object or position:

• H (Height) = {Up, Down}

• W (Width) = {Right, Left}

• D (Depth) = {Front, Back}

Distance of the hand or end effector to the object or
target position:

• dH (Height) = {VeryFar, Far, Close, VeryClose,
Over}

• dW (Width) = {VeryFar, Far, Close, VeryClose,
Over}

• dD (Depth) = {VeryFar, Far, Close, VeryClose,
Over}

Each action a ∈ A from the sequence is described as
a rotational movement in each direction ((Up, Null,
Down), (Right, Null, Left), (Front, Null, Back)).

The main advantage of this representation is that,
since it is a relative distance between the human or
robotic arm with the target object or position, it does
not need to have any special transformation between
the traces shown by the user and the traces used by
the robot. Furthermore, the initial position of the end
effector or hand and the initial and final positions of
the target object or target position can be completely
different from the positions shown by the user in the
traces, and the learned policy is still suitable for the
task.

The traces of the task to learn given by the user are
translated into states and actions with the previously
defined values. Once a transformed set of state-action
pairs is obtained, it is used to initialize the Q-values of
the state-action pairs involved in the provided traces.
The robot then follows a normal RL algorithm using
Q-learning to improve over the initial policy. During
the exploration moves, the robot can reach previously

Table 1. Rewards given by the user during the learning pro-
cess.

Word Value of Reward

Objetivo (Goal) 100
Excelente (Excellent) 10

Bien (Good) 5
Terrible (Terrible) -10

Mal (Bad) -5

Table 2. Actions given by the user during the learning pro-
cess

Words (Actions)

Arriba (Up) Abajo (Down)
Derecha (Right) Izquierda (Left)
Frente (Front) Atrás (Back)

unvisited states that are incrementally added to the
state space. The actions are associated with informa-
tion of how much to move the manipulator depending
on how close its target position. For example, a Right
move has a greater displacement to the right when it
is far from the target object than a Right move when
it is close to the target position.

The robot initially moves one DOF at a time, it is
possible to produce combined actions by producing li-
neal combinations of the discrete action with larger
Q-values. The algorithm takes the three actions with
larger Q-values and generates a combined action which
is the resulting vector of those actions. The updating
function over the Q-values, in this case, is also propor-
tionally performed over all the involved discrete ac-
tions. So although the action’s space is discrete, this
simple mechanism produces smoother movements in-
volving more than one action at the same time.

While the robot is learning, the user can provide
on-line voice feedback to the robot. We build over
the work described in (Tenorio-Gonzalez et al., 2010),
where a fixed vocabulary was defined for the user’s
commands. The user feedback can be in the form of
action commands or as qualifiers over particular sta-
tes. The provided feedback is translated into rewards
values that are added to the current reward function.
Tables 1 and 2 show examples of qualifiers and their
associated rewards and the actions that the user can
provide to change the behavior of the robot.

So our reward function is defined as: R = RRL+Ruser,
where RRL is the traditionally defined reward shaping
function and Ruser is the reward obtained from the
voice commands given by the user. The main diffe-
rence with previous reward shaping functions is that
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Figure 2. Human demonstration for picking-up and placing
a particular object

in our case additional rewards can be given spora-
dically and can be contrary to what it is needed for
achieving a goal. Nevertheless, we assume that when
they are given correctly they reinforce the movements
when the agent is moving towards the goal and sa-
tisfy a potential-based shaping framework. So even
with noisy feedback from the user we can still guaran-
tee convergence towards an adequate policy as long
as the agent receives in average correct rewards (see
(Tenorio-Gonzalez et al., 2010) for more details).

It is also possible to interleave the use of a simulator
to accelerate the learning process between the trials
of the robot. In the following section we show results
with a robotic arm and with a simulator.

4. Experiments and Results

To prove our approach, in our experiments, we used
a 6 DoF robot manipulator called Armonic Arm 6M
(see Figure 3 right). The robot simply has to learn to
pick-up an object from one position and place it in a
new position.

Figure 2 shows a human demonstration used to pick-up
an object and place it in a different location (up) and
the information obtained by the Kinect sensor (down).
To identify the locations where the object is picked
and placed, we used a simple color-based segmenta-
tion algorithm with the RGB Kinect’s camera (Fig 4).
Figure 3 shows to the left a sequence performed by the
robot after learning this task.

In our learning framework we are incorporating several
elements that we believe can help to teach a robot how
to perform a new task in a more natural way and con-
verge faster to an adequate policy. In particular, our
framework does not depend on costly equipment, wea-

Figure 3. Robot Katana Armonic Arm 6M

Figure 4. Locations using color-based segmentation algo-
rithm

rables or special lighting conditions, and uses a natural
teaching setting with the user showing the task, in a
possibly inaccurate way, and providing voice feedback
during the learning process.

We performed several experiments to test different
setting, incorporating human demonstrations, user’s
feedback and simulated traces (20 episodes):

1. Using only Reinforcement Learning (RL)

2. Reinforcement Learning + Human demonstration
(HD)

3. Reinforcement Learning + Simulation (S) + Hu-
man demonstration

4. Reinforcement Learning + Simulation + Human
demonstration + User’s Feedback (FB)

We also performed experiments with a simulator, eit-
her learning completely the optimal policy with tra-
ditional RL or interleaving simulation traces with our
learning framework.

Each experiment was repeated 20 times and the tables
show the averages of the training times and accumu-
lated rewards. Figures 5, 6, 7, and 8, show the perfor-
mance time of each setting and Figure 9 shows a graph
will all the settings together. Similarly, Figures 10, 11,
12, and 13 show the performance of the different set-
tings and Figure 14 shows all the results in the same
figure.
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Figure 5. (i) RL = Reinforcement Learning.

Figure 6. (ii) HD +RL = Human Demonstration + RL.

Figure 7. (iii) HD+S+RL = Human Demonstrations +
Simulation traces + RL.

Figure 8. (iv) HD+ S +RL+FB = Human Demonstra-
tions + Simulation traces + RL + user’s Feedback.

Figure 9. Convergence time for each experimental condi-
tion.

Figure 10. (i) RL = Reinforcement Learning.

Figure 11. (ii) HD+RL = Human Demonstration + RL.

Figure 12. (iii) HD + S + RL = Human Demonstrations
+ Simulation traces + RL.
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Figure 13. (iv) HD + S + RL + FB = Human Demons-
trations + Simulation traces + RL + user’s Feedback.

Figure 14. Average of accumulated reward during the trai-
ning for each of the experimental condition proposed.

As can be seen, using human demonstration and user’s
feedback during the learning process can significantly
reduce the convergence times for the RL algorithm.
Table 4 shows the total computer time including the
demonstration and simulation time required respecti-
vely. It should be noted that each episode shown in
the figure started from random initial positions and
ended in random (reachable) object positions.

Table 3. Total computing times

Time (s) Total time (s)

HD S RL
21799.17 21799.17

˜180 12047.58 12227.58
˜180 3.26 9284.85 9468.11
˜180 4.15 5296.46 5480.61

The first row describes the time used purely with RL,
the second one shows the time of human demonstra-
tions (HD) (close to 3 min.) and the time of RL. The
third and fourth rows show the time of HD, S, and RL
respectively in each column. The last column shows
the total time required for each experimental condi-
tion.

5. Conclusions and Future Work

Teaching a robot how to perform new tasks will soon
become a very relevant topic with the advent of service
robots. We want non-expert users to be able to teach
robots how to perform a new task in natural ways. In
this paper, we have described how to teach a robot to
perform a task by combining demonstration performed
by the user with voice feedback over the performance
of the robot during its learning phase. The main con-
tributions of the approach are the simple PbD set-up
with a Kinect sensor, the representation used for the
demonstrations, and the incorporation of on-line voice
feedback from the user during the learning process that
serves as a dynamic reward shaping function and helps
to cponverge faster to a suitable policy.

There are several research directions that we would
like to pursue. So far we have focused our approach in
the displacement of the hand and of the end effector
and we would like to incorporate information from the
movements of all the articulations. We would also like
to enrich the vocabulary for a more natural interaction
and test the approach in other manipulation tasks with
different objects.
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