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Abstract. This paper introduces a novel approach to learn representa-
tions of objects using a team of robots. Each robot extracts local and
global visual features of objects and combines them to represent and re-
cognize objects. Contrary to previous approaches the robots do not know
in advance the number or nature of objects to learn. Individual repre-
sentations of objects are learned on-line while the robots are traversing
an environment. Robots share their individual concepts to improve their
own concepts, and to acquire a new representation of an object not seen
by them. For that, the robots have to detect if they are seeing a new
object or an already learned one. We empirically evaluated our approach
with a real world robot team with very promising results.

Keywords: Robotics and automation; mobile robots and autonomous
systems; vision, recognition and reconstruction; network robotics.

1 Introduction

Collective robotics is a very active research area in the robotics community.
Multi-robot systems or robot teams have effectively emerged as an alternative
paradigm for the design and control of robotic systems because of the team’s
capability to exploit redundancy in sensing and actuation.

The research on collective robotics has focused on developing mechanisms
that enable autonomous robots to perform collective tasks, such as strategies for
coordination and communication [1, 2]; exploration, mapping and deployment
[3]; sensing, surveillance and monitoring [4]; and decentralized decision making
[5]. In these works, a robot team can reduce time to complete a complex task
that is allocated among its members.

Despite constant research on the design of robot teams, very little attention
has been paid so far to the development of robot teams capable of learning
from their interaction with their environment. In addition to their capability for
accelerated learning, learning robot teams can be used to acquire a much richer
and varied information compared to the information acquired by single learning
robots.

Learning is a key issue to achieve autonomy for both, single robots and robot
teams. Learning capabilities can provide robots the flexibility and adaptation
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needed to cope with complex situations. In the context of robot teams, the most
common machine learning approach has been reinforcement learning, where the
idea is to learn optimal policies using a set of robots to improve the coordination
of individual actions in order to reach common goals [1, 2, 4, 6].

In this work we use visual information to learn, with a team of robots, des-
criptions of objects placed in a particular environment. Learning to recognize
particular objects in an environment is important for robotics as it can be used
for local and global localization tasks as well as for simple service tasks such
as searching for objects in unknown places. Contrary to previous approaches, in
our learning setting, the robots are not told the number or nature of the objects
to be learned.

Vision is a primary source of perception in robotics and provides different
features that can be used to classify objects. In general, using a particular set
of features can be adequate for particular tasks but inadequate for other tasks.
In this work, objects are characterized by two complementary features: (i) SIFT
features [7] and (ii) information about the silhouettes of objects. Other features
could be used as well, but the main objective in this work is to show the different
cases and possible confusions that can arise in the recognition of objects and
merging of concepts, and how they can be addressed.

This article deals with the individual and collective representation of objects
from visual information using a team of autonomous robots.

The rest of the paper is organized as follows. Section 2 reviews related work.
Sections 3 and 4 introduce, respectively, the stages of individual learning and
collective learning of concepts. Section 5 describes our experimental results, and
Section 6 provides conclusions and future research work.

2 Related Work

Interesting experiments where physical mobile robots learn to recognize objects
from visual information have been reported. First we review significant work
developed for individual learning, and then we review learning approaches de-
veloped for robot teams.

In [8] different learning techniques to acquire automatically semantic and
spatial information of the environment in a service robot scenario are applied.
In that work, a mobile robot autonomously navigates in a domestic environment,
builds a map, localizes its position in the map, recognizes objects and locates
them in the map. Background subtraction techniques are applied for foreground
object segmentation. Then objects are represented by SIFT points [7] and an
appearance-based method is used for detecting objects named Receptive Field
Co-occurrence Histograms. The authors developed a method for active object
recognition which integrates both local and global information of objects.

In [9] authors applied an instance-based method to train a robot for object
recognition purposes. The objects are represented by color histograms. Diffe-
rent representations are learned from different views of the same object using a
mediator that can ask questions and provide feedback on the robot’s answers.
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The recognition is performed by classifying new views of objects using the KNN
algorithm [10].

In [11], a scheme for fast color invariant ball detection in the RoboCup context
is presented. To ensure the color-invariance of the input images, a preprocessing
stage is first applied for detecting edges using the Sobel filter, and specific thres-
holds for color removal. Then, windows are extracted from images and predefined
spatial features, such as edges and lines, are identified in these windows. These
features serve as input to an AdaBoost learning procedure that constructs a
cascade of regression tree classifiers (CART). The system is capable of detec-
ting different soccer balls in RoboCup and other environments. The resulting
approach is reliable and fast enough to classify objects in real time.

In [12] authors present an on-line method for learning objects for human-
robot interaction. In this case, the robot’s user is included in the learning frame-
work as an instructor. For the learning method, authors used a lifelong incre-
mental learning system that evolves with any new learned object based on one-
class learning (OCLL). Objects are represented using normalized shape features.
Aditionally, the authors proposed an experimental methodology for evaluating
a word learning method, and for comparing the word learning capabilities of
different agents as well as to asses research progress in similar works.

Concerning the problem of collective learning of objects using robot teams
there are, as far as we know, very few works. In [13] the authors address the
problem of mobile object recognition based on kinematic information. The basic
idea is that if the same object is being tracked by two different robots, the
trajectories and therefore the kinematic information observed by each robot
must be compatible. Therefore, location and velocities of moving objects are the
features used for object recognition instead of features such as color, texture,
shape and size, more appropriate for static object recognition. Robots build
maps containing the relative position of moving objects and their velocity at a
given time. A Bayesian approach is then applied to relate the multiple views of
an object acquired by the robots.

In [14], objects are represented with Principal Components (PC) learned
from a set of global features extracted from images of objects. An object is
first segmented and its global features such as color, texture, and shape are
then extracted. Successive images in a sequence are related to the same object
by applying a Kalman filter. Finally, a 3D reconstructed model of an object is
obtained from the multiple views acquired by robots. For that purpose, a Shape
From Silhouette based technique [15] is applied.

The main drawbacks of previous works can be summarized as follows: (i) Most
approaches are able to cope with a limited number of learning objects, usually
3 to 12 objects, and (ii) the number of learning objects is known a priori. In
contrast to previous works, in our method each robot learns on-line individual
representations of objects without prior knowledge on the number or nature
of the objects to learn. Individual concepts are represented as a combination of
global and local features extracted autonomously by the robots from the training
objects. A Bayesian approach is used to combine these features and used for
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classification. Individual concepts are shared among robots to improve their own
concepts, combining information from other robots that saw the same object,
and to acquire a new representation of an unnoticed object. We also analyzed
and provide solutions to the different cases that can occur from information of
two individual concepts.

3 Individual Learning of Concepts

The individual concepts are learned on-line by a robot team while traversing an
environment without prior knowledge on the number or nature of the objects to
learn. The individual learning of concepts consists of tree parts: object detection,
feature extraction, and individual training.

Individual concepts of objects are represented by Principal Components (PC)
over the information about the silhouettes of objects and by Scale Invariant
Features (SIFT). Learned concepts are shared among robots.

3.1 Object Detection

Robots move through an environment and learn descriptions of objects that
they encountered during navigation. Objects are detected using background
substraction. In this paper we assume a uniform and static background. We
performed morphological operations (closing and erode) to achieve better seg-
mentation. Once an object is detected, it is segmented and scaled to a fixed size,
to make the global PC features robust to changes in scale and position.

3.2 Feature Extraction and Individual Training

The segmented objects are grouped autonomously by the robots in sets of images
containing the same object. Robots assume that they are observing the same
object while it can be detected, and they finish to see it when they can not
detect objects in the captured images. Only one object can be detected in an
image at the same time. For each set of images, the robot obtains an individual
concept that represents the object.

Training using global features: We applied Principal Component Analy-
sis (PCA) over the average silhouettes that are automatically extracted from
the set of images of a particular object. The average provides a more compact
representation of objects and reduces segmentation errors. Figure 1 (a) shows
an image of the object vase used in the training phase, Figure 1 (b) shows its
silhouette, and Figure 1 (c) illustrates the average silhouette obtained from a set
of images that represent the object of Figure 1 (a). Once the robot has obtained
an average silhouette, this is added by the robot to a set of known average
silhouettes. After that, the robot uses PCA to reduce the dimensionality of all
average silhouettes learned to get the PC features that represent them.

Training using local features: Each robot extracts local SIFT features of
each image of the set of images, and groups them in a final set which contains all
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the different SIFT features that represent an object. In Figure 1 (d) we show an
example of the SIFT points obtained from a set of images of a vase and the final
set of SIFT points obtained. The PC features and the SIFT features represent
the individual concept of the observed object.

(a) (b) (c) (d)

Fig. 1. Examples of the silhouette (b) and average silhouette (c) of an object (a).
Examples of the SIFT features extracted from a set of images and the final set of SIFT
features (d).

3.3 Sharing Concepts

The concepts learned by robots are shared among them to achieve collective
learning. This can be done off-line or on-line. In the case of collective off-line
learning the robots share their individual concepts once they have learned all
the training objects. On the other hand, in the collective on-line learning the
robots share their individual concept as soon as a new object is learned.

4 Collective Learning of Concepts

Collective learning of concepts enables robots to improve individual concepts
combining information from other robots that saw the same object, and to ac-
quire a new representation of an object not seen by them. Therefore, a robot
can learn to recognize more objects of what it saw and can improve their own
concepts with additional evidence from other robots.

A robot has to decide whether the concept shared by another robot is of a new
object or of a previously learned concept. A robot can face three possibilities:
coincident, complementary or confused information. The shared concepts are
fused depending on the kind of information detected, as described below.

4.1 Pre-analysis of Individual Concepts

The concept learned by a robot is defined as follows:
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Ci
k =

{
Silik, SIFT i

k

}
(1)

where Ci
k is the concept k learned by robot i, Silik is the average silhouette, and

SIFT i
k is the set of SIFT features that form the concept k.

In order to determine if a shared concept is previously known or not to a
robot, it evaluates the probabilities that the PC features and SIFT features are
previously known by the robot. The probability vectors of PC features calculated
by robot i, vi

P , indicate the probability that a concept shared by robot j, Cj
k,

is similar to the concepts known by robot i, Ci
1, . . . , C

i
numObjs, given the global

features. numObjs is the number of concepts of objects known by robot i. The
process to obtain the probability vector PCA is described as follows:
- A temporal training set of silhouettes is formed by adding the average silhou-
ettes of concepts known by robot i or actual robot, Sili1, ..., SilinumObjs, and the
average silhouette of the new or shared concept Siljk.
- The PCA is trained using the temporal set of average silhouettes. The pro-
jection of the average silhouettes know by robot i is obtained as a matrix of
projections, matProys. The projection of the average silhouette Siljk is obtained
in a vector, vectProys.
- The Euclidean distance (dE) is calculated between each vector of the matrix
matProys and the vector vectProys as shown in formula 2, i.e, we obtain the
distance between all the projections already computed and the projection of the
new silhouette.

dEi
l =

√√√√
nEigens∑

r=1

(matProys(l,r) − vectProys(1,r))2 (2)

where nEigens is the number of eigenvectors used during the PCA training
(nEigens = numObjsi− 1), and l is the index of the distance vector, where the
maximum size of the vector dEi is numObjsi.
- The distance value dEi is divided by a maximum distance value, ThresholdMax,
determined experimentally to obtain a similarity metric also called the pro-
bability vector PCA, vi

P , as shown in formula 3.

vi
Pl

= 1− dEi
l

ThresholdMax
(3)

If dEi
l is bigger than the ThresholdMax value, then the probability will be fixed

as shown in formula 4, which indicates that the projections of the object k and
the one of the object l are completely different.

vi
Pl

=
1

numObjs
(4)

The value of the SIFT similarity metric also called the probability vector
SIFT at the position vi

Sl
, is obtained calculating the number of coincident SIFT

points, ncoin, between the individual SIFT concept SIFT i
l learned by robot i,
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and the individual SIFT concept SIFT j
k shared by robot j. If the number ncoin is

bigger than an average of coincidences determined experimentally, AverageCoin,
then the probability will be fixed to vi

Sl
= 1.0, which means that both concepts

contain the same local SIFT features. Otherwise, the probability will be calcu-
lated using formula 5.

vi
Sl

=
ncoin

AverageCoin
(5)

The constant AverageCoin represents the average of coincidences between
two sets of SIFT points of the same object from different perspectives.

4.2 Analysis and Fusion of Individual Concepts

This section describes how detection is achieved if the new or shared concept
is one of the following: coincident, complementary or confused, and how the
individual concepts are fused to form collective concepts depending on the kind
of detected concept.

Coincident Concepts: A coincident concept is detected when one, two or
more robots of the robot team learned individual concepts from similar views of
the same object. A new or shared concept is classified as coincident if vi

Pl
≥ α

and vi
Sl
≥ α. That is, if both probabilities (PCA and SIFT) of a previously

learned concept are greater than a predefined threshold value (α). If a new or
shared concept is determined as coincident it is merged with the most similar
known concept as follows:
PCA fusion: It is obtained by evaluating a new average silhouette from the
average of the known Silil and new Siljk silhouettes. After that, it is necessary to
re-train the PCA substituting the concept Silil with the new average silhouette
which contains information of the concept learned by robot j.
SIFT fusion: It is obtained by adding the complementary SIFT points of con-
cept SIFT j

k to the set of SIFT points of concept SIFT i
l . Also, each pair of

coincident SIFT points of both concepts is averaged in terms of position and
their corresponding SIFT descriptors.
The main idea to fuse coincident concepts is to improve their representation.

Complementary Concepts: A concept Cj
k contains complementary infor-

mation if it differs with all known concepts by robot i, i.e., if both shape and
local features are different to all known concepts by robot i, Ci

1, . . . , C
i
numObjs.

That is, if vi
P < α and vi

S < α.
A complementary concept Cj

k is fused with the collective concepts known by the
robot i as follows:
PCA fusion: The new average silhouette is added and the new PC features are
obtained by re-training the PCA using the updated set of average silhouettes.
SIFT fusion: The new SIFT features are simply added to the current set of
SIFT concepts known by the robot i.

Confused Concepts: There are two types of confusion that can occur bet-
ween concepts:
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Different shape and similar local features (type 1): This type of confusion
occurs when the new concept Cj

k is complementary by shape, Siljk, to all the
concepts known by the robot i, Sili1, ..., SilinumObjsi but it is coincident by local
SIFT features, SIFT j

k , with at least one concept known by the robot i. That is,
vi

Sl
≥ α and if vi

P < α.
Similar shape and different local features (type 2): This type of information
occurs when concept Cj

k is coincident by shape, Siljk, to at least one concept
known by the robot i, but it is complementary using its local SIFT features,
SIFT j

k . That is, if vi
Pl
≥ α and vi

S < α.
In both types of confusion, type 1 or type 2, there can be two options:

a) Different objects: Both concepts correspond to different objects.
b) Same object: Both concepts correspond to the same object but they were

learned by robots from different points of view.

In our current approach, both types of confusions are solved as complemen-
tary objects. The reason is that robot i cannot distinguish with its current infor-
mation between both, different objects or same object, using only the individual
and the shared concepts. To solve the ambiguity, as future work each robot
should build autonomously a map and locate its position in the map. In addi-
tion, for each learned object, robots will locate them in the map. For confused
objects a robot can move to the position of the object marked in the map to see
the object from different perspectives in order to solve the conflict.

5 Experiments and Results

We performed several experiments to demonstrate the proposed algorithm. In
section 5.1, we show the results of a general experiment that demonstrates the
main features of the proposed approach. In section 5.2 we present the accuracy
of the collective concepts versus the individual concepts.

In these experiments we used a robot team consisting of two homogeneous
Koala robots (Figure 2) equipped with a video camera of 320× 240 pixels, and
an on board portable computer of 1 GB of RAM memory for the processing.
For more than two robots our method can be applied straightforward. The only
difference is that robots will need to consider the information from more than
one robot, possibly reducing confused concepts.

5.1 Concept Acquisition and Testing

The mobile robots learn on-line representations of several objects while following
a predefined trajectory without prior knowledge on the number or nature of the
objects to learn. The idea of using pre-planned trajectories instead of making the
robots wandering randomly, is that we can control the experimental conditions
to show different aspects of the proposed methodology.

Each robot shares its individual concept as soon as it is learned to improve
the representation of this concept or to include a new concept in the other robot.
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Fig. 2. The robot team.

Figure 3 shows the training objects used in this experiment. As can be seen in
the figure, some objects have the same shape but different texture, some have the
same texture but different shape, some others are not symmetric in their shape.
The objective of this experiment is to show the performance of the system to
detect coincident, complementary and confused information under a wide variety
of conditions.

In Figure 4 we present how the training objects were placed in the environ-
ment, and how the robots moved in the environment to see the different training
objects. Robot 1 (R1) learned during individual training concepts for: dolphin,
can, water bottle and vase. Robot 2 (R2) learned individual concepts for: vase,
soda bottle, bottle and cone. Note that some objects are learned by both robots
while others are only learned by one robot.

(a) (b) (c) (d) (e) (f) (g)

Fig. 3. Training objects. (a) vase, (b) water bottle, (c) can, (d) dolphin, (e) soda bottle,
(f) bottle and (g) cone.

While learning a new concept, each robot has to decide whether to fuse the
current concept with a previously known concept or include it as a new one.
Table 1 shows the probability vectors of the PCA features based on shape (v1

P )
and of the SIFT features (v1

S) obtained by Robot 1. A similar table is obtained by
Robot 2 (for details see [16]). In Table 1 the coincident information is represented
in bold.
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Fig. 4. Concept acquisition.

Table 1. Probability vectors PCA (v1
P ) and SIFT (v1

S) obtained by R1.

New (collective concepts R1)
PCA SIFT

Objects Dol-
phin

Vase Can Soda
bot-
tle

Water
bottle

Bot-
tle

Co-
ne

Dol-
phin

Vase Can Soda
bot-
tle

Water
bottle

Bot-
tle

Co-
ne

Dol-
phinR1

- - - - - - - - - - - - - -

VaseR2 0.19 - - - - - - 0.09 - - - - - -

CanR1 0.31 0.26 - - - - - 0.12 0.12 - - - - -

Soda
bottleR2

0.36 0.28 0.58 - - - - 0.28 0.11 0.40 - - - -

Water
bottleR1

0.43 0.28 0.53 0.73 - - - 0.15 0.59 0.20 0.20 - - -

BottleR2 0.31 0.17 0, 56 0.61 0.58 - - 0.08 0.15 0.650.04 0.12 - -

VaseR1 0.25 0.69 0.42 0.43 0.41 0.32 - 0.16 1.00 0.23 0.10 0.08 0.09 -

ConeR2 0.31 0.01 0.28 0.28 0.33 0.43 - 0.05 0.28 0.43 0.10 0.14 0.09 -

We used the defined criteria in Section 4.2 to recognize coincident, com-
plementary or confused concepts, with α = 0.65 as threshold value, and the
probability vectors of Table 1.

For instance, in column labeled with PCA of Table 1 it is shown how the
probabilities of objects of R1 are affected using only PCA over the shapes of
objects, as both robots encounter and learn concepts while traversing the en-
vironment. In the first row, R1 learns about the concept dolphin and acquires
it. In the second row, R2 then learns about vase and shares this concept to
R1 (that is expressed with a subindex R2). The probability, according to the
PCA features to be a dolphin is 0.19 (second row). R1 learns the object can,
which has a probability of 0.31 to be a dolphin and a probability of 0.26 to be
a vase, which was learned by R2 and shared to R1 (third row). In the fifth row,
R1 learns about a water bottle but it confuses with the soda bottle learned and
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shared before by R2. As can be seen from Figure 3, both objects have the same
shape and consequently the PCA features are not able to discriminate between
these two objects. This is not the case for the SIFT features, which prevent
R1 to consider it as the same object. In the seventh row, R1 learns about vase
which was already learned and shared by R2, and in this case both concepts are
merged.

Robot 1 detects the three types of possible information and fuses them as
mentioned in section 4.2. The first four learned objects (dolphin, vase, can and
soda bottle) were detected as complementary because all values of their corres-
ponding vectors v1

P(x,l)
and v1

S(x,l)
are less than α threshold. The next two objects

(water bottle and bottle) were detected as confused (type 2 and type 1, respec-
tively), because either their SIFT features, or their shape features are similar,
according to the α threshold. Object vase learned by Robot 1 was detected as
coincident with the learned object vase learned by Robot 2 and shared to Robot
1 (v1

P(7,2)
= 0.69 and v1

S(7,2)
= 1.00). Finally object cone, unnoticed for Robot 1,

is detected as complementary.
To test the performance of the individual concepts and the collective concepts

acquired by each robot, the concepts were used in an object recognition task.
Each robot followed a predefined trajectory to recognize objects in the environ-
ment. The objects were detected by the robot team in the following order: cone,
water bottle, vase, bottle, soda bottle and dolphin. Once an object is detected,
the robot (i) evaluates its class using the PCA (vi

P ) and SIFT (vi
S) probability

vectors and combines both probabilities using a Bayesian approach, summarized
in formula 6.

P
i
Bl

=
vi

Pl
× vi

Sl
× Pu 

vi
Pl
× vi

Sl
× Pu

!
+

 
(1− vi

Pl
)× (1− vi

Sl
)× (1− Pu)

! (6)

where Pu is a uniform probability distribution (Pu = 1
numObjsi ), vi

P = p(PCA

projection | Class = i), vi
S = p(SIFT matching | Class = i), P i

B is the
Bayesian probability vector (p(Class = i | PCAprojection, SIFTmatching),
and l is the index of the Bayesian probability vector, where the maximum size
of the probability vector is numObjsi.

We show in Table 2 the precision of the object recognition task using the
individual (columns labeled with R1 and R2) and collective (columns labeled
with R1-R2 and R2-R1) concepts. Precision is calculated as the number of well
classified images from the total number of test images that contain an object
during one experiment. The precision is presented in two ways, one considering
the total number of objects, and the other one taking into a count only the
number of objects used during the individual training (reported in parentheses).
As can be seen the collective concepts produce a significantly better precision.

5.2 Accuracy of the Individual and Collective Concepts

In this section we compare the results of the individual concepts with that of
collective concepts. In each experiment, a different set of objects was used, and
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Table 2. Precision in the object recognition task using the individual and collective
concepts acquired by each robot.

R1 R2 R1-R2 R2-R1

PCA 47.82 % (89.70 %) 52.12 % (98.00 %) 95.65 % 98.93 %

SIFT 50.00 % (93.87 %) 52.13 % (98.00 %) 95.65 % 98.93 %

Bayes 48.91 % (91.83 %) 52.12 % (98.00 %) 95.65 % 100.00 %

both robots learned the same set of objects. Therefore, all the shared concepts
were coincident, that is, robots learned both individually and collectively the
same number of concepts. At the end of each experiment the robots learned four
concepts that were tested in a predefined sequence.

In Table 3, we present the average percentages of accuracy using the indivi-
dual and collective concepts in an object recognition task. The accuracy indicates
the average percentage of well classified images during the whole set of experi-
ments, in this case six, when using the PCA and SIFT features and the Bayesian
approach.

As it can be observed in Table 3, the accuracy that indicate the quantity of
well classified images using the collective concepts for the object recognition task,
is in general better than the accuracy using the individual concepts. For PCA,
SIFT and Bayes there is an improvement in the accuracy of 2.56 %, 13.79 %
and 20.62 %, respectively. This demonstrates that the collective concepts have
better coverage than the individual concepts because they contain information
acquired from different points of view, which allows a better recognition of test
objects.

In Table 4, we present the average percentages of false positives for both, the
individual and the collective concepts acquired by the robots. From the results
presented in Tables 3 and 4 we conclude that the collective concepts have better
quality than the individual concepts.

In general for the individual and the collective concepts, we observed an
improvement in the accuracy when using the Bayesian approach. The average
profit in the percentages of classification using the Bayesian approach using the
collective concepts with regard to the individual concepts is of 14.63 %.

Table 3. Accuracy of individual and collective concepts.

PCA SIFT Bayes

Individual 84.94 % 67.88 % 80.18 %

Collective 87.18 % 81.12 % 94.81 %
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Table 4. Average percentages of false positives of individual and collective concepts.

PCA SIFT Bayes

Individual 14.42 % 0.64 % 0.64 %

Collective 13.14 % 0.00 % 0.00 %

6 Conclusions and Future Work

In this paper we have introduced a new on-line learning framework for a team
of robots. Some of the main features of the proposed scheme are:

– The robots do not know in advance how many objects they will encounter.
This poses several problems as the robots need to decide if a new concept or
a shared concept, is of a previously learned object or not.

– The representation of objects are learned on-line while the robots are tra-
versing a particular environment. This is relevant for programming autono-
mous robots.

– Three possible cases in which to merge concepts and how to merge them
were identified.

The detection of coincident concepts avoids producing multiple concepts for
the same object. The detection of complementary concepts allows to detect and
learn unknown objects not seen by a particular robot. The detection of confused
concepts allows to fuse information: (i) when the objects have different shape and
similar SIFT features, and (ii) when the objects have similar shape and different
SIFT features. These cases are particularly difficult to deal with because the
objects may be genuinely different or may be the same but seen from different
points of view by the robots.

In general, the object recognition using the collective concepts had a better
performance than using the individual concepts in terms of accuracy. This occurs
because the collective concepts consider information from multiple points of view
producing more general concepts.

As future work we propose to integrate schemes to object segmentation for
dynamic environments. For instance, using an object segmentation based on
distance as in [17]. Use a different set of features and identify possible conflicts
between more that two kinds of features. We also plan to incorporate planning
of trajectories to autonomously allocate the environment among robots. We also
plan to add strategies to solve some confusions in shared concepts by taking
different views from these objects. Finally, we plan to incorporate our algorithm
for robot localization and search of objects, and to test our work for robot teams
with three or more robots.

Acknowledgments. The first author was supported by the Mexican National
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