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ABSTRACT

This chapter gives a general introduction to decision-theoretic models in artificial intelligence and an

overview of the rest of the book. It starts by motivating the use of decision-theoretic models in artificial

intelligence and discussing the challenges that arise as these techniques are applied to develop intelligent

systems for complex domains. Then it introduces decision theory, including its axiomatic bases and the

principle of maximum expected utility; a brief introduction to decision trees is also presented. Finally,

an overview of the three main parts of the book —fundamentals, concepts, and solutions— is presented.

ARTIFICIAL INTELLIGENCE AND
DECISION THEORY

Forachieving their goals, intelligent agents, natu-
ral or artificial, have to select a course of actions
among many possibilities. That is, they have to
take decisions based on the information they can
obtain from their environment, their previous
knowledge and their objectives. In many cases,
the information and knowledge is incomplete or
unreliable, and the results of their decisions are
not certain, that is they have to take decisions
under uncertainty. For instance: a medical doctor
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in an emergency, must act promptly even if she
has limited information on the patient’s state; an
autonomous vehicle that detects what might be an
obstacle in its way, must decide if it should turn
or stop without being certain about the obstacle’s
distance, size and velocity; or a financial agent
needs to select the best investment according to
its vague predictions on expected return of the
differentalternatives and its clients’ requirements.
In all these cases, the agent should try to make
the best decision based on limited information
and resources (time, computational power, etc.).
How can we determine which is the best decision?

Decision Theory provides a normative frame-
work for decision making under uncertainty. It is
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based on the concept of rationality, that is that an
agent should try to maximize its utility orminimize
its costs. This assumes that there is some way to
assign utilities (usually a number, that can cor-
respond to monetary value or any other scale) to
the result of each alternative action, such that the
best decision is the one that has the highest utility.
Forexample, if we wanted to select in which stock
to invest $1000 for a year, and we knew which
will be the price of each stock after a year, then
we should invest in the stock that will provide the
highest return. Of course we can not predict with
precision the price of stocks a year in advance, and
in general we are not sure of the results of each
of the possible decisions, so we need to take this
into account when we calculate the value of each
alternative. So in decision theory we consider the
expected utility, which makes an average of all
the possible results of a decision, weighted by
their probability. Thus, in a nutshell, a rational
agent must select the decision that maximizes its
expected utility.

Decision theory was initially developed in
economics and operations research (Neumann
& Morgenstern, 1944), but in recent years has
attracted the attention of artificial intelligent (AI)
researchers interested in understanding and build-
ing intelligent agents. These intelligent agents,
such as robots, financial advisers, intelligent
tutors, etc., must deal with similar problems as
those encountered in economics and operations
research, but with two main differences.

One difference has to do with the size of the
problems, which in artificial intelligence tend to
be very large; with many possible states of the
environmentand in some cases also a large number
of actions or decisions for the agent. Although
in economics they also have to deal with big
problems, they usually abstract them as they do
not have the tools to deal with a large number of
states. For example, consider a mobile robot that
is moving in a large building and wants to decide
the best set of movements that will take it from
one place in the building to another. In this case
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the world state could be represented as the posi-
tion of the robot in the building, and the agent’s
actions are the set of possible motions (direction
and velocity) of the robot. So the problem can
be formulated as the selection of the best mo-
tion for each position in the building to reach the
goal position (minimizing distance or time, for
instance). In this case the number of states and
actions are in principle infinite, or very large if
we discretize them. The size of the problems in
terms of states and actions imply a problem of
computational complexity, in terms of space and
time, so Al has to deal with these issues in order
to apply decision theory to complex scenarios.

The other main difference has to do with
knowledge about the problem domain, that is
having a model of the problem according to what
is required to apply decision theory techniques
to solve it. This means, in general, knowledge
of all the possible domain states and possible
actions, and the probability of each outcome of
a decision and its corresponding utility. In many
Al applications a model is not known in advance,
and could be difficult to obtain. Returning to the
robot navigation example, the robot might not
have a precise model of the environment and
might also lack a detailed model of its dynamics
to exactly predict which will be its position after
each movement. So Al researchers have to deal
also with the problem of knowledge acquisition
or learning.

The research on decision-theoretic models in
artificial intelligence has focused on these two
main issues: computational complexity and model
acquisition; as well as in incorporating these
theoretical advances in different applications of
intelligent agents. In the rest of the book we will
explore the theoretical and practical developments
of this interaction between artificial intelligence
and decision theory; but first we will review the
basis of decision theory.
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Decision Theory: Fundamentals

The principles of decision theory were initially
developed in the classic text by Von Neuman and
Morgensten, Theory of Games and Economic
Behavior (Neumann & Morgenstern, 1944).
They established a set of intuitive constraints that
should guide the preferences of a rational agent,
which are known as the axioms of utility theory.
Before we list these axioms, we need to establish
some notation.

In a decision scenario there are four elements:

Alternatives: are the choices that the agent
has and are under his control. Each decision
has at least two alternatives (e.g. to do or not do
some action).

Events: these are produced by the environ-
ment or by other agents; are outside of the agent’s
control. Each random event has at least two pos-
sible results, and although we do not know in
advance which result will occur, we can assign a
probability to each one.

Outcomes: are the results of the combination
of the agents decisions and the random events.
Each possible outcome has a different preference
(utility) for the agent.

Preferences: these are established according to
the agent’s goals and objectives and are assigned
by the agent to each possible outcome. They
establish a value for the agent for each possible
result of its decisions.

As an example consider a virtual robot that
navigates in a grid environment, see Figure 1.
The virtual robot is in a certain cell, and it can
move to each of the 4 adjacent cells —up, down,
left, right; its objective is to arrive to the goal cell.
In this case the alternatives are the four possible
actions that the robot can take in each cell. The
events could be a failure in the robot or another
agent that gets in its way; both can prevent the
robot from reaching the desired location. Accord-
ing to how likely these events are, there will be
a certain probability that the robot reaches the
desired cell or another cell. The outcomes are the

result of the combination of the robot actions and
the events. For example, if the robot moves to the
cell to its right, the possible outcomes could be
the that it arrives to the right cell, it stays in the
same cell or it arrives to another adjacent cell.
The preferences will be established according to
the robot objectives. In this case, the robot will
prefer the goal cell over all the other empty cells
in the environment, and these over the cells that
have obstacles.
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In utility theory, these type of scenarios are
called /otteries. Inalottery each possible outcome
or state,, has certain probability and an associ-
ated preference to the agent which is quantified
by a real number, . For instance, a lottery with
two possible outcomes, with probability and with
probability, will be denoted as:

If an agent prefers than it is written as, and if
itis indifferent between both outcomes is denoted
as . In general a lottery can have any number of
outcomes; an outcome can be an atomic state or
another lottery.

Based on these concepts, we can define utility
theory in an analogous way as probability theory,
by establishing a set of reasonable constraints
on preferences for a rational agent, these are the
axioms of utility theory:

Order: Given two states, an agent prefers one or
the other or it is indifferent between them.

Transitivity: If an agent prefers outcome to and
prefers to, then it must prefer to .

Continuity: If, then there is some probability
such that the agent is indifferent between
getting with probability one, or the lottery .

Substitutability: Ifan agentis indifferentbetween
two lotteries, and, then the agent is indif-
ferent between two more complex lotteries
that are the same except that is substituted
for in one of them.
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Figure 1. An example of a decision problem: A robot in a grid environment. The robot can move to the
neighboring cells (as indicated by the arrows) an must select the best moves to avoid the obstacles (in

gray) and reach the GOAL.

Monotonicity: There are two lotteries that have
the same outcomes, and . If the agent prefers,
then it must prefer the lottery in which has
higher probability.

Decomposability: Compound lotteries can be
decomposed into simple ones using the rules
of probability.

Then, the definition of a utility function fol-
lows from the axioms of utility.

Utility Principle: Ifan agent’s preferences follow
the axioms of utility, then there is a real-
valued utility function such that:

1. if an only if the agent prefers over,
2. if an only if the agent is indifferent
between and .

Maximum Expected Utility Principle: The util-
ity of a lottery is the sum of the utilities of
each outcome times its probability:

Based on this concept of a utility function,
we can now define the expected utility (EU) of
certain decision taken by an agent, considering

that there are possible results of this decision,
each with probability:

The principle of Maximum Expected Utility
states thatarational agent should choose an action
that maximizes its expected utility.

Although itseems straight-forward to apply this
principle to determine the best decision, as the de-
cision problems become more complex, involving
several decisions, events and possible outcomes,
it is not as easy as it seems; and a systematic ap-
proach is required to model and solve complex
decision problems. One of the earliest modeling
tools developed for solving decision problems are
decision trees (Cole & Rowley, 1995).

Decision Trees

A decision tree is a graphical representation of
a decision problem, which has three types of
elements or nodes that represent the three basic
components of a decision problem: decisions,
uncertain events and results.

Adecisionnodeis depicted as arectangle which
has several branches, each branch represents each
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ofthe possible alternatives present in this decision
point. At the end of each branch there could be
another decision point, an event or a result.

An event node is depicted as a circle, and has
also several branches, each branch represents one
of the possible outcomes of this uncertain event.
These outcomes correspond to all the possible
results of this event, that is they should be mutu-
ally exclusive and exhaustive. A probability value
is assigned to each branch, such that the sum of
the probabilities for all the branches is equal to
one. At the extreme of each branch there could
another event node, a decision node or a result.

The results are annotated with the utility they
express for the agent, and are usually at the end
of each branch of the tree (the leaves).

Decision trees are usually drawn from left to
right, with the root of the tree (a decision node)
at the extreme left, and the leaves of the tree to
the right. An example of a hypothetical decision
problem (based on an example in (Borras, 2001))
is shown in Figure 2. It represents an investment
decision with 3 alternatives: (i) Stocks, (ii) Gold,
and (ii1) No invest. Assuming that the investment
is for one year, if we invest in stock, depending
on how the stock market behaves (uncertain
event), we could gain $1000 or loose $300, both
with equal probability. If we invest in Gold, we
have another decision, to have insurance or not. If
we get insurance, then we are sure to gain $200;
otherwise we win or lose depending if the price of
the gold is up, stable or down; this is represented
as another event. Each possible outcome has a
certain value and probability assigned, as shown
in Figure 2. What should the investor decide?
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To determine the best decision for each deci-
sion point, according to the maximum expected
utility principle, we need to evaluate the decision
tree. The evaluation of a decision tree consists of
determining the values of both types of nodes,
decision and event nodes. It is done from right to

left, starting from any node that has only results
for all its branches:

. The value of a decision node is the maxi-
mum value of all the branches that emanate
from it:

. The value of an event node is the expected
value of all the branches that emanate from
it, obtained as the weighted sum of the re-
sult values multiplied by their probabilities:

Following this procedure we can evaluate the
decision tree of Figure 2:

Event 1 - Market Price: .
Event 2 - Gold Price: .
Decision 2 - Insurance: .
Decision 1 - Investment: .

Thus, in this case the best decisions are to
invest in Gold without insurance.

Decision trees are a tool for modeling and solv-
ing sequential decision problems, as decisions have
to be represented in sequence as in the previous
example. However, the size of the tree (number of
branches) grows exponentially with the number of
decision and event nodes, so this representation is
practical only for small problems. An alternative
modeling tool is the Influence Diagram (Howard
& Matheson, 1984, Shachter, 1986), which provide
a compact representation of a decision problem.
Influence diagrams are introduced in Chapter 2.

Decision trees and influence diagrams are
techniques for solving simple decision problems,
where a few decisions are involved (usually
less than 10). For more complex problems, in
particular dynamic decision problems that in-
volve a series of decisions in time (as the robot
navigation example), there are other techniques,
such as Markov Decision Processes (MDPs) and
Partially Observable Markov Decision Processes
(POMDPs). These are reviewed in Chapter 3.

In many domains the transition model is not
known inadvance and an agentmustlearn apolicy
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Figure 2. An example of a decision tree (see text for details)

Invest

from experience. Forthis case, several approaches
have been proposed by the reinforcement learn-
ing community. These are reviewed in Chapter 4.

OVERVIEW

The book is organized in 3 parts: fundamentals,
concepts, and solutions.

Fundamentals

The first part, fundamentals, provides a general
introduction to the main decision-theoretic tech-
niques used in artificial intelligence.
Probabilistic graphical models provide a
framework for a compact representation of a joint
probability distribution, and are incorporated in
several advanced decision models, such as in-
fluence diagrams and factored Markov decision
processes. Chapter 2 gives an overview of proba-
bilistic graphical models and introduces influence
diagrams. First, abriefreview of probability theory
is included. A general introduction to graphical
models is given, and a more detailed description
of certain types of graphical models is presented,

in particular Bayesian networks and dynamic
Bayesian networks. Then influence diagrams are
introduced, including some of the more common
solution techniques. Finally, a brief introduction
to dynamic decision networks is presented, and
their relation with Markov decision processes.

Chapter 3 provides an introduction to fully and
partially observable Markov decision processes
as a framework for sequential decision making
under uncertainty. It reviews Markov decision
processes (MDPs) and partially observable Mar-
kov decision processes (POMDPs), describes
the basic algorithms to find good policies and
discusses modeling and computational issues that
arise in practice.

In many applications a decision model, such
as an influence diagram or MDP, is not available,
so an alternative is to learn directly a decision
policy from experience using Reinforcement
Learning. Chapter 4 provides a concise and
updated introduction to reinforcement learning
from a machine learning perspective. It gives the
required background to understand the chapters
related to reinforcement learning in the book, and
includes an overview of some of the latest trends
in the area.



Introduction

Concepts

Part II presents recent theoretical developments
that extend some of the techniques in Part I, such
asinfluence diagrams, Markov decision processes
and reinforcement learning, to deal with com-
putational and representational issues that arise
in artificial intelligence. In some applications of
artificial intelligence, it is not only important to
make good decisions, but also to explain how the
system arrived at these decisions; a novel method
for automatically generating explanations for
MDPs is also described.

Semi-Markov Decision Processes (SMDPs)
are an extension of MDPs that generalize the
notion of time by allowing the time intervals
between states to vary stochastically. SMDPs are
used to formulate many control problems and play
a key role in hierarchical reinforcement learn-
ing. Chapter 5 shows how to translate a decision
making problem into a form that can instead be
solved by inference and learning techniques. It
establishes a formal connection between plan-
ning in semi-MDPs and inference in probabilistic
graphical models.

Multi-stage Stochastic Programming relies on
mathematical programming and probability theory
to solve complex decision problems. Chapter 6
presents the multi-stage stochastic programming
framework for sequential decision making under
uncertainty. It describes the standard techniques
for solving approximately stochastic dynamic
problems, which are based on a discretization of
the disturbance space called ascenario tree. It also
shows how supervised learning techniques can be
used to evaluate the quality of an approximation.

Chapter 7 describes a technique to explain
policies for factored Markov decision processes
by populating a set of domain-independent tem-
plates, and a mechanism to determine a minimal
set of templates that, viewed together, completely
justified the policy. This technique is illustrated
in two domains: advising students in their course
selection and assisting people with dementia in
completing the task of hand washing.

Dynamic limited-memory influence diagrams
(DLIMIDs) are novel type of decision support
models whose main difference with other mod-
els is the restriction of limited memory, which
means that the decisions are based only on recent
observations. Chapter § introduces DLIMIDs and
presents several algorithms for evaluating them.
The application of DLIMDs is illustrated in areal-
world medical problem, including a comparison
with other formalisms.

Chapter9 introduces an approach forreinforce-
mentlearning based on arelational representation.
The basic idea is to represent states in the domain
as sets of first order relations; actions and policies
are also represented over those generalized repre-
sentations. The approach is demonstrated in two
applications: a flight simulator and amobile robot.

Solutions

Part 111 describes a wide sample of applications
of decision-theoretic models in different areas of
artificial intelligence, including: intelligent tutors
and intelligent assistants, power plant control,
medical assistive technologies, spoken dialog
systems, service robots, and multi-robot systems.
As well as illustrating the practical aspects of us-
ing decision theory in Al, it also presents several
developments that extend the techniques described
in Part [ and Part I1. These include: extending the
expressive power of the models based on relational
representations; making the solution techniques
more efficient using abstraction and decomposi-
tion; and developing decentralized models for
distributed applications, among others.

Chapter 10 describes a decision-theoretic
tutor that helps students learn from analogical
problem solving. The tutor incorporates a novel
example—selection mechanism that tailors the
choice of examples for a given student based
on dynamic Bayesian networks. An empirical
evaluation shows that this selection mechanism
is more effective that standard approaches for
fostering learning.



Chapter 11 presents an intelligent tutor based
on dynamic decision networks applied to an un-
dergraduate Physics scenario, where the aim is to
adapt the learning experience to suit the learner’s
needs. [temploys Probabilistic Relational Models
to facilitate the construction of the models, such
that the tutor can be easily adapted to different
experiments, domains and student levels.

An intelligent assistant for power plant opera-
tors is introduced in Chapter 12. 4sistO provides
off-line training and on-line guidance to power
plant operators in the form of ordered recommen-
dations. These recommendations are generated
using Markov decision processes over an ap-
proximate factored model of a power plant. It also
describes an automatic explanation mechanism
that explains the recommendations to the user.

Chapter 13 presents a general decision—theo-
retic model of interactions between users and
cognitive assistive technologies for various tasks
ofimportance to the elderly population. The model
isa POMDP whose goal is to work in conjunction
with the user towards the completion of a given
task. It is applied to four tasks: assisted hand
washing, stroke rehabilitation, health monitoring,
and wheelchair mobility.

Spoken dialog systems present a classic
example of planning under uncertainty. Thus,
decision theory, and in particular partially—observ-
able Markov decision processes, are an attractive
approach to building spoken dialog systems.
Chapter 14 traces the history of POMDP—based
spoken dialog systems, and sketches avenues for
future work.

Chapter 15 describes anovel framework based
on functional decomposition of MDPs, and its
application to task coordination in service robots.
In this framework, a complex task is divided into
several subtasks, each one defined asan MDP and
solved independently; their policies are combined
to obtain a global policy. Conflicts may arise as
the individual policies are combined, so a tech-
nique for detecting and solving different types of
conflicts is presented.
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Chapter 16 introduces problems related to the
decentralized control of multi—robot systems. It
presents Decentralized Markov Decision Process-
es (DEC-MDPs) and discusses their applicability
to real world multi-robot applications. Then, it
introduces OC-DEC-MDPs and 2V-DEC-MDPs
which have been developed to increase the ap-
plicability of DEC-MDPs.

FINAL REMARKS

Sequential decision making is at the core of the
development of many intelligent systems but it
has been only recently that a large number of
developments have been proposed and real world
applications have been tackled. Thisbook provides
ageneral and comprehensive overview of decision
theoretic models in artificial intelligence, with an
overview of the basic solution techniques, a sample
of more advanced approaches, and examples of
some recent real world applications.
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