
Mach Learn
DOI 10.1007/s10994-009-5160-4

Inductive transfer for learning Bayesian networks

Roger Luis · L. Enrique Sucar · Eduardo F. Morales

Received: 28 February 2009 / Revised: 9 October 2009 / Accepted: 22 October 2009
© The Author(s) 2009

Abstract In several domains it is common to have data from different, but closely related
problems. For instance, in manufacturing, many products follow the same industrial process
but with different conditions; or in industrial diagnosis, where there is equipment with sim-
ilar specifications. In these cases it is common to have plenty of data for some scenarios
but very little for others. In order to learn accurate models for rare cases, it is desirable
to use data and knowledge from similar cases; a technique known as transfer learning. In
this paper we propose an inductive transfer learning method for Bayesian networks, that
considers both structure and parameter learning. For structure learning we use conditional
independence tests, by combining measures from the target task with those obtained from
one or more auxiliary tasks, using a novel weighted sum of the conditional independence
measures. For parameter learning, we propose two variants of the linear pool for probability
aggregation, combining the probability estimates from the target task with those from the
auxiliary tasks. To validate our approach, we used three Bayesian networks models that are
commonly used for evaluating learning techniques, and generated variants of each model by
changing the structure as well as the parameters. We then learned one of the variants with
a small dataset and combined it with information from the other variants. The experimental
results show a significant improvement in terms of structure and parameters when we trans-
fer knowledge from similar tasks. We also evaluated the method with real-world data from
a manufacturing process considering several products, obtaining an improvement in terms
of log-likelihood between the data and the model when we do transfer learning from related
products.

Keywords Inductive transfer · Bayesian networks · Structure learning · Parameter learning

Editors: Nicolo Cesa-Bianchi, David R. Hardoon, and Gayle Leen.

R. Luis · L.E. Sucar (�) · E.F. Morales
Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Luis Enrique Erro 1,
Sta. Ma. Tonantzintla, Puebla, Mexico
e-mail: esucar@inaoep.mx

mailto:esucar@inaoep.mx

Mach Learn

1 Introduction

For many machine learning applications, it is assumed that a sufficiently large dataset is
available from which a reliable model can be induced. In some domains, however, it is dif-
ficult to gather enough data, for instance, in manufacturing some products that are rarely
produced or in medicine where there are some rare diseases. Experts, when confronted with
a problem in a novel task, use their experience from related tasks to solve the problem.
Recently, there has been an increasing interest in the machine learning community for us-
ing data from related tasks, in particular when the available data is scarce (Thrun 1996;
Caruana 1997; Baxter 1997; Silver et al. 2008), an approach known as transfer learning. In
many domains it is common to have uncertainty and Bayesian networks have proved to be
an adequate and powerful technique to deal with it; however, there is limited previous work
on transfer learning for Bayesian networks (BNs). Previous work considers learning simul-
taneously multiples tasks by combining data (Niculescu-Mizil and Caruana 2007) or expert
knowledge (Richardson and Domingos 2003). Although our work is related to these meth-
ods, the main focus is different; we are interested on learning a model for a task with limited
data, taking advantage of data from related tasks. Another important difference is that our
method is based on independence tests, while previous approaches are based on search and
score techniques. The learning methods based on independence tests tend to degrade more
severely when there is not enough data, so in this case transfer learning has a greater impact.

In this paper we propose a transfer learning method for Bayesian networks that induces
a model for a target task, from data from this task and from other related auxiliary tasks.
The method includes both, structure and parameter learning. The structure learning method
is based on the PC algorithm (Spirtes et al. 1993), and it combines the dependency measures
obtained from data in the target task, with those obtained from data in the auxiliary tasks.
We propose a combination function that takes into account the reliability and consistency
between these measures.

The parameter learning algorithm uses an aggregation process, combining the parame-
ters estimated from the target task, with those estimated from the auxiliary data. Based on
previous linear combination techniques, we propose two variants: (i) Distance-based linear
pool (DBLP), which takes into account the distance of the auxiliary parameters to the target
parameters, and (ii) Local linear pool (LoLP), which only includes auxiliary parameters that
are close to the target one, weighted by the amount of data in each auxiliary task. In the
experiments we compare both methods, and also the basic linear pool as baseline.

We evaluated experimentally the structure and parameter transfer learning techniques
and compared the results versus using only the data from the target task. We performed two
sets of experiments. In the first set we evaluated how well it can recover the structure and
the parameters of a BN when we know the original model. For this we consider three com-
monly used BNs for benchmarking learning algorithms (ALARM in Beinlich et al. 1989,
BOBLO in Rasmussen 1992 and INSURANCE in Binder et al. 1997), and generated auxil-
iary models by changing the structure and parameters of the original model. We generated
data from the original net and its variants, and then tested our method by combining these
datasets. We performed tests varying the amount of data for the target model and from the
auxiliary tasks. We also performed tests with different auxiliary datasets obtained from aux-
iliary networks with different degrees of edit distances. We evaluated the structure in terms
of edit distance, and both, structure and parameters, in terms of the average squared error;
comparing the models obtained against the original model. Both aspects, structure and pa-
rameters, show a significant improvement when the amount of data for the target network is
small. Also, the amount of improvement increases as the size of the auxiliary data increases.

Mach Learn

An important observation is that the results improve as we increase the number of auxiliary
tasks, even if some of these are not very closely related to the target task. We also performed
tests between our proposed method and the PC algorithm using the data from the target task
concatenated with the data from the auxiliary tasks. In this case the PC algorithm with all
the available data is only competitive to our approach when all the datasets are fairly similar.

In the second set of experiments we evaluated the transfer learning method with data
from a manufacturing process, a complex real-world problem that motivated this work. We
learned a model for the process variables of a product with relatively few data, and used,
as auxiliary tasks, data from other similar products. In this case the evaluation was made in
terms of the log-likelihood between the model and the data, as we do not have a reference
BN. In general, the results show an improvement when we use auxiliary data with our ap-
proach; while if we simply concatenate the data of all the related domains and apply the PC
algorithm, the quality in terms of log-likelihood decreases.

The results from both sets of experiments show that transfer learning is a very useful
approach for learning BNs when we can incorporate data from related tasks, in particular
when we have limited data. The proposed methods take advantage of data from related tasks
to improve the structure and parameters of the target model, even if the auxiliary tasks are
not so similar to the target.

The paper is structured as follows. Section 2 provides an overview of learning techniques
for Bayesian networks. Section 3 describes relevant related work on inductive transfer. Sec-
tions 4 and 5 introduce the structure and the parameter learning algorithms, respectively. The
experiments and results are presented in Sect. 6. Finally, conclusions and future research di-
rections are given in Sect. 7.

2 Learning Bayesian networks

A Bayesian network (BN) (Pearl 1988) represents the joint distribution of a set of n (dis-
crete) variables, X1,X2, . . . ,Xn, as a directed acyclic graph and a set of conditional proba-
bility tables (CPTs). Each node, that corresponds to a variable, has an associated CPT that
contains the probability of each state of the variable given its parents in the graph. The
structure of the network implies a set of conditional independence assertions, which gives
its power to this representation.

Learning a BN includes two aspects: learning the structure and learning the parameters.
When the structure is known, parameter learning consists on estimating the CPTs from data.
For structure learning there are two main types of methods: (i) search and score, and (ii)
conditional independence tests. The first class of methods (Cooper and Herskovits 1992;
Lam and Bacchus 1994) performs a heuristic search over the space of network structures,
starting from some initial structure, and generating variation of the structure at each step. The
best structure is selected based on a score that measures how well the model represents the
data, common scores are BIC (Cooper and Herskovits 1992) and MDL (Lam and Bacchus
1994). The second class of methods are based on testing conditional independence between
variables, and in this way adding or deleting arcs in the graph. The most well known variant
of this approach is the PC algorithm (Spirtes et al. 1993).

Both structure learning methods, including their variants, require enough data to produce
accurate results. For instance, the PC algorithm assumes that there is sufficient data for
accurate statistical tests; and the scores such as BIC and MDL require also a representative
dataset to provide good estimates.

Given that our structure learning method is based on the PC algorithm, we next give a
brief overview of the basic algorithm.

Mach Learn

Algorithm 1 The PC algorithm
Require: Set of variables X, Independence test I

Ensure: Directed Acyclic Graph G

1: Initialize a complete undirected graph G′
2: i = 0
3: repeat
4: for X ∈ X do
5: for Y ∈ ADJ(X) do
6: for S ⊆ ADJ(X) − {Y }, |S| = i do
7: if I (X,Y | S) then
8: Remove the edge X − Y from G′
9: end if

10: end for
11: end for
12: end for
13: i = i + 1
14: until |ADJ(X)| ≤ i, ∀X

15: Orient edges in G′
16: Return G

2.1 The PC algorithm

The PC algorithm (Spirtes et al. 1993) first recovers the skeleton (underlying undirected
graph) of the BN, and then it determines the orientation of the edges.

To determine the skeleton, it starts from a fully connected undirected graph, and deter-
mines the conditional independence of each pair of variables given some subset of the other
variables. For this it assumes that there is a procedure that can determine if two variables,
X,Y , are independent given a subset of variables, S, that is, I (X,Y | S). An alternative for
this procedure is the conditional cross entropy measure. If this measure is below a threshold
value set according to certain confidence level, the edge between the pair of variables is
eliminated. These tests are iterated for all pairs of variables in the graph.

In the second phase the direction of the edges are set based on conditional independence
tests between variable triplets. It proceeds by looking for substructures in the graph of the
form X − Z − Y such that there is no edge X − Y . If X,Y are not independent given Z, it
orients the edges creating a V-structure X → Z ← Y . Once all the V-structures are found, it
tries to orient the other edges based on independence tests and avoiding cycles. Algorithm 1
summarizes the basic procedure.1

If the set of independencies are faithful to a graph and the independence tests are perfect,
the algorithm produces a graph equivalent to the original one (Spirtes et al. 1993). However,
the statistical tests for independence based on sample data have errors, and the number of
errors increases when the sample is small. In this work we propose to incorporate data from
related tasks to compensate for the lack of data in the task of interest.

1ADJ(X) is the set of nodes adjacent to X in the graph.

Mach Learn

3 Related approaches

Recently there has been an increasing interest in inductive transfer learning for different
types of representations (Thrun 1996; Caruana 1997; Baxter 1997; Silver et al. 2008). One
of the earliest approaches for transfer learning is described in Wu and Dietterich (2004).
Here the authors proposed the use of auxiliary data to improve the accuracy of training data
in the problem of classifying images of tree leaves. They introduced two approaches, one
based on k-nearest neighbors and another in support vector machines (SVM). For SVM
the auxiliary data was used as potential support vectors, as constraints in the optimization
problem or both, with promising results. In the rest of this section we will focus on the
related work for learning Bayesian networks.

In Dai et al. (2007) the authors proposed a transfer learning algorithm for text classifica-
tion. The idea is to estimate the initial probabilities of a naïve Bayes network using a labeled
dataset, and then use an EM-based algorithm to revise the model using unlabeled data from
a different distribution. They use a metric based on the Kullback–Leibler divergence mea-
sure to estimate the relevance between the prior distributions. Their work is based on naïve
Bayes classifiers, while we are interested in transfer learning for general Bayesian networks
and, consequently, we are also interested in structural transfer learning.

Roy and Kaelbling (2007) developed an alternative method for transfer learning for the
naïve Bayes classifier. The basic idea is to partition the dataset in a number of clusters, such
that the data for each cluster for all tasks has the same distribution. They train one classifier
for each partition, which are combined using a Dirichlet process. They test this approach
in a multi-task meeting classification problem. As in the previous case, this technique is re-
stricted to Bayesian classifiers, and in particular it does not address the problem of structure
learning.

One alternative to compensate for the lack of data in a task is to incorporate expert
knowledge. A recent approach in this direction is proposed in Richardson and Domingos
(2003), which considers the combination of multiple experts. They develop a Bayesian
approach in which the knowledge of several experts is encoded as the prior distribution
of possible structures, and the data is used to refine this structure and learn the parame-
ters. The expert knowledge is represented as a “meta” Bayesian network, where the ex-
pert assertions are codified as the probability that an arc exists (and its direction) between
two variables. In this way, the experts’ knowledge is used to obtain a probability distrib-
ution over structures. The best structure is obtained using a hill-climbing search method.
Then, the parameters for this structure are estimated from data. In our work, we only
use data and do not include expert knowledge. In their work, they combine several weak
models to obtain, in principle, a strong model; while we transfer knowledge (based on
data) from a strong model(s) to improve a weak one. Although knowledge transfer from
strong to weak tasks has been done before for other learning techniques (Caruana 1997;
Silver et al. 2008), this is not the case for learning Bayesian networks.

Other work (Niculescu-Mizil and Caruana 2007) considers the problem of learning
Bayesian network structures for related tasks. They consider that there are k data-sets for
related problems, and they propose a score and search method to learn simultaneously the
BNs structures, one for each task. Assuming that the parameters of the different nets are
independent, they define the joint probability distribution of the k structures, given the k

datasets. The prior is defined such that it penalizes structures that are different for each
other. Based on this score, they define a greedy search algorithm to find the best structures,
where a new configuration is obtained by adding/deleting/reversing arcs for each structure.
In contrast to this approach, our proposal is based on independence tests that are obtained

Mach Learn

separately for each dataset, and then combined, resulting in a simpler method. Again, the
goal is different, we use data from one task to improve the model in another, related task;
while they learn simultaneously the models for different problems.

Previous approaches for inductive transfer for learning BNs consider the combination
of data or expert knowledge to learn simultaneously several related tasks, and are based
on global score to compare alternative models. In contrast, our approach solves a different
although related problem, to learn a model for a task with limited data, using additional data
from related tasks; and is based on local independence tests. The method is divided into two
phases, structure learning (Sect. 4) and parameter learning (Sect. 5), as described below.

4 Structure learning

In this paper we propose an algorithm for structure learning of BNs that incorporates infor-
mation from auxiliary datasets in related tasks, implementing a knowledge transfer approach
based on independence tests. The method can be seen as an extension of the PC algorithm
for learning a BN when we have a small dataset, and auxiliary data from related problems.

Let us assume that we have a target task represented by a set of n discrete random vari-
ables, X0 = X1,X2, . . . ,Xn, and m auxiliary tasks represented by their corresponding set of
discrete random variables, X1,X2, . . . ,Xm. We assume that these sets of variables are the
same for all tasks.2 We consider that associated to the target task there is a small dataset,
D0; and m additional datasets, D1, . . . ,Dm, for the auxiliary tasks, that are sufficiently large
for learning BNs models for X1,X2, . . . ,Xm to the desired level of accuracy.

The objective is to build a Bayesian network model for the target task, BN0, with struc-
ture G0 and parameters P0 from D0,D1, . . . ,Dm, which approximates the model that we
will obtain if we had a large dataset for the target task, D0. We start by learning the structure
of the model.

Following the PC algorithm we start with a fully connected undirected graph, and mea-
sure the conditional independence of each pair of variables given some subset of the other
variables, using the conditional cross entropy measure. Thus we obtain a set of indepen-
dency measures for each pair of variables in the target task, I0, and in a similar way for each
of the auxiliary tasks, I1, . . . , Im. Then, we combine these measures to build the structure
for the target task, G0.

The transfer structure learning algorithm (PC-TL) follows basically the PC algorithm, the
main difference is the way the independence tests are evaluated. For each pair of variables,
X,Y , the independence measure is a linear combination of the estimation from the target
task with that of the closest auxiliary task, where closest is determined in terms of a local
and global similarity measure. In this linear combination each term is weighted by a factor
that defines a confidence measure for the tests depending on the data. A general outline of
the method is given in Algorithm 2, and below we detail the combination function and the
associated measures.

4.1 Confidence measure

Before we see how we combine the results from the independence tests, we define a confi-
dence measure for these tests. The cross entropy measure used in the PC algorithm depends

2The method can be directly extended to include auxiliary tasks with different variables, as long as there is a
common subset of variables with the target task.

Mach Learn

Algorithm 2 The PC-TL algorithm
Require: Set of variables X
Require: Target data D0; and auxiliary data D1, . . . ,Dm

Require: Independence tests: target task, I0, and auxiliary tasks, I1, . . . , Im

Ensure: Directed Acyclic Graph G

1: Initialize a complete undirected graph G′
2: i = 0
3: repeat
4: for X ∈ X do
5: for Y ∈ ADJ(X) do
6: for S ⊆ ADJ(X) − {Y }, |S| = i do
7: Find the most similar auxiliary task, k, and its similarity measure SkXY

8: Determine the confidence measures α(X,Y | S) for target and auxiliary tasks
9: Obtain the combined independence measure IF (X,Y | S)

10: if IF (X,Y | S) then
11: Remove the edge X − Y from G′
12: end if
13: end for
14: end for
15: end for
16: i = i + 1
17: until |ADJ(X)| ≤ i, ∀X

18: Orient edges in G′
19: Return G

on the size of the dataset; it can empirically be shown that the error of this test is asymp-
totically proportional to logN

2N
, where N is the size of the dataset (Friedman and Yakhini

1996). Based on this, we define the following function to estimate the confidence of the
independency test between two variables X and Y given the conditioning set S:

α(X,Y | S) = 1 − logN

2N
× T (1)

where T = |X| × |Y | × |S|, |X| is the size of X, |Y | of Y , and |S| of S. If the difference
becomes negative, we set α = 0.005. This function is proportional to the confidence of
the test (inversely proportional to the size of the dataset). We use this term to quantify the
independence measures for the target and auxiliary data, before we combine them.

4.2 Similarity measure

In general we want to transfer information from tasks that are closer to the target task, so we
define a similarity measure that considers both, global and local similarity. This similarity
measure is defined in terms of the number of shared independencies between the target
and auxiliary tasks. The global similarity considers all pair-wise conditional independencies
of the form I (X,Y | S) in the models, while the local similarity includes only those for a
specific pair of variables. These measures are based on the PC algorithm, as the similarity
measure can not be seen independent of the learning technique (Thrun 1996, p. 2). That is,
given that the basic learning algorithm is based on independence tests, it seems appropriate

Mach Learn

to use the same type of tests for measuring similarity. This makes also the process more
efficient, as these tests have been already done at least for the target task.

The global similarity measure is defined as:

SgDj = depj + indj (2)

where depj is the number of common conditional dependencies between all pairs of vari-
ables in the target task and the j auxiliary task, and indj is the number of common con-
ditional independencies between all pairs of variables in the target task and the j auxiliary
task. The conditional (in)dependency tests, I (X,Y | S), are obtained from the target or aux-
iliary datasets using the cross entropy measure, using certain threshold.3

The local similarity measure for the variables X,Y given a conditioning subset S is de-
fined as:

SlDj (X,Y) =
{

1.0, if I0(X,Y | S) = IDj (X,Y | S)

0.5, if I0(X,Y | S) 	= IDj (X,Y | S)
(3)

where I0(X,Y | S) is the result of the independence test in the target task, and IDj (X,Y | S)

is the result of the test in the j auxiliary task. The constants in this equation (1.0 and 0.5)
give a different weight to auxiliary structures that have the same or different local structure,
giving more weight to similar structures. Different influence of the auxiliary tasks over the
target task can be obtained by changing the constants in the SLDj function. We experimented
with different values of these parameters, see Sect. 6, and in general there is not a significant
difference in the performance; for all other experiments we used the above values.

Thus, for a pair of variables X,Y and conditioning set S, the combined similarity measure
for the auxiliary task j , DjXY , is:

SjXY = SgDj × SlDj (X,Y) (4)

4.3 Combination function

Based on the similarity measure, for each pair of variables X,Y the closest auxiliary task
is combined with the target task to obtain the combined independence measure. The in-
dependence measure transferred from the most similar auxiliary task k is weighted by the
combined similarity measure, which is:

Sk∗
XY = SgDk × SlDk(X,Y) (5)

So the combined independence measure IF (X,Y | S) is a linear weighted combination
of the independence measures in the target and auxiliary tasks, considering the confidence
and similarity measures:

IF (X,Y | S) = α0(X,Y | S) × sgn(I0(X,Y | S))

+ Sk∗
XY

(
αDXY

(X,Y | S) × sgn(IDXY
(X,Y | S))

)
(6)

where sgn(I) is +1 if the independence test is positive (X,Y are independent given S) and
−1 otherwise. α0(X,Y | S) is the confidence measure of the target task, and αDXY

(X,Y | S)

3The (in)dependency tests can be performed with a threshold value. In this work, we use α, defined in (1), as
our significance threshold as it allows to obtain higher confidence when more data is available.

Mach Learn

is the confidence measure for the most similar auxiliary task, both for the variable pair
{X,Y } conditioned on S.

In this way we do transfer learning via the independence measures, considering the sim-
ilarity of the auxiliary tasks, and the confidence of the independence tests. Note that the
global similarity measure needs to be estimated only once and then used for all the local
tests.

Once we have the structure of the model, we estimate the parameters also using the
information from the auxiliary tasks.

5 Parameter learning

Given a Bayesian network structure, to complete the model the conditional probability tables
(CPTs) for each variable given its parents need to be estimated. Again, accurate estimates
can be obtained from large datasets, however, poor estimates are normally obtained with
small datasets. The idea in this paper is to fill all the conditional probability tables using
aggregation functions between several sources, using transfer learning from the auxiliary
tasks.

To combine the CPT for a variable X from an auxiliary task j , it is necessary that the
variable has the same parents in the target task, that is Paj (X) = Pa0(X), where Pai(X) is
the set of parents of X in network i.4 If they do not have the same parent set, we transform
the substructure in the auxiliary task to match the target one. For this, there are several cases
to consider:

1. Combine CPTs that have the same variables, i.e., the same substructure. This is the sim-
plest case and no transformation is required to apply an aggregation function.

2. Combine CPTs with more parents in the auxiliary substructures. In this case we mar-
ginalize over the additional variable(s) to obtain the required substructure. E.g., if we
want to combine P (X | Y,Z) of the target network with P (X | Y,Z,W) of an auxiliary
network, we can obtain P (X | Y,Z) from the auxiliary substructure by marginalizing
over W , i.e., P (X | Y,Z) = ∑

i P (X | Y,Z,Wi)P (Wi).
3. Combine CPTs with less parents in the auxiliary substructure. In this case, we duplicate

the CPTs of the auxiliary substructure for all the values of the additional variable(s) in
the target network. E.g., if we want to combine P (X | Y,Z) of the target network with
P (X | Y) of an auxiliary network, we can obtain P (X | Y,Z) from the auxiliary sub-
structure by duplicating P (X | Y) for all values of Z, i.e. P (X | Y,Zj) = P (X | Y),∀j .5

4. Combine CPTs with additional and missing variables in the auxiliary substructures
(case 2 and 3 combined). In this case we first marginalize over the additional variable(s)
and then duplicate over the missing variable(s).

The previous procedure is not necessary if we have data for all the tasks, in this case
we can estimate the CPTs directly from the data. However, we consider that in some cases
we might have only the models for some tasks. Note that in the case of structure learning
it is also not necessary to have access to the data, only the sufficient statistics to obtain the
independence measures.

4We assume that all the variables are discrete and have the same nominal values, or intervals if they were
discretized.
5By duplicating we mean just repeating the probabilities, for example, if Z is binary and P(X1 | Y1) = 0.7,
this value will be replicated for both values of Z: P(X1 | Y1,Z1) = 0.7 and P(X1 | Y1,Z2) = 0.7.

Mach Learn

Once we have a set of CPTs in terms of the CPTs of the target network, i.e., involving
the same variables, we can proceed to combine them.

There are several aggregation functions that have been proposed in Genest and Zidek
(1986), Chang and Chen (1996), Chen et al. (1996). Two commonly used functions are:

– Linear aggregation (lineal pool), also known as weighted mean. The consensus proba-
bility, P (X), is a weighted sum of the probabilities from the target and auxiliary tasks,
expressed as follows:

P (X) = k ×
n∑

i=1

wiPi(X)

where Pi(X) represents the conditional probability of the i-th model involving X, wi is
the weight associated with that probability and k is a normalization factor.

– Logarithmic aggregation. The consensus probability, P (X), is a weighted geometric mean
(weighted product) of the probabilities from the target and auxiliary tasks, expressed as
follows:

P (X) = k ×
n∏

i=1

Pi(X)wi

where Pi(X) represents the conditional probability of the i-th model involving X, wi is
the weight associated with that probability and k is a normalization factor.

We proposed two novel aggregation methods: (i) a distance based weighted average and
(ii) a weighted average only over similar probabilities.

5.1 Distance based linear pool (DBLP)

Our first aggregation method, called DBLP, considers the confidence of the probability es-
timates from the auxiliary tasks, and the similarity with the target estimates. The idea is
to give a higher weight to the probability estimates that have a higher confidence and that
are more similar to the target. For this we first obtain a weighted average of the probabili-
ties estimated from the data of the auxiliary tasks, where the weight is based on the size of
each dataset. Then we combine this average to the target probability estimate, weighted by
a factor that depends on its similarity to the target probability.

DBLP involves the following steps:6

1. Obtain the average probabilities of all the datasets discounted according to a confidence
factor:

p = k

n∑
i=1

(fi × pi) (7)

where fi is a confidence factor for each probability estimate and k is a normalization
factor. The confidence factor depends on the size of the dataset used to estimate it and it

6In the following descriptions of the proposed aggregation algorithms, p = P(X) denotes each individual
probability in the CPTs.

Mach Learn

is defined as follows:

fi =
{

1 − log(cf)

cf
, if cf ≥ 3

1 − cf ×log(3)

3 , if cf < 3
(8)

where cf = N
T ×2 is proportional to the expected error that depends on T , the number of

entries in the CPT, and N is the number of cases in the data base. Since function fi is
not continuous in the range of interest, it is composed of two functions. For cf ≥ 3 it is
given in a logarithmic scale, and when cf < 3 it is given as a linear interpolation in the
interval [0,3].

2. Obtain the minimum (dmin) and maximum (dmax) distance between the probability of the
target dataset and the above average.

3. Estimate the new conditional probabilities of the target network as follows:

p′
target = (1 − ci)ptarget + cip (9)

where the aggregation coefficients, ci , express how much to consider from the CPTs of
the other networks. The coefficients ci basically express the following: if the CPTs of the
target network are similar to the average of all the CPTs, then give more weight to the
average, otherwise, give more weight to the target CPTs. This is expressed as follows:

ci = (di − dmin) ×
(

cmax − cmin

dmax − dmin

)
+ cmin (10)

where cmax and cmin are parameters to indicate how close we want to consider the influ-
ence of the other CPTs. In our case we used cmax = 0.75 and cmin = 0.25.

This aggregation function favors probabilities that are closer to the target probability, and
weights them according to their confidence. The next function we propose considers only
those that are similar to the target.

5.2 Local linear pool (LoLP)

The idea in our second aggregation function, called LoLP, is to use only the most similar or
local probabilities and weight them also according to their confidence based on the amount
of data. The procedure is similar to DBLP, but in this case the average of the probabilities
obtained from the data of the auxiliary tasks, only includes those estimates that are closer to
the target, the other ones are not considered. Then this average is combined with the target
estimate weighting each by a confidence factor based on the amount of data.

LoLP has the following steps:

1. Obtain the average of the probabilities of the auxiliary datasets, but only between the
most similar probabilities, in our case, those that are within the difference between the
target probability and the overall average probability:

plocal =
1

n

n∑
i=1

pi ∀pi s.t. pi ∈ {ptarget ± (ptarget − p)} (11)

2. Obtain the new conditional probabilities of the target network as follows:

p′
target = ftarget × ptarget + (1 − ftarget) × plocal (12)

where ftarget gives a confidence factor for the CPTs based on (8).

Mach Learn

Table 1 Description of the networks used in the experiments showing the number of nodes (n) and arcs (α)

of the original networks

Name Description n α

Alarm Diagnosis for monitoring intensive care patients 37 46

Boblo Identification of blood for identification of cattle 23 24

Insurance Classifier for car insurance applications 27 52

This aggregation function restricts the transfer to only those parameters that are close to
the target estimates.

Given that the proposed aggregation functions are based on the lineal pool, this is used as
a baseline for comparison in the experiments. Next we present the experimental evaluation
of our inductive transfer techniques for structure and parameter learning.

6 Experiments

The purpose of the experiments is to show how a model induced from scarce data of a
particular task can be improved with data from similar tasks. We performed two sets of
experiments. First we use known BNs in which the structure and parameters are known, so
we can use them as gold standard to evaluate the learned models. We also used data from a
real-world application, in which we do not know the model, so the evaluation is done using
the log-likelihood between the model and the data. We start by describing the first set of
experiments.

We used three Bayesian networks: ALARM (Beinlich et al. 1989), BOBLO (Rasmussen
1992) and INSURANCE (Binder et al. 1997), briefly described in Table 1, commonly used
to evaluate BN learning algorithms.

We adopted the evaluation criteria proposed in (Niculescu-Mizil and Caruana 2007) to
evaluate our proposed methods for structure and parametric learning. We created new related
problems from the original networks described in Table 1, by adding/removing links and
changing the CPTs using Gaussian noise with mean = 1 and different values of standard
deviations. From each network we generated data samples of different sizes. The data used
in the experiments was sampled using probabilistic logic sampling as implemented in Elvira
(2002) from the altered networks. These samples were used in conjunction to a subset of
the original data to try to reconstruct the original network. Each experiment was repeated 10
times with independent data samples, in the results we show only the average.

We performed three types of experiments. In the first set of experiments, we evaluated
how the proposed methods for structure and parameter learning are affected by the size
of the data samples taken from the target task, and from related tasks. The second set of
experiments evaluates how the structure learning method is affected by changing the degree
of similarity between the target and the auxiliary tasks. In the third set of experiments we
evaluated the difference between our proposed method and the PC algorithm with all the
available data (target and auxiliary tasks). We also evaluated the sensitivity of the method to
some of the parameters.

6.1 Experiments with different sizes of data samples

We created two different BNs with different degrees of similarity to the original model. One
is a more similar network (MSN) built by randomly adding 5% of new links followed by

Mach Learn

Table 2 Characteristics of the auxiliary networks used in the first set of experiments for the Alarm network

Added Removed Inverted Edit-distance Noise in TCP (%) MSE

Alarm More similar net 2 1 0 3 5% 0.019

Less similar net 6 8 0 14 20% 0.041

removing 5% of the current links and introducing 5% of random noise in the CPTs obtained
from 100,000 examples of the original network. The second one is a less similar network
(LSN) built by adding 20% of links followed by removing 20% of the current links and
introducing 20% of random noise to the TPCs obtained from 100,000 cases sampled from
the original network. Table 2 shows the differences between the two auxiliary networks
and the target network in the structure: number of each basic edit operation and total edit
distance; and in the parameters: percentage of noise and resulting mean square error (MSE).
These models were used as auxiliary tasks in the experiments by generating samples via
logic sampling.

In the first experiments we started with 1,000 samples of the auxiliary tasks and changed
the number of samples of the target task from 25 to 2,000. In the second experiments we
fixed the samples of the target task (100) and changed the number of samples in the auxil-
iary tasks from 500 until 8,000 to see how much improvement can be achieved with transfer
learning from different sample sizes from the auxiliary tasks. We used the PC algorithm as
implemented in Elvira (2002) as the base case with a significance of 0.90 for the indepen-
dence tests.

In both experiments we evaluated the learned models by comparing them to the original
network; the structure in terms of edit distance, and the structure and parameters in terms of
MSE.

6.1.1 Results

The experiments were performed for the three BNs: Alarm, Boblo, and Insurance. There
results are very similar in the three cases, and have the same qualitative behavior, so we
discuss in detail only the Alarm case, but present results for the three domains.

The transfer learning algorithm was evaluated by using each auxiliary task separately
(MSN and LSN), and then both at the same time. Figure 1 shows the behavior of PC-TL
against the basic PC algorithm using samples from the networks described in Table 2 when
the number of samples in the target task are increased while the samples of the auxiliary tasks
remain constant (1,000 samples). Figure 2 shows analogous tests, but when the number of
samples in the auxiliary tasks are varied while the samples of the target task remain constant
(100 samples).

Figure 1 shows the expected behavior. The proposed method has a better performance
than PC, especially when the number of cases from the target task is small. Both tend to
converge to the same structure as the number of samples increases. There is not much dif-
ference between the performance of PC-TL with the different auxiliary tasks. The results in
the graph are the average of 10 runs, so if we take into account the variance of each data
point, the differences for the more/less similar tasks or the combination, are not significant.
This could be because there is not so much difference between both auxiliary models. To
analyze how the performance degrades with more distant networks we performed another
set of experiments that are described in the next section. Figure 2 shows that the network
structures induced in conjunction with the auxiliary tasks improve as the number of samples

Mach Learn

Fig. 1 Behavior of the proposed method (PC-TL) as the number of samples of the target task increases
(Alarm network)

Fig. 2 Behavior of the proposed method (PC-TL) as the number of samples of the auxiliary tasks increases
(Alarm network)

of the auxiliary tasks increases. In general, better results are obtained when more than one
auxiliary task is used.

Next we present the results for parameter learning, which also take into account the
structure. In these experiments, for each sample size we first learn the structure and then the
parameters, so we are really evaluating both aspects. Due to this, the MSE might not be the
same even for the same sample size. All the data points in the graphs are the average of 10
runs.

Figure 3 shows the performance of the parameter learning algorithms, in terms of mean
square error, measured against the true parameters using data from the target task (base),
the linear aggregation algorithm (LP) and the proposed algorithms (DBLP and LoLP). The
top figure shows the behavior when the auxiliary data comes from the MSN, the middle

Mach Learn

Fig. 3 Comparison between the
parameter learning algorithms
with different numbers of
instances of the target task for the
Alarm network, with different
auxiliary tasks. Top: with data
from the MSN. Middle: with data
from the LSN. Bottom: using
data from both networks

figure shows the behavior with the LSN, and the bottom figure shows the behavior with both
networks. The number of samples for the auxiliary tasks was fixed at 1,000. Figures 4(a),
(b), (c) show the behavior when the number of instances of the auxiliary tasks are varied.
The number of samples for the target task was fixed at 100.

Figure 3 shows, as expected, in general a reduction in error as we increase the number
of instances in the target task. For the case with the MSN there is a strange behavior for the
first two sample sizes (25 and 50) that could be because the structure of the model is being
learned from a very small dataset, which frequently implies having very few arcs. In this
case the MSE is estimated based on a few CPTs and this could give an apparent low error.

Mach Learn

Fig. 4 Comparison between the
parameter learning algorithms
with different numbers of
instances of the auxiliary tasks
for the Alarm network, with
different auxiliary tasks.
Top: with data from the MSN.
Middle: with data from the LSN.
Bottom: using data from both
networks

In the other experiments, see Fig. 4, we observe a significant error reduction when we use
data from auxiliary tasks, and in general the error is reduced as we increase the sample size
of the auxiliary tasks. In some cases the results are slightly better with the DBLP and LoLP
methods, but in general there is no significant difference from the basic LP.

The differences between the graphs and the high variability (Figs. 3 and 4) are due to
the different network structures obtained for each case, as we varied the sample sizes. That
is, for each experiment the structure of the network changes, so even with the same num-
ber of instances for target and auxiliary tasks, the MSE may vary. We consider that the

Mach Learn

Table 3 Characteristics of the networks used in second set of experiments for the Alarm network

Added Removed Inverted Edit-distance MSE

Alarm Similar net 1 4 5 0 9 0.018

Similar net 2 9 11 0 20 0.033

Similar net 3 8 14 0 22 0.027

Similar net 4 10 22 0 32 0.047

Similar net 5 11 33 0 44 0.055

Similar net 6 12 52 0 64 0.032

Table 4 Characteristics of the networks used in third set of experiments for the Alarm network

Added Removed Inverted Edit-distance MSE

Alarm Similar net 1 3 0 0 3 0.018

Similar net 2 10 0 0 10 0.044

Similar net 3 13 0 0 13 0.050

Similar net 4 16 0 0 16 0.043

Similar net 5 24 0 0 24 0.079

Similar net 6 29 0 0 29 0.088

Similar net 7 32 0 0 32 0.094

Similar net 8 40 0 0 40 0.094

Similar net 9 43 0 0 43 0.100

strange behavior observed when we vary the data from the auxiliary tasks with both net-
works, Fig. 4(c), is also due to changes in the structure of the models.

6.2 Experiments with different auxiliary tasks

The objective of this set of experiments is to evaluate how more distinct auxiliary tasks
affect the structure learning algorithm. In these experiments we created a larger number of
auxiliary networks with different degrees of edit distances. In the second set of experiments
we created six auxiliary tasks by adding 10%–60% of links followed by the removal of 10%–
60% of the original links and with the parameters obtain from 100,000 instances sampled
from the original network. The idea was to test when transfer learning starts to damage the
recovery of the target network. In the third set of experiments we created nine networks,
starting from the original network, by randomly removing from 10% to 90% of the original
links. The description of these networks is given in Tables 3 and 4.

In order to measure the effect of the transfer learning approach independently from the
used data, in a fourth set of experiments we compared the performance of the PC algorithm
using all the available data (both from the target task and the auxiliary tasks) with our PC-TL
algorithm.

6.2.1 Results

Again we discuss in detail only the results for the Alarm network, the results for the other
two BNs (Boblo and Insurance) are very similar and are presented below.

Mach Learn

Fig. 5 Behavior of PC-TL when the similarity between the target and the auxiliary task changes (for the
Alarm network)

Figures 5 and 6 summarize the results for the second set of auxiliary networks with arcs
added and removed. Figure 5 shows the behavior of PC-TL vs. PC in terms of edit distance,
with different auxiliary tasks (three of the models from the first set), changing the number
of instances in the target task (between 25–2,000) with a fixed number of instances (1,000)
in the auxiliary tasks. We observe that even with tasks that are significantly different, as
task five with an edit distance of 44, there is a significant improvement in the structure by
incorporating data from the auxiliary task. Figure 6 shows the results for the six auxiliary
models in the second set, varying the instances (between 500–8,000) in the auxiliary tasks
with a fixed number of instances (100) in the target task. We confirm that in general there is a
greater improvement as we increase the amount of data of the auxiliary tasks, and also as the
tasks are closer to the target. However, the best results are obtained by using all the auxiliary
data, even when some come for quite different models. There are some cases in which a less
similar network gives a better result, this could be due to the variance in the experiments,
as we show only the average. But in general, as we see in the other experiments below, the
results are better with more similar networks and in particular when all the auxiliary tasks
are considered.

In the third experiment we analyzed the effect of auxiliary networks that are very different
from the target BN. In this case we removed arcs up to a high percentage (90%) of the
original model. Figure 7 shows the behavior of the algorithm when the auxiliary tasks differ
from the target task in the number of links (10%–90% less links in the auxiliary tasks).
We sampled 100 instances from the target task and between 500–8,000 samples from the
auxiliary task. We observe that the error increases as the auxiliary model is more different
from the target, and the last two models have more error than just using the data from the
target task (PC algorithm). However, we can observe that again the best results are with all
the auxiliary tasks.

Figures 5, 6 and 7 show that in general PC-TL degrades its performance as the structure
of the auxiliary tasks departs from the target task, and also in general the best performance is
obtained by combining all the auxiliary tasks. Figure 7 shows how PC-TL is able to recover
a close structure of the target task when a larger number of auxiliary tasks is used. Figures 6

Mach Learn

Fig. 6 Behavior of the PC-TL algorithm with different similarities between the target and auxiliary tasks
and with different number of instances in the auxiliary tasks (Alarm network)

Fig. 7 Behavior of PC-TL with auxiliary tasks constructed by deleting links from the target task (Alarm
network)

and 7 show that the target structure improves as more data is considered from the auxiliary
tasks.

These experiments demonstrate that in general the structure improves as the similarity or
the data from the auxiliary tasks increases, and combining all the auxiliary tasks in general
gives the best results. There are some variations in these tendencies due to the variance in
the experiments, as all results are the average of 10 repetitions with data generated randomly
from the target and auxiliary models.

From these last sets of experiments, Figs. 6 and 7, we observe that using data from not so
similar tasks can still improve learning of the target task. This could be due to: (i) more data
points, even if some are not relevant or (ii) the transfer learning method, which takes into

Mach Learn

Table 5 Characteristics of the networks used in fourth set of experiments for the Alarm network

Added Removed Inverted Edit-distance

Alarm Net 1 20 20 0 40

Net 2 33 33 0 65

Net 3 40 40 0 80

Net 4 43 43 0 86

Fig. 8 A comparison of the PC algorithm with all the available (target and auxiliary) data and the PC-TL
algorithm, for 4 different auxiliary tasks, and with different dataset sizes for the target task (Alarm network)

account the similarity of the auxiliary tasks. To distinguish between these two hypotheses,
and show the effectiveness of our method, we performed additional experiments described
below.

6.3 Experiments with PC using all the available data

In the last set of experiments we compared the performance of the PC algorithm using all the
available data (both from the target task and the auxiliary tasks) with our PC-TL algorithm.
In preliminary experiments we noticed that if we used very similar (target and auxiliary)
datasets the performance of PC-TL and PC with all the available data is very similar. In the
experiments of this section, we used the data described in Table 5, where there is a significant
difference between the auxiliary and the target tasks. We consider 4 different auxiliary tasks
and generated 1,000 data points for each task, varying the amount of data for the target task.

6.3.1 Results

The results are shown in Fig. 8, where we gradually increased the size of the target data
and learned a model with data from four different auxiliary tasks. The figure shows with

Mach Learn

Fig. 9 Behavior of the proposed method (PC-TL) as the number of samples of the target task increases
(Boblo network)

dotted lines the behavior of the PC-TL algorithm. As it can be seen from the figure, the PC
algorithm with all the available data tends to produce larger errors than the PC-TL algo-
rithm with these datasets. This is expected as the PC algorithm fits a model according to the
available data, so it produces large errors when the auxiliary data comes from a task that is
not very similar to the target task. When the amount of data available for the target task in-
creases, PC with all the data tends to produce larger errors than PC with just the target data.
On the other hand, the PC-TL algorithm has the advantage of weighting the contribution of
the auxiliary data according to their similarity, thus producing more accurate models and a
more useful transfer learning approach. This is particularly clear when we combine several
auxiliary tasks with PC-TL, obtaining in general the best results.

Thus, we conclude that using all the available data with the basic PC algorithm could
work just in the case that the auxiliary tasks are very similar to the target; so in general it
will be risky to use this simple approach. In contrast, PC-TL works well with similar and
not so similar auxiliary tasks, so it is a more robust and effective method.

6.4 Results for the Boblo and Insurance datasets

We performed the same experiments for the Boblo and Insurance data sets. Here we present
some of the most representative results. For Boblo, Figs. 9, 10 and 11 show the behavior
of the proposed method (PC-TL) as the number of samples of the target task increases, as
the number of samples of the auxiliary tasks increases, and the behavior with auxiliary tasks
constructed by deleting links from the target task, respectively.

Similarly for the Insurance dataset, Figs. 12, 13 and 14 show the behavior of the proposed
method (PC-TL) as the number of samples of the target task increases, as the number of
samples of the auxiliary tasks increases, and the behavior with auxiliary tasks constructed
by deleting links from the target task, respectively.

We can observe in both sets of figures a very similar behavior with the experiments of
the Alarm network.

6.5 Sensitivity analysis

To evaluate the sensitivity of the method to certain parameters we performed some additional
tests. In particular, we measured the sensitivity to the constants in (3), which control the

Mach Learn

Fig. 10 Behavior of the proposed method (PC-TL) as the number of samples of the auxiliary tasks increases
(Boblo network)

Fig. 11 Behavior of PC-TL with auxiliary tasks constructed by deleting links from the target task (Boblo
network)

weight given to auxiliary tasks according to the local similarity. The values used in our
previous experiments were (1,0.5), which gave two times more weight to auxiliary tasks
with the same independence values versus those with different independence results. We
compared the performance for the Alarm task, by given approximately the same weight
(0.6, 0.4) and by making the difference larger, with a ratio of three (1.5, 0.5). The results in
terms of edit distance for different auxiliary tasks (the same ones used in the first experiments
in Sect. 6.2.) for the Alarm BN, and varying the data from the auxiliary tasks, are given in
Fig. 6 for the original parameters, and in Fig. 15 for the other two set of parameters.

We observe that there is not a significant difference in performance in the three cases,
which gives evidence that the method is not very sensitive to these parameters. In general
the results are slightly better when we give more weight to the auxiliary tasks that are locally
similar in terms of the independence tests.

Mach Learn

Fig. 12 Behavior of the proposed method (PC-TL) as the number of samples of the target task increases
(Insurance network)

Fig. 13 Behavior of the proposed method (PC-TL) as the number of samples of the auxiliary tasks increases
(Insurance network)

6.6 Experiments in a real-world problem

We have also evaluated our method in a real-world industrial process in which several,
similar, products are manufactured.7 The process is automated and different variables (such
as temperature, pressure, flow, etc.) at different stages of the process are measured and stored
in a database, one for each type of product. The datasets are from products that follow the
same stages (production line) but under different production conditions. Namely, they are
produced at different temperatures, different pressures, they spend different times at the

7Due to a confidentiality agreement with the company, we can not disclose the details of the process and the
actual names of the variables.

Mach Learn

Fig. 14 Behavior of PC-TL with auxiliary tasks constructed by deleting links from the target task (Insurance
network)

Table 6 Results for the a real-world manufacturing process considering a similar product as auxiliary task

Model Log-likelihood

Target data only (PC) −2.589

Target and auxiliary data (PC-TL) −2.325

production stages and they have different composition. However, the same variables are
recorded for these products as they follow the same production line. Some products are
manufactured in larger quantities while others are very rarely produced, so the amount of
data for each product varies significantly. The company is interested in building a model
of the process that could help to improve the quality of the products. Given that for some
products there is a relatively small dataset, we are interested in using inductive transfer from
similar products to obtain a better model for rare products.

We have applied our methodology for structure and parameter learning for inducing a BN
for one of the products, using data from this product and other similar products. The model
was built for part of the process including 15 continuous variables that were previously
discretized. We compared the BN obtained combining the data from the target product (with
only 260 instances for this manufacturing process) and other similar product using PC-TL,
with the one obtained using data only from the target product using PC. We considered one
auxiliary task (5,191 instances from another, similar product). Figure 16 depicts the structure
obtained only with the target data, and Fig. 17 shows the structure using inductive transfer.

Given that we do not know the reference model, we compared them in terms of the
log-likelihood (ll) between the target dataset and the model. The results are summarized in
Table 6.

We observe a significant improvement in terms of the log-likelihood in comparison with
using only data for the target product. We have tested with other related products with similar
results, in particular when the dataset from the auxiliary task is significantly larger; if the
size of the dataset is similar to the target domain, there is some improvement but not very
significant.

Mach Learn

Fig. 15 Sensibility analysis of the constants in (3) that balance how much influence have the auxiliary tasks
over the target task (Alarm network)

We performed an additional experiment using the PC algorithm with all the available
data from another target product (67 samples) and from a related product (5,191 samples),
and our PC-TL algorithm.8 The results are shown in Fig. 18 with different sizes of the
auxiliary data. As can be seen from the figure, there is a significant difference between the
PC algorithm that uses all the data (target and auxiliary task), and our approach (PC-TL);

8Notice that in this and the previous experiment, we consider different target tasks but the same auxiliary
task.

Mach Learn

Fig. 16 Structure obtained by
the PC algorithm for the
real-world manufacturing task,
using only data from the target
product

Fig. 17 Structure obtained by
the PC-TL algorithm for the
real-world manufacturing task,
using data for the target product
and a similar product

which produces better results for all sets sizes of the auxiliary task. In this case PC-TL
produces similar results to PC based only on the target data. The poor performance of using
all the data with the basic PC algorithm could be due to the large difference in sizes of the
datasets. This problem does not occur with PC-TL, which in the worst case gives results
similar to those using PC only with the target data, and in most cases in our experiments
tends to improve the model using transfer learning.

6.7 Discussion

In general we can draw the following conclusions from these experiments:

– Transfer learning from related tasks improves in general the structure and parameters of
the learned models (using as base algorithm PC); these improvements are more significant
as we reduce the data sample of the target task.

Mach Learn

Fig. 18 Behavior of PC with all
the available (target and
auxiliary) data and the PC-TL
with different dataset sizes of the
auxiliary task for the
manufacturing task

– In general, as we have a larger data sample from the auxiliary tasks, there is a greater
improvement in both, structure and parameters.

– The error reductions (in terms of edit distance) in the structure depend on the similarity
of the auxiliary BNs, however even with structures that are not very close the reductions
are significant.

– Sometimes a less similar model gives an apparently better structure, this is due to two
factors: (i) the variance of the experiments (we show the averages of 10 runs with data
generated randomly); (ii) the models are relatively close. With more dissimilar auxiliary
tasks the difference in favor of the closer ones is cleaer.

– Transferring from several auxiliary models is in general better, with a larger improvement
than that from each model individually; as our method takes into account the similarity
between the auxiliary tasks and the target.

– Using PC with all the available data is only useful when the datasets are very similar.
– The MSE in the parameters is reduced by using data from auxiliary tasks via a linear

combination with the data from the target task, and this reduction is greater as we increase
the sample size in the auxiliary tasks.

– In some cases the proposed parameter learning methods, DBPL and LoLP, improve the
basic LP, however in general there is no significant difference.

Additional details of these experiments are described in Luis-Velázquez (2009).

7 Conclusions and future work

In this paper we have presented a novel methodology for transfer learning in Bayesian net-
works, including structure learning and parameter learning. The idea behind this research is
to use information from related datasets in order to improve the performance of networks
constructed with small datasets. This is common is several domains, where there can be
rare cases, that nevertheless share some similarities with more common cases. Learning a
Bayesian network involves two steps, learning the network structure and learning its para-
meters. For structure learning we extended the PC algorithm to consider information from
related tasks. The PC-TL algorithm considers the confidence of the independence tests, and
the similarity of the auxiliary tasks to the target in the combination function. For parameter
learning we defined two extensions to the linear combination technique, that also consider
the expected error and similarity. To test our method we used three Bayesian networks mod-
els, and generated variants of each model by changing the structure as well as the parameters.
We then learned one of the variants with a small data set and combined it with information

Mach Learn

from the other variants. The experimental results show a significant improvement in terms
of structure and parameters. The improvement increases in proportion to the amount of data
from the auxiliary tasks, and in general the results are better with more similar tasks; al-
though we observe that even not so similar tasks can improve the model, and the best results
are obtained when we combine all the auxiliary tasks. We compared the proposed transfer
learning method with PC using all the data (target and auxiliary tasks), the results show that
using PC with all the data could be an alternative only when the tasks are very similar, and
our method is more robust producing good results under different conditions. We also eval-
uated the method with real-world data from a manufacturing process considering several
products, showing an improvement in terms of log-likelihood when using data from similar
products.

As future work, we would like to explore how to combine several related tasks at the same
time considering more complex conditional independence tests between the tasks. The PC
algorithm depends on the amount of available data, so we would also like to know how to
deal with small datasets both in the target and the related tasks.

Acknowledgements The authors acknowledge to CONACyT the support provided through the grant for
MSc. studies number 207086 and project No. 47968. We thank the anonymous referees and the editor, Gayle
Leen, for their thoughtful and constructive suggestions.

References

Baxter, J. (1997). A Bayesian/information theoretic model of learning to learn via multiple task sampling.
Machine Learning, 28(1), 7–39.

Beinlich, I. A., Suermondt, H. J., Chavez, R. M., & Cooper, G. F. (1989). The ALARM monitoring system:
a case study with two probabilistic inference techniques for belief networks. In Proceedings of the
second European Conference on Artificial Intelligence in Medicine. Berlin: Springer.

Binder, J., Koller, D., Russell, S., & Kanazawa, K. (1997). Adaptive probabilistic networks with hidden
variables. Machine Learning, 29(2–3), 213–244.

Caruana, R. (1997). Multitask learning. Machine Learning, 28(1), 41–75.
Chang, C.-S., & Chen, A. L. P. (1996). Aggregate functions over probabilisitic data. Informing Science, 88(1–

4), 15–45.
Chen, A. L. P., Chiu, J.-S., & Tseng, F. S.-C. (1996). Evaluating aggregate operations over imprecise data.

IEEE Transactions on Knowledge and Data Engineering, 8(2), 273–284.
Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from

data. Machine Learning, 9(4), 309–347.
Dai, W., Xue, G., Yang, Q., & Yu, Y. (2007). Trasfer naive Bayes classifiers for text classification. In Proceed-

ings of the twenty-second AAAI conference on artificial intelligence (AAAI-07) (pp. 540–545). Menlo
Park: AAAI Press.

Elvira (2002). Elvira: an environment for creating and using probabilistic graphical models. In J. A. Gámez &
A. Salmerón (Eds.), First European workshop on probabilistic graphical models, 6–8 November, 2002,
Cuenca (Spain). Electronic Proceedings.

Friedman, N., & Yakhini, Z. (1996). On the sample complexity of learning Bayesian networks. In E. J. Horvitz
& F. V. Jensen (Eds.), Proceedings of the 12th conference on Uncertainty in Artificial Intelligence
(pp. 274–282). San Mateo: Morgan-Kaufmann.

Genest, C., & Zidek, J. V. (1986). Combining probability distributions: a critique and an annotated bibliogra-
phy. Statistical Science, 1(1), 114–148.

Lam, W., & Bacchus, F. (1994). Learning Bayesian belief networks: an approach based on the MDL principle.
Computational Intelligence, 10, 269–293.

Luis-Velázquez, R. (2009). Aprendizaje por transferencia de redes Bayesianas (Technical Report). Instituto
Nacional de Atrofísica, Óptica y Electrónica, Mexico.

Niculescu-Mizil, A., & Caruana, R. (2007). Inductive transfer for Bayesian network structure learning. In
Proceedings of the 11th international conference on AI and statistics (AISTATS ‘07).

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of plausible inference. San Mateo:
Morgan Kaufmann.

Mach Learn

Rasmussen, L. (1992). Blood groups determination of danish jersey cattlein the f-blood group system (Tech-
nical Report Dina Res. Rep. No. 8). Research Centre Foulum, Denmark.

Richardson, M., & Domingos, P. (2003). Learning with knowledge from multiple experts. In T. Fawcett &
N. Mishra (Eds.), Machine learning, Proceedings of the Twentieth International Conference (ICML
2003), August 21–24, 2003, Washington, DC, USA (pp. 624–631). Menlo Park: AAAI Press.

Roy, D., & Kaelbling, L. (2007). Efficient Bayesian task-level transfer learning. In Proceedings of the In-
ternational Joint Conference on Artificial Intelligence (IJCAI-07) (pp. 2599–2604). Menlo Park: AAAI
Press.

Silver, D., Poirier, R., & Currie, D. (2008). Inductive transfer with context-sensitive neural networks. Machine
Learning, 73(3), 313–336.

Spirtes, P., Glymour, C., & Scheines, R. (1993). Causation, prediction, and search. Berlin: Springer.
Thrun, S. (1996). Is learning the n-th thing any easier than learning the first? In D. S. Touretzky, M. C. Mozer,

& M. E. Hasselmo (Eds.), Advances in Neural Information Processing Systems (vol. 8, pp. 640–646).
Cambridge: MIT Press.

Wu, P., & Dietterich, T. G. (2004). Improving SVM accuracy by training on auxiliary data sources. In
ICML ’04: Proceedings of the Twenty-first International Conference on Machine Learning (p. 110).
New York: ACM.

	Inductive transfer for learning Bayesian networks
	Abstract
	Introduction
	Learning Bayesian networks
	The PC algorithm

	Related approaches
	Structure learning
	Confidence measure
	Similarity measure
	Combination function

	Parameter learning
	Distance based linear pool (DBLP)
	Local linear pool (LoLP)

	Experiments
	Experiments with different sizes of data samples
	Results

	Experiments with different auxiliary tasks
	Results

	Experiments with PC using all the available data
	Results

	Results for the Boblo and Insurance datasets
	Sensitivity analysis
	Experiments in a real-world problem
	Discussion

	Conclusions and future work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

