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Abstract. The full deployment of service robots in daily activities will
require the robot to adapt to the needs of non-expert users, particu-
larly, to learn how to perform new tasks from “natural” interactions.
Reinforcement learning has been widely used in robotics, however, tra-
ditional algorithms require long training times, and may have problems
with continuous spaces. Programming by demonstration has been used
to instruct a robot, but is limited by the quality of the trace provided
by the user. In this paper, we introduce a novel approach that can han-
dle continuous spaces, can produce continuous actions and incorporates
the user’s intervention to quickly learn optimal policies of tasks defined
by the user. It is shown how the continuous actions produce smooth
trajectories and how the user’s intervention allows the robot to learn
significantly faster optimal policies. The proposed approach is tested in
a simulated robot with very promising results.

Keywords: reinforcement learning, voice command, service robotics,
continuous spaces

1 Introduction

Service robots are rapidly expanding and soon will become part of everyday
life. Their complete acceptance, however, will come when the robots are able to
learn new tasks from natural interactions with their users. Many approaches have
been developed to allow a robot to learn a new task, but particularly emphasis
has recently been given to programming by demonstration and to reinforcement
learning.

In reinforcement learning an agent uses its own experience to learn how to
do a task, receiving rewards and punishments for good and bad actions that are
scored depending on their contribution to reach a goal. However, traditional algo-
rithms of reinforcement learning have very long convergence times and may have
problems with continuous state and action spaces. Using a tabular representation
is only applicable to simple domains and some value function approximations, as
? Master’s thesis scholarship No. 214262 and research project No. 84162 from Conacyt
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neural networks or Gaussian processes are computationally expensive that make
them infeasible for on-line learning of tasks.

In programming by demonstration, a teacher shows the robot how to perform
a task, however, it requires specialized hardware (e.g., gloves, special marks, etc.)
and a controlled environment (i.e., controlled illumination conditions, special
camera setting, etc.). They also tend to learn the task exactly as the user showed
it, however human demonstrations tend to be noisy and suboptimal, and current
systems are unable to improve it.

In this paper we introduce an algorithm to instruct a robot on-line using
speech and reinforcement learning with continuous states and actions. A simple
representation based on kernels is used to deal with continuous spaces and a
novel combination of discrete actions is used to produce continuous actions. We
use speech to teach a robot a task without the need of any special equipment,
providing initial traces and on-line feedback to the robot while it is learning a
task. With these elements the convergence times of the reinforcement learning
algorithm are significantly reduced.

The rest of the paper is organized as follows. Section 2 gives an overview of
related work using reinforcement learning with continuous states and actions,
and with feedback provided in different ways. Section 3 has a description of the
speech recognition process and vocabulary used. Section 4 describes our proposed
algorithm of reinforcement learning with continuous states and actions adding
feedback by the user. The experiments and results using a simulated autonomous
mobile robot are presented in Section 5. Finally, conclusions and some ideas for
future research work are presented in Section 6.

2 Related Work

There have been many approaches suggested in the literature to deal with con-
tinuous state and action spaces in reinforcement learning. For instance, some of
them use artificial neural networks [4, 1, 3, 2, 17, 19], Gaussian process [14, 13],
tile coding, regressions [16, 11, 5], trees, kernels, receptive fields [18] and approx-
imations based on Gaussian functions [7], among others. The most widely used
approaches are based on artificial neural networks and Gaussian processes, how-
ever, they have a high computational cost and require a substantial training data
which makes them inadequate for a fast on-line learning approach as proposed in
this paper. Methods based on regressions, tile coding and receptive fields have
similarities with tabular representations and they can work on-line and have
potential to be used in an incremental way. Our proposed method is similar to
receptive fields however we incorporate a novel approach for continuous actions
and a simple state representation that can work on-line with low computational
cost. Furthermore, we incorporate voice commands as additional reinforcements
into the learning process.

Several authors have considered the use of feedback in reinforcement learning
[20, 9, 6, 8, 10]. But, these approaches use computer peripherals such as joystick,
keyboard, mouse, and camera among others, to provide feedback to the system.
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The reported work assumes discrete spaces and the feedback is provided only
at certain stages of the learning process. Unlike, we used natural language and
allow the user to provide feedback at any stage of the learning process.

There are a few research works that have used spoken feedback [15, 21]. In [15]
a system of learning by demonstration is introduced for an autonomous mobile
robot (CMAssist). The robot learns how to do a task watching a human and
receiving verbal instruction. Behaviors of the robot and tasks are represented
with a directed acyclic graph. Verbal instructions are structured in similar way
as control structures of a programming language. Additionally, information of
the environment is given to the robot with a map and the learning process
is supervised. By contrast, the method that we propose does not require any
knowledge about the environment and uses a more natural verbal interaction.

In [21] the authors present an Actor-Critic model based on an algorithm
called IHDR (Hierarchical Discriminant Regression). They use Q-learning with
a parameter of ’amnesia’. A teacher set the robot’s arm in different positions,
each one is named with a particular word (command) which the teacher says.
Then, the complete sequence of positions is named too. So, a position or sequence
of them can be invoked with its identifier. A teacher uses a bumper to mark the
positions and to provide some reinforcements, so it is necessary an interaction
with hardware. In this paper, we propose a method without any hardware of the
robot and with a more natural interaction approach.

3 Spoken Feedback

The use of speech gives flexibility and more natural interaction to the user during
training and can be used to qualify or modify in different ways the behavior of
the robot. The human voice interaction can be provided at any time and with
different intensities and intentions, and not require any special equipment or
a deep knowledge about robot learning. We chose Spanish as our interaction
language and created two corpora of vocabulary (with around 250 words). Our
initial corpus was composed of isolated words which we later expanded in the
second corpus to deal with short phrases. The vocabulary of the speech recognizer
is composed by qualifiers and commands of actions. Some words used in the first
corpus and short phrases used in the second are presented in Table 1.

The transcriptions of speech are analyzed by an interpreter designed to look
for words of interest considering the stage of the learning process. After the
interpreter has identified the words of interest, depending on their meaning, it
changes the behavior of the learning algorithm. If the words are qualifiers, the
reward function is modified adding a value corresponding to the meaning of the
word. If an action command is understood, then the respective action is sent
to the robot also modifying the learning process. This is explained in the next
section.
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Table 1. Examples of vocabulary with a rough translation into English

WORDS SHORT PHRASES

Avanzar (forward) Hacia adelante (move forward)

Regresar (backward) Hacia atrás (move backwards)

Izquierda (left) Gira a la izquierda (turn to your left)

Derecha (right) Ve a tu derecha (go to your right)

Fin, Final (end) Para ah́ı (stop there)

Bien (good) Sigue aśı (keep like this)

Mal (bad) Por ah́ı no (not that way)

Excelente (excellent) Muy bien (very good)

Terrible (terrible) Aśı no (not like that)

Objetivo (goal) Hasta ah́ı (until there)

4 Reinforcement Learning Algorithm

In Reinforcement learning (RL) an agent explores the environment to reach a
goal. The agent receives rewards or punishments for its actions, and it tries to
maximize the total accumulated expected reward. Reinforcement learning can
be modeled using Markov Decision Processes (MDPs). A MDP consists of:

1. S a set of states s,
2. A a set of actions a,
3. T : SXA → S a probability transition function of going to state s′ given

that action a was taken at state s,
4. R : SXAXS → R a reward function that evaluates how good is to do an

action a from a state s according to the state reached s′.

Algorithms of reinforcement learning try to approximate a value function
that estimates how good is for an agent be in a state and also, how good is to do
a particular action in that state. The value function based on states an actions
is defined by:

Qπ(s, a) = Eπ
{
Σ∞k=0γ

krt+k+1|st = s, at = a
}
. (1)

The best policy between all policies of behavior is pursued. This optimal policy,
denoted by π∗ defines an optimal value function defined by:

Q∗(s, a) = maxπQπ(s, a),∀s ∈ S, ∀a ∈ A . (2)

There are several reinforcement learning algorithms that have been proposed
to find optimal policies and value functions. One of the most popular algorithms
of reinforcement learning is SARSA (State-Action-Reward-State-Action), an al-
gorithm that solves MDP’s based on temporal differences (differences between
successive predictions). In this paper, we proposed a modified SARSA algorithm
with eligibility traces.



Teaching a Robot to Perform Tasks with Voice Commands 5

The algorithm that we proposed consists of three main components: (i) ini-
tial traces of how to perform a new task are provided by a teacher using voice
commands, (ii) a reinforcement learning algorithm with exploration and contin-
uous state and action spaces is used to learn an optimal policy, and (iii) the user
provides voice feedback to the system during the learning process to improve the
current policy and help the reinforcement learning algorithm to converge faster.

4.1 Initial Traces

In order to teach the robot a new task, the user provides spoken instructions
to the robot to complete the task. The robot executes the interpreted actions
until it receives a finishing instruction. The user can provide several of these
traces by voice as a first stage of the learning process. But, these traces may
have some erroneous actions due to misinterpretations of the commands by the
speech recognition system or mistakes made by the user during the instruction
phase. So, we use reinforcement learning and additional feedback from the user
to quickly converge to an adequate policy during the learning process.

4.2 States, Actions and Value Functions

States are incrementally created as the robot traverses the environment. The
robot receives data from its sensors, creates a new state representation and
compares it with its stored states. If its current state is similar enough (as
explained below) to a known state, the robot continues with its trace, otherwise,
it stores the new state. There are different ways in which we can represent
and compare states. In this work we used two representations and similarity
functions, one using the mean and standard deviation of sensor readings as
state representation and a Gaussian function to evaluate distance, and another
one using directly the information from the sensors and a Pearson’s correlation
coefficient. With the Gaussian function, we have:

f(x) =
1

σ
√

2π
e−(x−µ)/(2σ2) . (3)

where, µ is the mean array of the sensor’s data representing a state, σ is its
standard deviation and x is the new array of the sensor’s data.

And using the Pearson’s correlation coefficient we have:

r =
NΣxy −ΣxΣy

(
√
NΣx2 − (Σx)2)(

√
NΣy2 − (Σy)2)

. (4)

where N is the size of sample (number of x, y pairs), x, y are arrays of sensor’s
data, the first one has the values of a stored state and the second has a new set
of data obtained from the sensors in the current robot’s position.

Each new state is associated with a set of basic discrete actions (forward,
backward, left, and right) and each state-action pair is associated with a Q-
value.
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During the training phase, the robot follows the actions provided by the user
and incrementally builds the representation of states. During the learning phase,
if the robot enters a new state then it chooses a random action, otherwise, it
selects an action based on the combination of the actions with greater Q-values.
The combined action is proportional to the Q-values of the selected discrete
actions. For example, if in a particular state the actions with greater Q-values
are ’forward’ and ’right’, if the ’right’ action has the largest Q-value, then the
robot will go more to the right than forward producing an intermediate action
ar with a value:

if Q(s, a1) < Q(s, a2)

var (s) = (Q (s, a1) /Q (s, a2)) ∗ va1 + (1−Q (s, a1) /Q (s, a2)) ∗ va2 . (5)

where va is the value of an action according to the domain of the task.
If the actions with the largest Q-values are opposite (i.e., right and left or

forward and backward), one of them is randomly chosen. If all the actions have
similar Q-values, also one is randomly chosen.

In our implementation we use a modified SARSA learning algorithm with
eligibility traces. So, the updating of the Q-values is performed considering the
combined action using the following modified Sarsa(λ) update rule:

Qt+1(s, a) = Qt(s, a) + αδtet(s, a) . (6)

for all s, a, where

δt = rt+1 + γQt(st+1, at+1)−Qt(st, at) . (7)

and if s = st and a = a1t or a = a2t,

et(s, a) = γλet−1(s, a) + 1 . (8)

otherwise,
et(s, a) = γλet−1(s, a) . (9)

where s is a state, a is an action, a1t and a2t are the two actions with
the largest Q-values, α is a positive step-size parameter, γ is a discount-rate
parameter and λ is a decay parameter.

Since a continuous action is a combination of two basic actions (a1, a2), two
Q-values are updated at each step instead of only one. This combined action
produces continuous actions and keeps a simple updating procedure.

Reward Function During the learning process, two kinds of rewards are given.
In addition to the traditional rewards given in reinforcement learning, additional
rewards can be given by the user at any time. The reinforcement learning is still
updating its Q-values as described before, but now the reward function is given
by:

R = RRL +RU . (10)



Teaching a Robot to Perform Tasks with Voice Commands 7

where RRL is the traditional reward function used in reinforcement learning
andRU is an additional reward given when the user specifies an action or qualifies
the behavior of the robot. This is similar to reward shaping, however, instead of
being predefined in advance and given all the time during the learning process,
the rewards are given by the user occasionally, can change their values over time
and also can be wrong.

At the end, the initial policy constructed by the system during training phase
is tested by the robot and improved with the feedback provided by the user.

5 Experiments

The experiments were focused in navigation tasks using a robot Pionner 2 with
a frontal laser and a rear sonar. The robot and the environment were simulated
on the Player/Stage platform running on Linux Debian. The speech recognizer
used was Sphinx3 with the acoustic models level T22 based on corpus DIMEx100
[12]. The language models were created over a specific vocabulary for the tasks.

In order to test the capabilities of the algorithm, we teach the robot to do
navigation tasks with different levels of complexity (increasing distance, number
of doorways and corridors), shown in Figure 1. In the first task the robot only
had to go inside a room from a point in a hall. The second task involved leaving
a room, going through a corridor with four doorways and then entering a room.
In the third task, the robot had to leave a room, go through a hall with three
doorways, go through one doorway, go through another hall with two doorways
and go through one final doorway. In the last task, the robot learned to leave
a room, go through a corridor with five doorways, go through one doorway and
then enter a final room (see Figure 1). Contrary to traditional navigation tasks,
the robot in this case has no knowledge about the environment, using the laser
as main sensor to identify states (using its 180 distance measures) and its sonars
to detect collisions (in the rear part). A microphone was used by the user to give
the feedback and the initial traces by voice during the training of the robot. The
teacher could provide feedback at any moment during learning process (qualifiers
and commands of actions) and could also provide wrong feedback by mistake.

For these experiments, the internal rewards were +100 when the robot reached
the goal, −100 when the robot is close to walls and −1 for other state-action
pairs. Two types of external feedback were given by the user: qualified commands
which were translated into additional rewards and action commands which were
translated into robot actions. In the experiments we used the following values
for the qualification commands: +100 for reaching the goal (objetivo), +50 for
“excellent” (excelente), +10 for “good” (bien), −50 for “terrible” (terrible), and
−10 for “bad” (mal). Similar rewards were associated to other words and to short
phrases. The qualifiers given depend on observable states produced by actions
done. And, if the user gives a command of an action, the action is performed
by the robot. Otherwise, the robot follows its normal reinforcement learning al-
gorithm. An action command given by the user can also be accompanied by a
qualifier that also modifies the reward function.
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Fig. 1. Tasks 1-4 (left to right, up to down) taught to the robot.

In our initial experiments we used a Gaussian function but it created a larger
number of states (200-500) when compared to the Pearson’s coefficient (20-140)
and it also produced more errors in the identification of states. In the following
section we present results only with the Pearson’s coefficient.

5.1 Results

We did four types of experiments to show the different aspects of our proposed
algorithm and the advantages of the approach:

1. Reinforcement Learning (RL) with continuous states and discrete actions
2. RL with contiguous states and actions
3. RL with continuous states and actions with oral feedback from the user
4. RL with continuous states and actions, initial traces given by the user with

voice commands and with oral feedback from the user

We first compared the behavior of policies learned using discrete actions with
policies learned using our approach for generating continuous actions. Figure 2
shows a comparison in two traces where it is clear that the continuous action
policy produces smoother and shorter paths with a reduction of about 1 meter
in these experiments. Larger reductions are obtained in longer paths.

Each experiment was repeated three times and the averages are shown in the
figures. Figure 3 shows the duration and number of episodes required to learn
each task in all different experiments without any knowledge of the environment.
As can be seen, the best results are obtained using traces and on-line feedback
by the user with an important reduction in time to obtain an acceptable policy.
The policies reached with the different learning strategies are very similar except
for the traditional RL strategy with discrete state and action spaces.
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Fig. 2. Comparison of traces obtained with the algorithm using discrete actions (figures
to the left) and continuous actions (figures to the right. Exp. 1). For the first task, the
difference of distance between the discrete and continuous action policies was about
1m, for the second task, the difference was about 0.9m.
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As can be seen in Table 2 there is a substantial reduction in the number of
required episodes and total training times with the proposed approach. In these
experiments the user needs to spend an average of 17 minutes to train a robot
to perform a new task.

The speech recognition system is not perfect and it is common for the robot
to understand a different command and acts accordingly. Even with such errors
our approach is able to converge faster to a reasonable policy in few iterations.

Fig. 3. Results of experiments. Times of learning, using different variations of the
algorithm: without traces and without feedback (square), with feedback (diamond),
with traces and feedback (triangle). The x -axis has number of episodes, the y-axis has
duration (minutes) of each episode.

6 Conclusions and Future Works

This paper introduces a novel approach to teach a robot how to perform a new
task using reinforcement learning and feedback provided by a teacher. The algo-
rithm uses an incremental creation of states able to deal with continuous states
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Table 2. Total number of episodes (table to the left) and times (table to the right)
of the different experiments per task (RL = reinforcement learning with continuous
actions, RL + F = RL with feedback from the user, and RL + T + F = RL + F with
the initial traces provided by the user).

RL RL + F RL + T + F

T1 13 9 6

T2 6 7 7

T3 12 12 7

T4 7 12 11

Avg 9.5 10 7.75

RL RL + F RL + T + F

T1 103.93 19.59 12.85

T2 66.4 15.1 13

T3 100.65 38.2 18.09

T4 99.1 23.43 24.61

Avg 92.54 24.08 17.13

and a simple, yet effective, combination of discrete actions to produce continuous
actions. The algorithm works on-line and was used successfully on a simulated
autonomous mobile robot for different navigation tasks. Our experiments show
that by including the user into the learning process a substantial reduction in
the convergence times for obtaining an adequate policy can be obtained, even
with errors performed by the user or by the speech recognition system. We think
that teaching a robot with voice commands and providing oral feedback during
learning is a natural way to instruct robots and opens a new possibility for
non-experts to train robots how to perform new tasks.

As future work, we are planning to include a mechanism to quickly forget
mistakes during the learning process. We would also like to increase the vocabu-
lary used by the user and test our approach with external users. We would also
like to test our algorithm with other robots and with different tasks.
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