
A Two-Stage Relational Reinforcement Learning
with Continuous Actions for Real Service Robots

Julio H. Zaragoza and Eduardo F. Morales

National Institute of Astrophysics, Optics and Electronics,
Computer Science Department,

Luis Enrique Erro 1, 72840 Tonantzintla, México
{jzaragoza,emorales}@inaoep.mx

Abstract. Reinforcement Learning is a commonly used technique in
robotics, however, traditional algorithms are unable to handle large amo-
unts of data coming from the robot’s sensors, require long training times,
are unable to re-use learned policies on similar domains, and use dis-
crete actions. This work introduces TS-RRLCA, a two stage method to
tackle these problems. In the first stage, low-level data coming from the
robot’s sensors is transformed into a more natural, relational represen-
tation based on rooms, walls, corners, doors and obstacles, significantly
reducing the state space. We also use Behavioural Cloning, i.e., traces
provided by the user to learn, in few iterations, a relational policy that
can be re-used in different environments. In the second stage, we use
Locally Weighted Regression to transform the initial policy into a con-
tinuous actions policy. We tested our approach with a real service robot
on different environments for different navigation and following tasks.
Results show how the policies can be used on different domains and
perform smoother, faster and shorter paths than the original policies.

Key words: Relational Reinforcement Learning, Continuous Actions, Robotics

1 Introduction

Nowadays it is possible to find service robots for many different tasks. Due to the
wide range of services that they provide, service robots usage has been increased,
in recent years, in places like houses and offices. However, their complete use and
acceptance will depend on its capability to learn new tasks.

Reinforcement Learning (RL) has been widely used and suggested as a good
candidate for learning tasks in robotics. However, the use and application of
traditional RL techniques has been hampered by four main aspects: (1) vast
amount of data produced by the robot’s sensors, (2) large search spaces, (3) the
use of discrete actions, and (4) inability to re-use previously learned policies.

Robots are normally equipped with laser range sensors, rings of sonars, cam-
eras, etc., which produce a large number of readings at high sample rates creating
problems to many learning algorithms. Large search spaces produce very long
training times which is a problem for service robotics where the state space is



2 Julio H. Zaragoza and Eduardo F. Morales

continuous and a description of a state may involve several variables. Researchers
have proposed different strategies, normally based on a discretization of the state
space with discrete actions or with function approximation techniques. However,
discrete actions produce unnatural movements and slow paths and function ap-
proximation techniques tend to be computationally expensive. Also, in many
approaches, once a policy has been learned to solve a particular task, it cannot
be re-used on similar tasks.

In this paper, TS-RRLCA (Two-Stage Relational Reinforcement Learning
with Continuous Actions) a two stage method that tackles these problems, is
presented. In the first stage, low-level information from the robot’s sensors is
transformed into a relational representation to characterize the set of states
describing the robot’s environment. The policies learned with this representation
framework are transferable to other similar domains. We also use Behavioural
Cloning [2], i.e., traces, to induce only a subset of relevant actions per state
accelerating our policy learning process. This stage produces, in few iterations,
a relational control policy with discrete actions. In the second stage, the learned
policy is transformed into a relational policy with continuous actions through a
fast Locally Weighted Regression (LWR) process.

The learned policies were successfully applied to a simulated and a real ser-
vice robot performing navigation and following tasks with different scenarios
and goals. It is shown how the continuous actions policies are able to produce
smoother and shorter paths than the original relational policies and how the
performance’s quality of the tasks is similar to those performed by humans.

This paper is organized as follows, Section 2 presents related work. Section 3
describes a process to reduce the data coming from the robot sensor’s. Section
4 introduces our relational representation to characterize states and actions.
Sections 5 and 6 describe, respectively, the first and second stages of the proposed
method. Section 7 shows experiments and results and Section 8 concludes and
suggests future research directions.

2 Related Work

Recently, there has been an increasing interest in addressing adaptation for con-
trol tasks in robotics. In [8], a method to build relational macros for transfer
learning in robot’s navigation tasks is introduced. A macro consists of a finite
state machine, i.e., a set of nodes along with rulesets for transitions and action
choices. In [3], a proposal to learn relational decision trees as abstract navigation
strategies from example paths in presented. These approaches use relational rep-
resentations to transfer learned knowledge and use training examples to speed
up learning, unfortunately, they consider only discrete actions.

In [11], the authors introduced a method that temporarily drives a robot
which follows certain initial policy while some user commands play the role of
training input to the learning component, which optimizes the autonomous con-
trol policy for the current task. In [4], a robot is teleoperated to learn secuences
of state-action pairs that show how to perform a task. These methods reduce



TS-RRLCA 3

the computational costs and times for developing its control scheme, but they
use discrete actions and are unable to transfer learned knowledge. A strategy to
allow the use of continuous actions is to approximate a continuous function over
the state space. The work developed in [5] is a Neural Network coupled with an
interpolation technique that approximates Q-values to find a continuous func-
tion over all the search space. In [1], the authors use Gaussian Processes for
learning a probabilistic distribution for a robot navigation problem. The main
drawback of these methods is the computational costs and the long training
times as they try to generate a continuous function over all of the search space.

Our method learns, through a relational representation, relational discrete
actions policies able to transfer knowledge between similar domains. We also
speed up and simplify the learning process by using traces provided by the user.
Finally we use a fast LWR to transform the original discrete actions policy into a
continuous actions policy. Next sections describe in detail the proposed method.

3 Natural Landmarks Representation

While performing a task, the robot senses and returns large amounts of data
readings coming from its sensors. In order to produce a smaller set of meaningful
information TS-RRLCA uses a process based on [6, 10]. In [6], the authors
describe a process able to identify three kinds of natural landmarks through
laser sensor readings: (1) discontinuities, defined as an abrupt variation in the
measured distance of two consecutive laser readings (Figure 1a), (2) corners,
defined as the location where two walls intersect and form and angle and (3)
walls, identified using the Hough transform. We also add obstacles identified
through sonars and defined as any detected object between certain range.

A natural landmark is represented by a tuple of four attributes: (DL , θL, A,
T ). DL and θL are, respectively, the relative distance and orientation from the
landmark to the robot. T is the type of the landmark: l for left discontinuity, r
for right discontinuity (Figure 1b), c for corner, w for wall and o for obstacle. A
is a distinctive attribute and its value depends on the type of the landmark, for
discontinuities A is depth and for walls A is its length.

In [10] the data from laser readings is used to feed a clustering based process
which is able to identify the robot’s actual location such as room, corridor and/or
intersection (the location where rooms and corridors meet). Figures 1c, 1d and
1e show examples of the resulting location clasification process.

Table 1 shows an example of the resulting data from applying this processes
to the laser and sonar readings from Figure 2. The robot’s actual location in this
case is in-room.

The natural landmarks along with the robot’s actual location, are used to
characterize the relational states that describe the environment.



4 Julio H. Zaragoza and Eduardo F. Morales

(a) Discontinu-
ity detection.

(b) Disconti-
nuity types.

(c) Room. (d) Intersec-
tion.

(e) Corridor.

Fig. 1: Discontinuities attibutes and locations detected through a clustering processes.

Table 1: Indentified natual landmarks from the sensor’s readings from Figure 2.

N DL θL A T
1 0.92 -17.60 4.80 r
2 1.62 -7.54 3.00 l
3 1.78 17.60 2.39 l
4 0.87 -35.70 1.51 w
5 4.62 -8.55 1.06 w
6 2.91 -6.54 1.88 w
7 1.73 23.63 0.53 w
8 2.13 53.80 2.38 w
9 5.79 -14.58 0.00 c
10 2.30 31.68 0.00 c
11 1.68 22.33 0.00 c
12 1.87 -170.00 0.00 o Fig. 2: Robot sensing its environment through
13 1.63 -150.00 0.00 o laser and sonar sensors.
14 1.22 170.00 0.00 o
15 1.43 150.00 0.00 o

4 Relational Representations for States and Actions

In order to learn transferable policies, able to fulfill their goals under different
conditions or even in different domains, a relational representation, where it is
easy to encode the relative position of an agent with respect to a goal or to other
objects in the environment, is used. The main idea is to represent states as sets
of properties that can be used to characterize a particular state and which may
be common to other states. A relational state (r-state) is a conjuntion of first
order predicates. Our states are characterized by the following predicates which
receive as parameters a set of values such as those shown in Table 1.

– place: robot’s location. Evaluates if the received location value is valid. The
valid values are in-room, in-door, in-corridor and in-intersection.

– doors detected : orientation and distance to doors. A door is characterized by
identifying a right discontinuity (r) followed by a left discontinuity (l) from
the natural landmarks. The door’s orientation angle and distance values are
calculated by averaging the values of the right and left discontinuities angles
and distances. The values used for door orientation are: right (door’s angle
between -67.5◦ and -112.5◦), left (67.5◦ to 112.5◦), front (22.5◦ to -22.5◦),



TS-RRLCA 5

back (157.5◦ to -157.5◦), right-back (-112.5◦ to -157.5◦), right-front (-22.5◦

to -67.5◦), left-back (112.5◦ to 157.5◦) and left-front (22.5◦ to 67.5◦). The
values used for distance are: hit (door’s distance between 0m. and 0.3m.),
close (0.3m. to 1.5m.), near (1.5m. to 4.0m.) and far (> 4.0m.).

– walls detected : length, orientation and distance to walls (type w landmarks).1

The possible values for wall’s size are: small (length between 0.15m. and
1.5m.), medium (1.5m. to 4.0m.) and large (> 4.0m.).

– corners detected : orientation and distance to corners (type c landmarks).1

– obstacles detected : orientation and distance to obstacles (type o landmarks).1

– goal position: relative orientation and distance between the robot and the
current goal. Receives as parameter the robot’s current position an the goal’s
current position, though a trigonometry process, the orientation and distance
values are calculated and then discretized.1

– goal reached : Indicates if the robot is in its goal position. Possible values are
true or false.

The previous predicates tell the robot if it is in a room, a corridor or an
intersection, detect walls, corners, doors, obstacles and corridors and give a rough
estimate of the direction and distance to the goal. Analogous to r-states, r-actions
are conjuntions of the following first order logic predicates. These predicates
receive as parameter the odometer’s speed and angle readings.

– go: robot’s actual moving action. Its possible values are front (speed >
0.1m./s.), nil (-0.1m./s. < speed < 0.1m./s.) and back (speed < -0.1m./s.).

– turn: robot’s actual turning angle. Its possible values are right (angular
speed < -0.1rad./s.), nil (angular -0.1rad./s. < speed < 0.1rad./s.) and
left (angular speed > 0.1rad./s.).

Table 2 shows an r-state-r-action pair generated with the previous predicates
which corresponds to values from Table 1. As can be seen, some of the r-state
predicates (doors, walls, corners and obstacles detection) return the orientation
and distance values of every detected element. The r-action predicates return the
odometer’s speed and angle values. These values are used in the second stage of
the method. The discretized values, i.e., the r-states and r-actions descriptions,
are used to develop a relational policy as described in the next section.

5 TS-RRLCA First Stage

TS-RRLCA starts with a set of human traces of the task that we want the
robot to learn. A trace (τk = {fk1 , fk2 , ..., fkn}) is a log of all of the odometer,
laser and sonar sensor’s readings of the robot while it is performing a particular
task. A trace-log is divided in frames; every frame is a register with all the low-
level values of the robot’s sensors (fkj = {laser1 = 2.25, laser2 = 2.27, laser3 =
2.29, ..., sonar1 = 3.02, sonar2 = 3.12, sonar3 = 3.46, ..., speed = 0.48, angle =
0.785}) at a particular time.
1 The values used for orientation and distance are the same as with doors.



6 Julio H. Zaragoza and Eduardo F. Morales

Table 2: Resulting r-state-r-action pair from the values in Table 1.

r-state r-action

place(in-room), go([nil, 0.1]),
doors detected([[front, close, -12.57, 1.27]]), turn([right, 1.047]).
walls detected([[right-front, close, medium, -35.7, 0.87],

[front, far, small, -8.55, 4.62],
[front, near, medium, -6.54, 2.91],
[left-front, near, small, 23.63, 1.73],
[left-front, near, medium, 53.80, 2.13]]),

corners detected([[front, far, -14.58, 5.79],
[front, near, 31.68, 2.30],
[left-front, near, 22.33, 1.68]]),

obstacles detected([[back, near, -170.00, 1.87],
[right-back, near, -150.00, 1.63],
[back, close, 170.00, 1.22],
[left-back, close, 150.00, 1.43]]),

goal position([right-front, far]),
goal reached(false),

Once the set of traces has been given (τ1, τ2, ...τm), every frame in the traces,
is transformed into natural landmarks along with the robot’s location. This
data is given to the first order predicates to evaluate the set of relations, i.e.,
generate the r-state and the r-action (as the one shown in Table 2). Every r-
state-action pair is stored in a database (DB). Table 3 gives the algorithm for
this Behavioural Cloning (BC) approach. At the end of this BC approach, DB
contains r-state-r-action pairs corresponding to all the frames of the set of traces.

Table 3: Behavioural Cloning Approach.

Given a set of trace-logs in the form of frames
For each frame

Transform the low-level sensor data into natural landmarks and robot’s location.
Use the natural landmarks and the robot’s location to evaluate the r-state and
r-action predicates.
DB ← DB ∪ new r-state-r-action pair.

As the traces correspond to different examples and they might have been
generated by different persons, for the same r-state, several r-actions might have
been performed. RL is used to develop a control policy that selects the best
r-action in each r-state so the robot can acomplish its tasks.

5.1 Relational Reinforcement Learning

As means to select the best action for every state, an RL algorithm is applied.
The RL algorithm selects, most of the time, the r-action that produces the
greatest expected reward among the possible r-actions in each r-state. We used
only the information from traces, so, only a smaller subset of possible actions, for



TS-RRLCA 7

every state, will be considered which significantly reduces the search space. Table
4 gives the pseudo-code for the rQ-learning algorithm. This is very similar to the
Q-learning algorithm, except that the states and actions are characterized by
relations. Through this RL algorithm, the r-action that best serves to acomplish
the task, is selected.

Table 4: rQ-learning algorithm.

Initialize Q(S,A) arbitrarily (where S is an r-state and A is an r-action)
Repeat (for each episode):

Initialize s
(s represents the values of the sensor’s readings of the robot in the current state)
Transform s into natural landmarks and obtain the robot’s actual location.
S ← r-state(s) % Send the natural landmarks and the location to
the first order predicates to generate the correspondig r-state.
Repeat (for each step of episode):

Search the r-state registers, along with its corresponding discretized
r-actions A, in DB, which equals the S discretized values.
Choose an action A using a persistently exciting policy (e.g., ε-greedy).
Take action A, observe s’ (the new state) and r (the new state reward).
S’ ← r-state(s’)
Q(S,A) ← Q(S,A) + α(r + γmaxA’Q(S’,A’) - Q(S,A))
S ← S’

until s is terminal

Through our relational representation, policies can be transfered to different,
although similar domains or tasks. Even that learned policies can be re-used,
the actions are still discrete. In the second stage, this discrete actions policy is
transformed into a continuous actions policy.

6 TS-RRLCA Second Stage

This second stage refines the coarse actions from the discrete actions policy pre-
viously generated. This is achieved using LWR. The idea is to combine discrete
actions’ values given by that policy with the action’s values previously observed
in traces. This way the robot follows the policy, developed in the first stage, but
the actions are tuned through the LWR process. What we do is to detect the
robot’s actual r-state, then, for this r-state the previously generated discrete ac-
tions policy determines the action to be executed (Figure 3a). Before performing
the action, the robot searches in DB for all of the registers that share this same
r-state description (Figure 3b). Once found, the robot gets all of the numeric
orientation and distance values from the read DB registers. This orientation
and distance values are used to perform a triangulation process. This process
allow us to estimate the relative position of the robot from previous traces with
respect to the robot’s actual position. Once this position has been estimated, a
weight is assigned to the robot from previous traces action’s values. This weight
depends on the distance of the robot from the traces with respect to the actual



8 Julio H. Zaragoza and Eduardo F. Morales

robot’s position (Figure 3c). These weights are used to perform the LWR that
produces a continuous r-action (Figure 3d).

(a) r-state and
corresponding
r-action

(b) A trace
segment

(c) Distances
and weights

(d) Result-
ing continuos
action

Fig. 3: Continuous actions developing process.

The triangulation process is performed as follows. The robot R in the actual
r-state (Figure 4a), senses and detecs elements E and E′ (which can be a door, a
corner, a wall, etc.). Each element has a relative distance (a and b) and a relative
angle with respect to R. The angles are not directly used in this triangulation
process, what we use is the absolute difference between these angles (α). The
robot reads from DB all of the registers that share the same r-state description,
i.e., that have the same r-state discretized values. The numerical angle and dis-
tance values from these DB registers correspond to the relative distances (a′ and
b′) from the robot of traces R′ relative to the same elements E and E′, and the
corresponding angle β (Figure 4b). In order to know the distance between R and
R′ (d) through this triangulation process, equations 1, 2, 3 and 4 are applied.

(a) R robot’s r-state and
identified elements.

(b) R′ robot from traces. (c) Elements to be cal-
cultated.

Fig. 4: Triangulation process.

EE′ =
√

a2 + b2 − 2ab cos(α) : Distace between E and E′. (1)

θ + ω = arcsec(a′/EE′) : Angle between a′ and EE′. (2)

ω = arcsen(a/EE′) : Angle between a and EE′. (3)



TS-RRLCA 9

d =
√

a2 + a′2 − 2aa′ cos(θ) : Distance between R and R′. (4)

These equations give the relative distance (d) between R and R′. Once this
value is calculated, a Kernel is used to assign a weight (w) value. This weight is
multiplied by the speed and angle values of the R′ robot’s r-action. The resulting
weighted speed and angle values, are then added to the R robot’s speed and angle
values. This process is applied to every register read from DB whose r-state
description is the same as R and is repeated everytime the robot reaches a new
r-state. The main advantage of our approach is the simple and fast strategy to
produce continuous actions policies that, as will be seen in the following section,
are able to produce smooth and shorter paths in different environments.

7 Experiments

Experiments were carried out in simulation (Player/Stage [9]) and with a real
robot2. Both robots (simulated and real) are equiped with a 180◦ front SICK
laser sensor and an array of 4 back sonars (-170◦, -150◦, 150◦ and 170◦). The laser
range is 8.0m and for sonars is 6.0m. The tasks referred in these experiments
were navigating through the environment and following an object.

The policy generation process was carried out in the map 1 shown in Figure
5. For each of the two tasks a set of 15 traces was generated in this map. For the
navigation tasks, the robot and the goal’s global position (for the goal position
predicate) were calculated by using the work developed in [6]. For the “following”
tasks we used a second robot which orientation and angle were calculated through
laser sensor. To every set of traces, we applied our BC approach to abstract the
r-states and induce the relevant r-actions. Then, rQ-learning was applied to
learn the policies. For generating the policies, Q-values were initialized to -1, ε
= 0.1, γ = 0.9 and α = 0.1. Positive reinforcement, r, (+100 ) was given when
reaching a goal (within 0.5 m.), negative reinforcement (-20 ) was given when the
robot hits an element and no reward value was given otherwise (0 ). To generate
the continuous actions policy, LWR was applied using a Gaussian Kernel for
estimating weights. Once the policies were learned, experiments were executed
in the training map with different goal positions and in two new and unknow
environments for the robot (map 2 shown in Figure 5c and map 3 shown in
Figure 6). A total of 120 experiments were performed: 10 different navigation
and 10 following tasks in each map, each of this tasks executed first with the
discrete actions policy from the first stage and then with the continuous actions
policy from the second stage. Each task has a different distance to cover and
required the robot to traverse through different places. The minimum distance
was 2m. (Manhattan distance), and it was gradually increased up to 18m.

Figure 5 shows a navigation (map 1) and a following task (map 2) performed
with discrete and continuous actions respectively.

Figure 6, shows a navigation and a following task performed with the real
robot, with the discrete and with the continuous actions policy.
2 An ActivMedia GuiaBot, www.activrobots.com



10 Julio H. Zaragoza and Eduardo F. Morales

(a) Navigation task with
discrete actions.

(b) Navigation task with
continuous actions.

(c) Following task with
discrete actions.

(d) Following task with
continuous actions.

Fig. 5: Tasks examples from Maps 1 (size 15.0m.×8.0m.) and 2 (size 20.0m.×14.0m.).

(a) Navigation
task with dis-
crete actions.

(b) Naviga-
tion task with
continuous
actions.

(c) Navigation
task performed
by user.

(d) Following
task with dis-
crete actions.

(e) Following
task with
continuous
actions.

(f) Following
task performed
by user.

Fig. 6: Navigation and following tasks examples from Map 3 (size 8.0m.× 8.0m.).

If the robot reached an unseen r-state, it asks for guidance to the user.
Through a joystick, the user indicates the robot which action to execute and
the robot stores this new r-state-r-action pair. As the number of experiments
increased the number of unseen r-states is reduced.



TS-RRLCA 11

Figure 7a3 shows results in terms of quality of the performed tasks with the
real robot. This comparison is made against tasks performed by humans. All
of the tasks performed in experiments with the real robot, were also performed
by a human using a joystick (Figures 6c, 6f), and logs of the paths were saved.
The graphic shows the normalized cuadratic error between these logs and the
trayectories followed by the robot. Figure 7b shows results in terms of how much
of the environment’s free space, the robot uses. This comparison is made using
the work developed in [7]. In that work, values were given to cells acordingly to
its proximity to objects or walls. The closer the cell is to an object or wall the
higher cost is given. Values were given as follows: if the cell is occupied (0m.
to 0.3m.) a value of -100 was given, if the cell is close to an object (0.3m. to
1.0m.) a value of -3, if the cell is near (1.0m. to 2.0m.) a value of -1, otherwise
0. Cuadratic error and penalty values for continuous actions policies are lower
than those with discrete actions.

(a) Cuadratic error values (b) Penalty values

Fig. 7: Navigation and following results of the tasks performed by the real robot.

Fig. 8: Execution times results.

Policies developed with this method allow a close-to-human quality in the
execution of the tasks and tend to use the available free space in the environment.
3

NPDA: Navigation Policy with Discrete Actions, NPCA: Navigation Policy with Continuous Actions

FPDA: Following Policy with Discrete Actions, FPCA: Following Policy with Continuous Actions.



12 Julio H. Zaragoza and Eduardo F. Morales

Execution times (Figure 8) with the real robot were also registered. Continuous
actions policies execute faster paths than the discrete actions policy despite our
triangulation and LWR processes.

8 Conclusions and Future Work

In this paper we described an approach that automatically transformed in real-
time low-level sensor information into a relational a representation which does
not require information about the exact position of the robot and greatly reduces
the state space. The user provides traces of how to perform a task and the
system focuses on those actions to quickly learn a control policy, applicable to
different goals and environments. LWR is then used over the policy to produce
a continuous actions policy as the robot is performing the task. The actions
performed in the traces are sufficient to deal with different scenarios, however,
rare actions may be required for special cases. We would like to include an
exploration strategy to identify such cases or incorporate voice commands to
indicate the robot which action to take when it reaches an unseen state.

References

1. F. Aznar, F. A. Pujol, M. Pujol, and R. Rizo. Using gaussian processes in bayesian
robot programming. Distributed Computing, Artificial Intelligence, Bioinformatics,
Soft Computing, and Ambient Assisted Living, pages 547–553, 2009.

2. I. Bratko, T. Urbancic, and C. Sammut. Behavioural cloning of control skill.
Machine Learning and Data Mining, pages 335–351, 1998.

3. A. Cocora, K. Kersting, C. Plagemanny, W. Burgardy, and L. De Raedt. Learning
relational navigation policies. Journal of Intelligent and Robotics System, pages
2792–2797, Octuber 2006.

4. K. Conn and R. A. Peters. Reinforcement learning with a supervisor for a mobile
robot in a real-world environment. Proc. of the IEEE CIRA, 2007.

5. C. Gaskett, D. Wettergreen, and A. Zelinsky. Q-learning in continuous state and
action spaces. In Australian joint Conference on AI, pages 417–428, 1999.

6. S. F. Hernández and E. F. Morales. Global localization of mobile robots for indoor
environments using natural landmarks. Proc. of the IEEE 2006 ICRAM, pages
29–30, Septemer 2006.

7. L. Romero, E. F. Morales, and L. E. Sucar. An exploration and navigation approach
for indoor mobile robots considering sensor’s perceptual limitations. Proc. of the
IEEE ICRA, pages 3092–3097, 2001.

8. L. Torrey, J. Shavlik, T. Walker, and R. Maclin. Relational macros for transfer in
reinforcement learning. ILP, pages 254–268, 2008.

9. R. Vaughan, B. Gerkey, and A. Howard. On device abstractions for portable,
reusable robot code. Proc. of the 2003 IEEE/RSJ IROS, pages 11–15, 2003.

10. J. Herrera Vega. Mobile robot localization in topological maps using visual infor-
mation. Masther’s thesis (to be publised), 2009.

11. Y. Wang, M. Huber, V. N. Papudesi, and D. J. Cook. User-guided reinforcement
learning of robot assistive tasks for an intelligent environment. Proc. of the The
2003 IEEE/RSJ IROS, pages 27–31, October 2003.


