
Learning Navigation Teleo-Reactive Programs using

Behavioural Cloning

Blanca Vargas and Eduardo F. Morales

National Institute of Astrophysics, Optics and Electronics

Computer Science Department

Luis Enrique Erro 1, 72840 Tonantzintla, México

Email: {blanca,emorales}@ccc.inaoep.mx

Abstract—Programming a robot to perform tasks in dynamic
environments is a complex process. Teleo-Reactive Programs
(TRPs) have proved to be an effective framework to continuously
perform a set of actions to achieve particular goals and react
in the presence of unexpected events, however, their definition
is a difficult and time-consuming process. In this paper, it is
shown how a robot can learn TRPs from human guided traces.
A user guides a robot to perform a task and the robot learns
how to perform such task in similar dynamic environments.
Our approach follows three steps: (i) it transforms traces with
low-level sensor information into high-level traces based on
natural landmarks, (ii) it learns TRPs that express when to
perform an action to achieve simple tasks using an Inductive
Logic Programming (ILP) system, and (iii) it learns hierarchical
TRPs that express how to achieve goals by following particular
sequences of actions using a grammar induction algorithm. The
learned TRPs were used to solve navigation tasks in different
unknown and dynamic environments, both in simulation and in
a service robot called Markovito.

I. INTRODUCTION

When people go to a new place, e.g., a conference site, they

normally ask for directions of places of interest, like the regis-

tration desk or a toilet, and are given general directions, like “at

the end of the aisle to your right” or possibly “in room 203”.

People have to navigate without collisions in an unknown and

dynamic environment to a particular destination point through

well known natural marks like walls and doors and expected

dynamic conditions, like walking people. Imagine you want

your robot to learn how to perform a similar skill. You place

your robot in an unknown environment and you want it to

navigate to a particular point, like a charging station, but the

robot has no map, and is only given the general direction of

its destination point. The robot has to learn how to perform

simple skills, like obstacle avoidance and orientation towards

a goal, and use them to safely go to a particular goal in a

dynamic and unknown environment. Since we would like the

robot to use its learned skills on different environments, e.g.,

check in at a new hotel, it is desirable to have an expressive

representation language where new environment conditions

could be represented as instantiations of such representation.

In this paper, a relational approach to learn robot tasks using

behavioural cloning is presented. The key idea is to show the

robot what to do instead of how to do it (e.g., steering the robot

avoiding obstacles), simplifying the programming effort. The

examples or traces consist of low-level sensor readings that

are transformed into a small set of high-level concepts based

on natural landmarks. This transformed data is given to an

Inductive Logic Programming (ILP) [1] algorithm to learn a

set of reactive control rules known as Teleo-Reactive Programs

(TRPs) [2]. Once some basic TRPs are learned, traces of more

complex tasks involving previously learned TRPs are given to

FOSeq, an algorithm that induces grammars able to reproduce

the original human-guided traces.

The contributions of this paper are: (i) transforming a large

amount of low-level sensor data into a small set of relational

facts suitable for relational learning, (ii) a framework to learn

simple TRPs from guided traces, (iii) an algorithm that can

learn hierarchies of TRPs expressed as grammars to solve

more complex tasks involving sequences of actions to satisfy a

goal. We tested the approach in a robotics scenario with both

simulated and real environments and show that the robot is

able to accomplish several navigation tasks with the learned

TRPs in different dynamic and unknown environments.

This paper is organized as follows. Section 2 reviews related

work. Section 3 presents an overview of the learning approach.

Section 4 presents the landmark identification process. Section

5 describes how to learn basic navigation TRPs. In Section 6

the learning of complex TRPs is explained. Section 7 presents

experiments and main results and finally, conclusions and

future research directions are given in Section 8.

II. RELATED WORK

In this work we used behavioural cloning to provide exam-

ples, and ILP and grammar induction to learn TRPs for mobile

robots. We review relevant related work on these areas.

Behavioural cloning [3] is a technique to learn skills from

a human operator. Some successful applications include the

control of cranes, bicycles and learning to fly a plane. In

robotics, D’Este [4] learned to pursuit a target and to avoid

obstacles using decision trees. Another application [5] shows

how to teach a tracked vehicle to traverse rough terrain also

learning decision trees. In both cases, a single task is executed

using a propositional framework. In robotics, however, it is

common to have multiple goals and it is desirable to transfer

the learned skills to different, although similar, domains which

is not possible in the previous work.

In [6] it is described how to learn to control an aircraft using

behavioural cloning and reinforcement learning. It was shown

that with the learned policy it is possible to fly the aircraft on

different missions. In [7], navigation plans are learned using

behavioural cloning. From sequences of places traversed by

the robot while carrying out its task, a relational decision

tree is learned. This tree can be used to guide the robot on

the same and on similar tasks re-using plans to reach a goal

in unknown environments. Both approaches demonstrate the

advantage of using a relational representation, however, they

are unable to deal with dynamic elements in the environment

and their actions have to be discretized.

Klingspor et al. [8] learn relational concepts such as

in front of door, along door, move closer to wall, line,

concave, and convex using five levels of abstraction. These

concepts are used to control a robot, however, they are unable

to solve a navigation task and all the hierarchies and required

information need to be defined in advance.

Teleo-reactive programs (TRPs) are sets of reactive rules

that sense the environment continuously and apply an ac-

tion whose continuous execution eventually satisfies a goal

condition. In this paper, basic TRPs only include low-level

actions (e.g. turn right, go fwd), whereas hierarchical TRPs

can include as action another TRP (e.g., orient and wander)

in order to accomplish a more difficult task (e.g., goto).

Even though TRPs have been proved to be an effective

framework for robotics, they have not been exploited broadly.

In [9], the authors describe a control architecture for mobile

robots with a visual development environment for TRPs. The

limitation is that the TRPs are manually constructed, which

can be a difficult and time-consuming process, even with

a visual tool. Broda and Hogger [10] present an algorithm

based on the construction of an automata to learn TRPs;

their approach however is propositional and is difficult to

extend to real domains or use it in other instances of the

problem. TRAIL [2] was able to learn basic TRPs from traces

in three simulated domains: a construction world, an office

delivery task, and a flight simulator. However, TRAIL was

not able to construct complex TRPs and it was tested only

on simulated environments. Konik and Laird [11] recently

proposed a system to learn teleoreactive logic programs with

behavioural cloning. Their approach, however, requires a high-

level symbolic representation as input, along with a predefined

hierarchy of TRPs. In our work, raw data of robot’s sensors

obtained from human guided traces are used to learn simple

and complex TRPs that are able to guide a robot in dynamic

and unknown environments.

III. OVERVIEW

This section describes general concepts and the overall TRP

learning framework.

Definition: A TRP is a set of clauses that continu-

ously perform an action in the current state while

their conditions are satisfied. The first clause has

as condition a predicate that indicates whether a

particular task has been satisfied (goal predicate).

In this paper TRPs have the following format:

trp(State,Action) ← goal condition(State).
trp(State,Action) ← pred1(State,...),

pred2(State, ...), . . .

trp(State, TRP) ← pred1(State,...),
pred3(State, ...), . . .

. . .

where trp/2 is the name of the TRP, and the number of

arguments of the predicate, goal condition is a predicate

that indicates when a goal has been satisfied and preds are

conjunctions of predicates that indicate the conditions under

which the action in the head of the clause should be executed.

A graphical representation can be seen in Figure 1 where

the nodes represent actions: low-level actions, basic TRPs or

hierarchical TRPs. The labels on arcs show the conditions for

taking the actions. For instance, when a robot has to reach a

place, it has to be oriented towards it. If the area between the

goal and the robot is not cleared, the robot has to find a safe

zone to get oriented. A simple strategy is to wander until it

reaches a safe zone and then, turn toward its destination point.

The graph shows a TRP hierarchy: wander is a basic TRP

to move a robot safely through an environment. Its action set

includes the low-level actions turn-left, turn-right and go fwd.

The hierarchical TRP orient turns the robot towards a target

point only if the robot is located in a zone without obstacles.

Otherwise, orient uses wander as an action until it is located

in a safe zone.

Figure 2 shows the process for learning basic and hierarchi-

cal TRPs. A human provides traces of tasks for the robot to

learn. These traces are transformed into a sequence of facts,

with a high-level representation, and an ILP system is used to

learn TRPs for such tasks. For more complex tasks, involving

several basic TRPs, the original trace is first transformed into

a high-level representation where the applicable TRPs are

identified. This transformed trace with TRPs is given to an

algorithm that induces a grammar, representing a hierarchical

TRP, capable of recognizing the traces of more complex tasks.

This process is detailed in the following sections.

obst-

le f t
obst-

r ight

not -

obst

w a n d e r

TRP

turn-

r ight
turn -

le f t

go-

fo rward

or ient

TRP

not -

safe

safe turn -

le f t

tu rn -

r ight

goal -

r ight

goal -

le f t

stop
stra ight -

to-goal

Fig. 1. Hierarchical Action Tree. Orient is a hierarchical TRP that turns the
robot towards a goal if it is located in a safe zone. Otherwise, the wander

TRP is used as an action and returns the control to orient until the action
go fwd applies.

Raw data Facts

Expert

ILP

algor i thm

Facts +

Bkg knowledge

Basic

TRPs

Sequence of

basic TRPs
FOSeq

Complex

TRPs

FOSeq: Complex TRPs learning

Basic TRPs learning

Landmarks +

odometry

Traces

ROBOT

Get S ta te

Execution

Landmarks

Raw data

Fact (State)

TRPs

Action

Traces t ransformat ion

Fig. 2. An overview of how to learn basic and complex TRPs

IV. LANDMARK REPRESENTATION

Given a trace of low-level raw data from the sensors of

a robot1, a natural landmark identification process [12] is

used to produce a smaller set of more meaningful information

consisting of: (1) discontinuities, (2) corners and (3) walls. A

discontinuity is defined as an abrupt variation in the measured

distance of two consecutive readings of the laser (0.20cm in

this paper), as shown in Fig. 3(a).

A natural landmark is represented by four attributes: DL

and θL are the distance from the landmark to the robot and the

orientation of the landmark relative to the robot respectively,

T is the type of the landmark; l for left discontinuity, r for

right discontinuity, c for corner and w for walls, and A is a

distinctive attribute and its value depends on the type of the

landmark; depth for discontinuities and length for walls. For

example, a subsample of the robot’s sensors (in this case the

laser readings) in a particular state, shown in Figure 3(b), is:

2.127, 2.036, . . ., 1.001, 1.192, 5.170, 5.164,

Here the system recognizes several discontinuities, in par-

ticular, the sudden change in values between 1.192 and 5.17

1In this paper we use information from a laser Sick-LMS200 sensor and
from a ring of sonars, which is a common setting to many mobile robot’s
platforms.

(a) (b) (c)

No D θ A T

1 2.18 -73.0 1.41 l

2 1.10 -6.0 0.40 l

3 1.11 10.0 0.41 r

4 2.17 -47.0 0 c

5 1.71 -68.0 0 c

6 1.84 36.0 0 c

7 3.46 -89.50 1.06 w

8 1.59 -89.75 0.85 w

9 1.49 0.0 1.36 w

10 1.10 0.0 0.39 w

11 1.50 0.0 0.80 w

12 1.10 89.75 1.43 w

(d)
Fig. 3. (a) A discontinuity to the right (r). Attributes: angle(θ) with respect
to the front of the robot, distance(D) between the robot and the discontinuity,
depth(P) between two contiguous readings. (b) Example of a particular state
of the robot showing its laser readings. (c) Laser readings. Points are discarded
if they are below a threshold value. (d) Set of identified natural landmarks

in two consecutive laser readings, that produces the following

landmark: 1.19,−26.65, 3.98, r representing, respectively, the

relative distance to the robot, its angle, the depth (difference

between the readings), and its type, r, which means that this

discontinuity is to the right of the robot. Fig. 3(c) and (d)

show an example of sensor readings and natural landmarks

identified by this process.

To summarize, this process receives as input a set of low-

level sensor readings from a mobile robot and produces as

output a set of identified natural landmarks with information

about walls, corners and discontinuities. This is important

because the huge amount of low level and noisy data produced

by many sensors in robotics has limited the use of machine

learning techniques with expressive representation languages.

Our process is able to automatically transform in real-time

low-level readings into a suitable representation for a relational

learning algorithm and opens the possibility of using other

machine learning algorithms in this area.

V. LEARNING BASIC NAVIGATION TRPS

The objective of this phase is to learn simple navigation

TRPs. A trace is created with information of all the natural

landmarks identified by the robot sensors, with the robot

position relative to the map of the environment provided by

a localization process [12], and information if there is an

obstacle at the rear of the robot using the ring of sonars.

This information represents the current State of the robot.

The Action is also identified on each State from the robot’s

odometry: go fwd/go backward (a displacement speed of at

least 0.3 m/s), turn right/turn left (a 5 deg/s turnspeed) and

stop. For instance, the position of the robot in Figure 3(b)

produces the following state:

[robot(4.85,-0.04,248.60), rear(n), goal(0,0),
landmark(1.19,-26.65,3.98,r), landmark(2.17,30.67,0.78,l),
landmark(0.78,-29.66,0.00,c), landmark(0.79,-30.67,1.85,w), . . .]

where: (i) robot(4.85,-0.04,248.60) indicates the robot’s pose:

robot(X, Y, Theta), (ii) rear(n) informs if there are obsta-

cles in the rear of the robot. It can get the values “y”

or “n”. (iii) goal(0,0) is the X and Y position of the

point to reach, and (iv) landmark(1.19,-26.65,3.98,r), land-

mark(2.17,30.67,0.78,l),... correspond to the set of landmarks

obtained from the laser readings. The user steers the robot to

produce certain desirable behavior. The information gathered

from the sensors during the process are transformed into traces

of target predicates with two arguments: the current State, as

previously described, and the Action. The goal is to produce a

set of predicates that return a particular action, capturing the

intended behaviour, given information from the current state.

To navigate through an office/house environment some

useful skills are: (i) moving through the environment without

collisions (wander), (ii) getting oriented towards its target

point, and (iii) leaving traps. A trap is a narrow space where

the robot can enter but has difficulty in leaving. Each skill

can be learned as a single TRPs. Algorithm 1 summarizes the

steps to learn basic TRPs. To illustrate the process, we show

how to learn the wander TRP (see Fig 1).

Algorithm 1 Learning basic TRPs

Let Pos = High-level traces produced by guiding the robot

to execute the task

for each Pos example do

Replace the action with a different action from the action

set

Add the example to Neg

end for

if there are Concepts to learn then

Learn Concepts with ALEPH

end if

Let Bknowledge = Concepts ∪ additional knowledge (if

available)

Given Pos, Neg and Bknowledge

Learn TRPs with ALEPH

Training examples. A set of traces where the user navigates in

an unknown environment avoiding possibly dynamic obstacles

was given to the system. The low-level information from the

sensors and odometry of the robot are transformed into high-

level state-action pairs with 1,617 instances: 525 for the action

turn right, 544 for the action turn left, and 548 for the action

go fwd. Negative examples are automatically generated from

the traces by interchanging actions, in this case go fwd with

turn left or turn right actions.

Background knowledge. The user can provide simple back-

ground knowledge to learn the TRPs. Table I shows the

possible background knowledge and actions for wander: (i)

the front-zone(State,obstacle) predicate is true if there is an

obstacle in front of the robot, (ii) the predicate closest-

obst(State,Lmk,Distance,Ang) extracts from State, the closest

landmark (Lmk) and its distance and angle from the robot,

and (iii) the relations less than (lteq) and greater than (gteq)

can be used to learn the value range for Distance and Angle.

The high-level traces of state-action pairs and the back-

ground knowledge are given to an Inductive Logic Program-

ming (ILP) system called ALEPH [13] to learn TRPs. ALEPH

selects an instance from the trace and builds the most specific

clause (bottom clause) by selecting a set of facts from the

background knowledge that are true for this instance. ALEPH

searches for some subset of the literals in the bottom clause

that is more general and selects the clauses that cover many

positives examples but few negative examples.

Concept Learning. Depending on the teacher’s guidance,

the distance criteria to avoid obstacles can be different. The

TABLE I
WANDER: BACKGROUND KNOWLEDGE AND ACTION SET

Background knowledge Action set

front-zone(State,obst-free) go fwd (goal)
rear-zone(State,obst) turn-left

rear-zone(State,obst-free) turn-right

closest-obst(State,Lmk,Distance,Ang)
lteq(Ang,Angval1)
gteq(Ang,Angval2)

user may show a “cautious” or a “daring” behavior. Distance

and angular ranges capture the differences between guidances

styles. This information can be learned from the traces.

Although the learning process is similar to the basic TRP

learning algorithm, the main differences are: (i) the traces

are snapshots of the environment where the robot is located.

The user provides the class value that describes the zone (e.g.

obstacle-free), and (ii) negative examples are generated by

obtaining snapshots of different environment zones.

The learned concept front-zone receives the State as input

argument. Its possible values are: obstacle if the distance

from the closest landmark is less than 0.49m and obstacle-

free otherwise. This concept was learned and included as

background knowledge.

front-zone(State,obstacle)←
closest-obst(State, ,Distance,),

lteq(Distance,0.49).

front-zone(State,obstacle-free).

Learned TRPs: wander. Given positive and negative exam-

ples and background knowledge to ALEPH [13], the wander

TRP was learned. It can take the values: go fwd, if there is no

obstacle in front of the robot, turn-left if there is an obstacle to

the right (i.e. orientation from the robot is less than -1.51rads),

and turn-right, otherwise.

wander(State,go fwd) ←
front-zone(State,obstacle-free).

wander(State,turn-left) ←
front-zone(State,obstacle),

closest-obst(State,Lmk,Dist,Ang),

lteq(Ang,-1.51)).

wander(State,turn-right) ←
front-zone(State,obstacle).

In addition to wander, the following TRPs have been learned:

• Orient. Given a target point, the robot has to orient toward

it. If there is a wall between the goal and the robot, there

is no point to get oriented because the robot will never

go through the wall. Therefore, the robot has to wander

until it reaches a safe orientation zone.

• Leave-a-trap. If the robot enters in a narrow place where

there is not enough space to turn, it has to go backward

and turn according to the available space and leave the

trap.

• Follow a mobile object. The robot has to follow a mobile

object keeping a safe distance from it.

To summarize this process, the user guides the robot to

perform a particular skill, like obstacle avoidance. These

traces are transformed into state-action pairs that are used

to learn a set of relational rules. The rules are then used

to control a robot to perform that skill in similar dynamic

environments. This learning strategy provides the robot with

some basic skills. The next section describes how to learn more

complex behaviours involving different sequences of actions

and combining previously learned basic skills.

VI. FOSEQ: LEARNING COMPLEX TRPS

The objective of FOSeq is to learn TRPs that are able to

produce particular sequences of actions satisfying a particular

goal. In this case, the TRPs can be expressed in terms of

other TRPs. The user controls the robot to achieve a particular

goal, e.g., go to a particular area. The low-level information

from the sensors is transformed into a high-level trace of state-

action pairs from which applicable TRPs, previously learned,

are identified and replaced in the sequence. FOSeq is then

used to learn how to produce similar sequences by learning

Definite Clause Grammars (DCGs).

The general algorithm can be stated as follows: from a set

of sequences, (i) learn a grammar for each sequence, (ii) parse

all the sequences with each induced grammar, evaluate how

well each grammar parses all the traces, and return the b best

evaluated grammars, and (iii) apply a generalization process

to the best grammar trying to cover most of the sequences.

Given a trace of predicates and a minimum initial support

value (t = 2), the algorithm generates a list of n-grams, that

is terms that are repeated in the sequence at least t times

(support value). As in Apriori [14], the candidate n-grams

are incrementally searched by their length, in our case, the

support value is updated in order to keep only the maximum,

since we are interested only in the n-grams that are more

frequently repeated. n-grams candidates which support value

cannot be higher than the current maximum support value

are discarded. The n-gram with maximum support value is

selected, generating a new grammar rule and replacing, in

the sequence, all occurrences of the n-gram with a new non-

terminal symbol. For example, from the sequence:

orient(State,turn left),wander(State,go fwd),
wander(State,turn left), wander(State,go fwd),
orient(State,turn right),wander(State,go fwd),
. . .
wander(State,turn right),wander(State,go fwd),
in-goal(State,nil)

FOSeq learned the following grammar:

R1 → orient(State,turn-left),wander(State,go fwd)
R2 → orient(State,turn-right),wander(State,go fwd)
S → R1,wander(State,turn-left),wander(State,go fwd),R2

wander(State,turn-right),wander(State,go fwd),
in-goal(State,nil)

where R1 and R2 are the rules, corresponding to the n-grams

with more repetitions and S is the new sequence obtained by

replacing the n-grams with the rules. This process iterates until

the sequence has no longer repeated n-grams. Every learned

grammar is used to parse all the sequences in the set of traces

provided by the user. The best evaluated grammar is selected.

The measure of how well the grammar parses is calculated

using the following function:

eval(Gi) =

n∑

j=1

cj

cj + fj

(1)

where, cj and fj are the number of items that the grammar

is able or unable to parse, respectively. The process continues

until the end of the sequence. R1 and R2 are replaced by

the user’s defined task name. For example, goto(State,Action)

producing:

goto(State,Action) → orient(State,turn left),wander(State,go fwd)
goto(State,Action) → orient(State,turn right),wander(State,go fwd)

After learning a grammar for each sequence, FOSeq selects

the grammar that best parses the set of sequences. During the

evaluation process, FOSeq registers the differences between

each grammar and the other sequences. FOSeq selects the

grammars that have more dissimilar rules, and the highest

difference in the evaluation list. The idea is to try to produce

a more general grammar using information from what are

considered as very different grammars. The key idea of the

generalization process is to take the difference between pairs

of grammars and apply adaptation rules to modify the best

grammar. A set of adaptation rules decides if: (i) a rule has to

be modified, or (ii) a new rule has to be added. The output is

a new grammar that cover the two sequences that were used

in the induction of the grammars.

Learning the goto task. FOSeq learned the goto TRP from

10 different traces from several environments, using predicates

such as orient and wander, that were learned using ALEPH.

The goal predicate (in goal(State)), given by the user, is true

when the robot has reached the intended destination. The

possible values for goto are: (i) the Action generated by the

wander TRP if the robot is oriented towards the goal, (ii) the

Action generated by the orient TRP if the robot does not have

obstacles surrounding it, and (iii) the Action produced by the

wander TRP, otherwise.

goto(State,nil) ←
in goal(State).

goto(State,Action) ←
orient(State,nil),

wander(State,Action).

goto(State,Action) ←
wander(State,go fwd),

orient(State,Action).

goto(State,Action) ←
wander(State,Action).

The goto/2 TRP is able to go to a particular place in an

unknown environment avoiding possibly dynamic objects.

Learning from human-guided traces to perform basic skills,

like obstacle avoidance, and more complex tasks, like going

to a particular destination point, is an important step towards

facilitating the programming effort of skills in service robots

and extends their applicability to achieve goals according to

the user’s needs. To summarize, FOSeq learns from human

traces a generalized grammar to build hierarchical TRPs. This

process allows the robot to perform complex tasks by reusing

previously learned skills.

VII. EXPERIMENTS AND RESULTS

The learned TRPs were tested (i) in simulation and evalu-

ated by the percentage of tasks successfully completed, and the

number of operator interventions (e.g., if the robot enters in a

loop), and (ii) in a service mobile robot called Markovito [15].

The environment maps used to test the TRPs were different

from those used to train the robot.

Simulation. We evaluate the performance of the learned

TRPs in different scenarios, with different obstacles’ sizes

and shapes, and with static and dynamic obstacles to test the

(a) (b) (c) (d)
Fig. 4. Wander: fixed (a) and dynamic (b) obstacles; Goto: (c) and (d).

robot’s capability to react to unexpected events without losing

its goal. The robot’s initial pose and the goal point (when

applicable) were randomly generated. In the experiments, an

operator intervention is required when the robot: (i) enters in

a loop, or (ii) gets trapped and it has to be released. In each

experiment two operator interventions are allowed, otherwise,

the experiment fails.

• Wander. We ran 18 experiments in four different envi-

ronments to test only the wander TRP. The experiment

succeeds if the robot does not collide. The robot com-

pleted successfully 88.9% and 5 operator interventions

were required (see Figure 4(a)).

• Orient. We performed 20 experiments for the TRP, which

succeeded if the robot oriented correctly towards the goal.

It succeeded in 90% of the given tasks.

• Leave-a-trap. The robot is located into a trap and it has to

leave it successfully. We performed 25 experiments and

the robot succeeded in 92% of the tasks.

• Goto. In these experiments, the hierarchical TRP goto,

learned by FOSeq is evaluated. We performed 120 ex-

periments in 10 different environments. The experiment

succeeds if the robot reaches the goal. From the 120 given

tasks, the robot succeeded in 87.5%, and 10 operator

interventions were required. Two examples are shown in

Figure 4.

• Follow a mobile object. The robot has to follow another

mobile robot for 10 meters. If the robot doesn’t know

what to do, the task fails. From 20 experiments the robot

succeded in 95% of the tasks.

The next step was to test the learned TRPs in a real robot.

The TRPs were integrated as the navigation module of a

PeopleBot ActivMedia robot that used a sonar ring and a Laser

SICK LMS200. The tasks to accomplish were: (i) following a

human under user commands, (ii) navigating to several places

in the environment designated semantically (see Fig. 4(d)),

(iii) finding one of a set of different objects in a house

and (iv) delivering messages and/or objects between different

people. The first three tasks are part of the RoboCup@Home

challenge. In the follow-a-human task, the robot was trained

using the laser sensor to follow another robot. To make

a robust approach, a visual landmark process replaced the

landmark identification process. The relational approach used

to learn TRPs facilitates their integration in different tasks

and the replacement of the sensor in a straightforward man-

ner. Navigation and follow-a-human videos can be seen at:

http://www.youtube.com/user/anon9899

VIII. CONCLUSIONS AND FUTURE WORK

This paper introduced a two phase process to learn TRPs

for mobile robots in office environments. In particular, it is

shown how to transform low-level sensor readings from the

robot into high-level predicates useful for relational learning.

This is a relevant step as it allows to use a wide variety of

algorithms directly from robot traces. The paper also showed

how to learn relational TRPs that can be used to navigate a real

robot on different dynamic and unknown environments. TRPs

naturally incorporate continuous actions, suitable for a robotic

domain, and are able to deal with unexpected events, like

moving obstacles. The paper showed how to learn hierarchical

TRPs using a simple grammar induction algorithm. This opens

the possibility of incremental learning of more complex tasks,

given some previously learned tasks. The learned TRPs were

used for navigation tasks on different environments with

dynamic objects on simulation and a real robot with very

promising results. As part of our future work, we are working

on learning more concepts, and more basic and complex TRPs

to solve other tasks, like going to several goals. We are also

working on a better merging algorithm for grammars.

REFERENCES

[1] S. Muggleton, Proceedings of the International Workshop of Inductive

Logic Programming, Viana de Castelo, Portugal, 1991.
[2] S. Benson and N. J. Nilsson, “Reacting, planning, and learning in an

autonomous agent,” Machine Intelligence, vol. 14, pp. 29–62, 1995.
[3] D. Michie and C. Sammut, “Behavioral clones and cognitive skill

models,” Machine Intelligence, vol. 14, pp. 395–404, 1995.
[4] C. D’Este, M. O’Sullivan, and N. Hannah, “Behavioural cloning and

robot control,” in Proceedings of International Conference on Robotics

and Applications, International, Salzburg, Austria, June 2003.
[5] M. W. Kadous, C. Sammut, and R. K.-M. Sheh, “Autonomous traversal

of rough terrain using behavioural cloning,” in Proceedings International

Conference on Autonomous Robots and Automation, Palmerston North,
New Zealand, 2006.

[6] E. F. Morales and C. Sammut, “Learning to fly by combining
reinforcement learning with behavioural cloning,” in Proceedings

of the twenty-first international conference on Machine learning

table of contents, Banff, Alberta, Canada, 2004. [Online]. Available:
citeseer.ist.psu.edu/morales04learning.html

[7] A. Cocora, K. Kersting, C. Plagemann, W. Burgard, and L. De Raedt,
“Learning relational navigation policies,” in Proc. of the IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),
Beijing, China, 2006.

[8] V. Klingspor, K. Morik, and A. D. Rieger, “Learning concepts
from sensor data of a mobile robot,” Machine Learning,
vol. 23, no. 2-3, pp. 305–332, 1996. [Online]. Available:
citeseer.ist.psu.edu/klingspor96learning.html

[9] S. Zelek and M. D. Levine, “Spott: A mobile robot control architecture
for unknown or partially known environments,” AAAI Spring Symposium

on Planning with Incomplete Information for Robot Problems, 1996.
[10] K. Broda and C. J.Hogger, “Designing and simulating individual teleo-

reactive agents,” Poster Proceedings, 27th German Conference on Arti-

ficial Intelligence, Ulm, 2004.
[11] T. Konik and J. E. Laird, “Learning goal hierarchies from structured

observations and expert annotations,” Machine Intelligence, vol. 64, pp.
263–287, 2006.

[12] S. Hernández and E. Morales, “Global localization of mobile robots
for indoor environments using natural landmarks,” IEEE International

Conference on Robotics, Automation and Mechatronics (RAM), 2006.
[13] A. Srinivasan, “The aleph 5 manual.”
[14] R. Agrawal and R. Srikant, “Fast algorithms for mining association

rules,” in Proc. of the 20th Int’l Conference on Very Large Databases,
Santiago, Chile, 1994.

[15] H. Avilés, E. Corona, A. Ramı́rez, B. Vargas, J. Sánchez, L. Sucar, and
E. Morales, “A service robot named markovito,” IEEE Latin American

Robotic Symposium / IX Congreso Mexicano de Robotica (4th IEEE

LARS 07 / IX COMRob 07), 2007.

