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Resumen 

Este artículo propone una técnica novedosa y práctica de aprendizaje basada en modelos 
con refinamiento iterativo para resolver procesos de decisión de Markov (MDPs) 
continuos. Inicialmente, se aprende un modelo aproximado usando métodos de 
muestreo convencionales, el cual se resuelve para obtener una política. Iterativamente, 
el modelo aproximado se refina con base en la varianza de los valores de la utilidad 
esperada. En la fase de aprendizaje, se obtienen las funciones de recompensa inmediata 
y de transición mediante muestras del tipo estado-acción.  Éstas primero se usan para 
inducir un árbol de decisión que predice los valores de recompensa y a partir del cual se 
construye una partición inicial del espacio de estados. Posteriormente, las muestras 
también se usan para inducir un MDP factorizado. Finalmente, la abstracción de espacio 
de estados resultante se refina dividiendo aquellos estados donde pueda haber cambios 
en la política. Las contribuciones principales de este trabajo son el uso de datos para 
construir una abstracción inicial, y el proceso de refinamiento local basado en la 
varianza de la utilidad.  La técnica propuesta fue probada en AsistO, un sistema 
inteligente de recomendaciones para la operación de plantas generadoras de 
electricidad, donde resolvimos dos versiones de un problema complejo con variables 
híbridas continuas y discretas. Aquí mostramos como nuestra técnica aproxima una 
solución aun en casos donde los métodos estándar explotan computacionalmente.  
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Abstract 

This paper proposes a novel and practical model-based learning approach with iterative 
refinement for solving continuous (and hybrid) Markov decision processes. Initially, an 
approximate model is learned using conventional sampling methods and solved to 
obtain a policy. Iteratively, the approximate model is refined using variance in the 
utility values as partition criterion. In the learning phase, initial reward and transition 
functions are obtained by sampling the state–action space. The samples are used to 
induce a decision tree predicting reward values from which an initial partition of the 
state space is built. The samples are also used to induce a factored MDP. The state 
abstraction is then refined by splitting states only where the split is locally important. 
The main contributions of this paper are the use of sampling to construct an abstraction, 
and a local refinement process of the state abstraction based on utility variance. The 
proposed technique was tested in AsistO, an intelligent recommender system for power 
plant operation, where we solved two versions of a complex hybrid continuous-discrete 
problem. We show how our technique approximates a solution even in cases where 
standard methods explode computationally.   
 
Keywords: Recommender systems, power plants, Markov decision processes, 

abstractions.  

1. Introduction 

Markov Decision Processes (MDPs) [18] have developed as a standard method for 
decision-theoretic planning. Traditional MDP solution techniques have the drawback 
that they require an explicit state representation, limiting their applicability to real-world 
problems. Factored representations [6] help to address this drawback via compactly 
specifying state-spaces in factored form by using dynamic Bayesian networks or 
decision diagrams. Given that algorithms for planning using MDPs still run in time 
polynomial in the size of the state space, they do not guarantee that a factored model for 
high dimensional domains will be solved efficiently. Abstraction and aggregation 
methods give us the tools to deal with these difficulties so that planning in real world 
problems can become tractable. However, these techniques generally apply only to 
problems with discrete state and action spaces.  



  
 
The problem with continuous MDPs (CMDPs) is that if the continuous space is 
discretized to find a solution, the discretization causes yet another level of exponential 
blow up. This “curse of dimensionality” has limited the use of the MDP framework, and 
overcoming it has become a relevant topic of research.  
Two recent methods to solve CMDPs are grid-based MDP discretizations and 
parametric approximations. The idea behind the grid-based MDPs discretizations 
technique is to discretize the state-space in a set of grid points and approximate value 
functions over such points. Unfortunately, classic grid algorithms scale up exponentially 
with the number of state variables [5]. An alternative way to solve a continuous-state 
MDP is to approximate the optimal value function ( )V s  with an appropriate parametric 
function model [4]. The parameters of the model are fitted iteratively by applying one 
step Bellman backups to a finite set of state points arranged on a fixed grid or obtained 
through Monte Carlo sampling. A least squares criterion is used to fit the parameters of 
the model. In addition to parallel updates and optimizations, on-line update schemes 
based on gradient decent [4] can be used to optimize the parameters. The disadvantages 
of these methods are their instability and possible divergence [3].  
Several authors, e.g., [17], use the notions of abstraction and aggregation to group states 
that are similar with respect to certain problem characteristics to further reduce the 
complexity of the representation or the solution. Feng [11] proposes a state aggregation 
approach for exploiting the structure of MDPs with continuous variables. The state 
space is dynamically partitioned into regions where the value function is the same 
throughout each region. Li et al. [15] address hybrid state spaces using a discretization-
free approach called lazy approximation and present a comparison with the Feng’s work 
finding that their method produced reasonable and consistent results in a more complex 
version of the planet rover domain (also used by Feng). Hauskrech [13] shows that 
approximate linear programming is able to solve factored continuous MDPs. Similarly, 
Guestrin [12] presents a framework to model and solve factored MDPs for both discrete 
and continuous problems in collaborative settings.  
Our approach is related to this work; however it differs on several aspects. First, it is 
based on qualitative models, which are particularly useful for domains with continuous 
state variables. It also differs in the way in which the abstraction is built. We use 
training data to learn a decision tree for the reward function, from which we deduce an 
abstraction called qualitative states. There has been other work on variable-resolution 
grids [16,7], however, most of them start from a uniform grid. The idea of refining an 
initial abstraction for discrete state spaces has been also suggested in [1], however we 
introduce a different refinement criteria. The initial abstraction is refined and improved 
via a local iterative process. States with high variance in their value with respect to 
neighboring states are partitioned, and the MDP is solved locally to improve the policy. 
At each stage in the refinement process, only one state is partitioned, and the process 
finishes when any potential partition does not change the policy. In our approach, the 
reward function and transition model are learned from a random exploration of the 
environment, and can work with both, pure continuous spaces; or hybrid, with 
continuous and discrete variables.  
Algorithms such as like Dyna-Q or prioritized sweeping (e.g., see [21]) from the 
reinforcement learning community, have been used to learn a transition model while 
exploring the environment. In contrast to these and other previous approaches, our 
method learns automatically both an abstraction and a model by just sampling the 
environment. This abstraction is iteratively refined based on local information, making 



the refinement very efficient. Thus, our method is, on one hand, simpler than other 
abstraction and refinement approaches; and on the other hand, it automatically builds 
the model and abstraction. The main contributions are the use of sampling to construct 
an abstraction, and a local refinement of the initial abstraction based on utility variance.  
We have tested our method in a high-dimensional problem in the power plant domain, 
in which the state space can be either continuous or hybrid continuous-discrete. We 
show how our technique approximates a solution even in cases where standard methods 
explode computationally.  
The rest of the paper is organized as follows. The next section describes our domain of 
interest and the associated planning problem. Section 3 gives a brief introduction to 
MDPs and their factored representation. Section 4 develops the abstraction process and 
a procedure to learn such abstraction from data. Section 5 explains the refinement stage. 
Section 6 presents AsistO, a recommender system for power plant operation, which 
implements the notion of qualitative MDPs in its planning subsystem; and the empirical 
evaluation is described. We conclude with a summary and directions for future work.  

2. Application Domain 

Our domain of interest lies on the steam generation system of a combined-cycle power 
plant. This system, which is aimed to provide superheated steam to a steam turbine, is 
basically composed by a recovery steam generator, a recirculation pump, control valves 
and interconnection pipes. A heat recovery steam generator (HRSG) is a process 
machinery capable of recovering residual energy from a gas turbine exhaust gases to 
generate high pressure (Pd) steam in a special tank (steam drum). The recirculation 

pump is a device that extracts residual water from the steam drum to keep a water 
supply in the HRSG (Ffw). The result of this process is a high-pressure steam flow 
(Fms) that keeps running a steam turbine to produce electric energy (g) in a power 

generator. The main control elements associated are the feed-water valve (fwv) and the 
main steam valve (msv). The complete process control domain is shown in figure 1.  
During normal operation, a three-element feed–water control system (eCS) commands 
the feed-water control valve (fwv) to regulate the level (dl) and pressure (pd) in the 
drum. However, this traditional controller does not consider the possibility of failures in 
the control loop (valves, instrumentation, or any other process devices). Furthermore, it 
ignores whether the outcomes of executing a decision will help in the future to increase 
the steam drum lifetime, security, and productivity. So, the problem is to obtain a 
function that maps plant states to recommendations that considers all these aspects. 
Under the MDP framework, the potential failures are considered implicitly in a 
transition function, and the security and productivity goals are included in the reward. 
Thus, MDPs provide an adequate model for this problem; however, standard solutions 
explode computationally and can not deal with continuous variables. Next we give a 
brief review of MDPs, and then we present our method for solving continuous and 
complex MDPs, required for the power plan domain.  



 
Figure 1. A simplified diagram of steam generation process. Aimed to provide superheated steam to 

a turbine, the steam generation system is basically composed of a recovery steam generator, a 

recirculation pump, control valves and interconnection pipes. 

3. Factored Markov Decision Processes 

A Markov decision process (MDP) [18] models a sequential decision problem, in which 
a system evolves in time and is controlled by an agent. The system dynamics is 
governed by a probabilistic transition function Φ  that maps states S  and actions A  to 
new states ′S . At each time, an agent receives a reward R  that depends on the current 
state s  and the applied action a . Thus, they solve the problem of finding a 
recommendation strategy or policy that maximizes the expected reward over time and 
also deals with the uncertainty on the effects of an action.  
Formally, an MDP is a tuple M S A R=< , ,Φ, > , where S  is a finite set of states 

1 n{s … s }, , . A  is a finite set of actions for all states. A S SΦ : × ×  is the state transition 

function specified as a probability distribution. The probability of reaching state s′  by 
performing action a  in state s  is written as ( )a s s′Φ , , . R S A: × → ℜ  is the reward 
function. ( )R s a,  is the reward that the agent receives if it takes action a  in state s .  
For the discrete discounted infinite-horizon case with any given discount factorγ , there 

is a policy π ∗  that is optimal regardless of the starting state and that satisfies the 
Bellman equation [2]:  
 ( ) ( ) ( ) ( )a

s

V s max {R s a a s s V s }π πγ
∈

′ ′= , + Φ , ,∑
S

 (1) 

In Continuous Markov Decision Processes (CMDPs) the optimal value function 
satisfies the Bellman fixed point equation:  

 ( ) [ ( ) ( ) ( ) ]
a

s
V s max R s a a s s V s dsγ

′
′ ′ ′= , + Φ , ,∫  (2) 

Two methods for solving these equations and finding an optimal policy for an MDP are: 
(a) dynamic programming [18] and (b) linear programming.  
In a factored MDP, the set of states is described via a set of random 
variables 1 n{X … X }= , ,X , where each iX  takes on values in some finite 

domain ( )iDom X . A state s  defines a value ( )i ix Dom X∈  for each variable iX . The 
transition model can be exponentially large if it is explicitly represented as matrices, 
however, the frameworks of dynamic Bayesian networks (DBN) [10] and decision trees 
[19] give us the tools to describe the transition model and the reward function concisely.  



  
Figure 2. A simple DBN with 5 state variables for one action (left). Influence Diagram denoting a 

reward function (center). Structured conditional reward (CR) represented as a binary decision tree 

(right) 

Let iX  denote a variable at the current time and 'iX  the variable at the next step. The 

transition graph of a DBN is a two–layer directed acyclic graph TG  whose nodes 

are{ }1 1' 'n nX … X X … X, , , , , , see figure 2 (left). Each node 'iX  is associated with a 

conditional probability distribution (CPD) ( ' | ( ' ))i iP X Parents XΦ , which is usually 
represented by a matrix (conditional probability table) or more compactly by a decision 
tree. The transition probability ( )iia s sΦ , , ′  is then defined to be ( ' | )i iP xΦΠ iu  where iu  

represents the values of the variables in ( ' )iParents X .  The next value X', often depends 
on a small  subset of variables (Parents(X')) simplifying the transition  function. 
The reward associated with a state often depends only on the values of certain features 
of the state. The relationship between rewards and state variables can be represented 
with value nodes in influence diagrams, as shown in figure 2 (center). The conditional 
reward tables (CRT) for such a node is a table that associates a reward with every 
combination of values for its parents in the graph. This table is locally exponential in 
the number of relevant variables. Although in the worst case the CRT will take 
exponential space to store the reward function, in many cases the reward function 
exhibits structure allowing it to be represented compactly using decision trees or graphs, 
as shown in figure 2 (right).  

4. Qualitative MDPs 

Although factored MDPs provide important reductions in the representation of 
transition and reward functions, in cases of problems with high dimensionality there can 
still be a large number of states involved. On the other hand, defining a suitable 
partition of the state space by a human expert is not an easy task. In this paper, we 
propose a novel approach to automatically define abstract states, and a procedure to 
approximate a decision model from data.  
In the proposed method, we gather information about the rewards and the dynamics of 
the system by exploring the environment. This information is used to build a decision 
tree [20] representing a small set of abstract states (called the qualitative partition) with 
equivalent rewards, and then is used to learn a probabilistic transition function using a 
Bayesian network learning algorithm [9]. The resulting approximate MDP model can be 
solved using traditional dynamic programming algorithms.  



4.1. Qualitative states 

A qualitative state1 (or q–state), iq , is a set of states (or a partition of the state space in 

the continuous case) that share similar immediate rewards. A qualitative state space, Q , 

is a set of q–states: 1 2 nq q q, , .. , also called the qualitative partition.  

Similarly to the reward function in a factored MDP, the qualitative constrains that 
distinguish regions of the state space with different reward values, can be represented by 
a decision tree called Reward Decision Tree (RDT). Since a qualitative state maps 
directly a reward value, a qualitative partition Q  can also be represented by a binary 
decision tree (Q–tree). In order to obtain a Q–tree, a reward decision tree (RDT) is first 
induced from simulated data and then transformed by simply renaming the reward 
values to q-state labels. Each leave in the Q–tree is labeled with a new qualitative state. 
Even for leaves with the same reward value, we assign a different qualitative state 
value. This produces more states but at the same time creates more guidance that helps 
to produce more adequate policies. Figure 3 illustrates this tree transformation for a 
simple two dimensional case that represents a Temperature-Volume diagram for an 
ideal gas.  

 
Figure 3. Transformation of the reward decision tree (left) into a Q-tree (right). Internal nodes in 

both trees represent continuous variables and edges evaluate whether this variable is less or greater 

than a particular bound. Leaf nodes in the RDT represent rewards, and in the Q-tree are q-states. 

Each branch in the Q–tree denotes a set of constraints for each q–state, iq , that bounds a 
continuous region. For example, a qualitative state could be a region in a 
Temperature Volume−  diagram bounded by the constraints: 306Temp >  and 48Vol > . 
Figure 4 illustrates the constraints associated to the example presented above, and its 
representation in a 2-dimensional space. It is evident that a qualitative state can cover a 
large number of states (if we consider a fine discretization) with similar properties.  

                                                
1Although other authors have used the term qualitative in a temporal sense, this work 
refers to “qualitative” in a relational spatial sense. 



 
Figure 4. In a Q-tree (left), branches are constraints and leaves are qualitative states. A graphical 

representation of the tree is also shown (right). Note that when an upper or lower variable bound is 

infinite, it must be understood as the upper or lower variable bound in the domain. 

4.2. Qualitative MDP Model Specification 

We can define a qualitative MDP as an MDP with a qualitative state space. A hybrid (or 
qualitative–discrete) MDP is a factored MDP with a set of qualitative and discrete 
factors. In this case, we have a set of discrete variables, and the qualitative state space 
Q , which is an additional factor that concentrates all the continuous variables. Initially, 
only the continuous variables involved in the reward function are considered in the 
learning algorithm. Other continues variables are discretized arbitrarily; however, this 
initial discretization is improved in the refinement stage, as described in Section 5. 
Thus, a hybrid qualitative-discrete state is described in a factored form as 

{ }1 nX … X Q= , , ,hs , where 1 nX … X, ,  are the discrete factors, and Q  is a factor that 

represents the relevant continuous dimensions in the reward function.  

4.3. Learning Qualitative MDPs 

The Qualitative MDP model is learned from data based on a random exploration of the 
environment that allows recording state transitions, actions taken, and the associated 
reward values. To better understand how a training data set is recorded, consider the bi-
dimensional domain described above, but now assuming that the system state can be 
modified by changing the temperature and volume values. The possible actions are 
increase/decrease the temperature, increase/decrease the volume, and do nothing (the 
null action). Figure 5 shows graphically a possible data trace produced by the random 
application of different actions on the system. Each dot in the figure represents a 
particular state (volume and temperature) that results after the application of a particular 
action. Each state is associated also to a reward value, which corresponds to the 
different regions in figure 5. Thus, after exploring the environment we obtain a data set 
that records for each action, sequentially from 1t =  to N , the action, resulting state and 
reward. So for the gas example, each data record will contain: 

iData =(Temperature, 

Volume, Action, Reward). From this data set, a decision model is obtained, and then 
solved using the value iteration algorithm.  
Formally, this idea can be described as follows. Given a set of state transitions 
represented as a set of random variables, { }1

jO += , ,t tX A X , for 1 2j N= , ,..., , for each 

state and action A  executed by an agent, and a reward (or cost) jR  associated to each 
transition, we learn a qualitative factored MDP model:  



1. From a set of simulated transitions { }O R,  induce a reward decision tree, 

RDT , that predicts the reward function R  in terms of continuous and discrete 
state variables, 1 kX … X Q, , , . For the gas example, this tree corresponds to the 
one shown in Figure 3, left.  
2. Obtain from the decision tree ( RDT ) the set of constraints for the 
continuous variables relevant to determine the qualitative states (q–states) in the 
form of a Q-tree. In terms of the domain variables, we obtain a new variable Q  
representing the reward-based qualitative state space whose values are the q–
states. This transformation is illustrated in Figure 3 for the ideal gas example, 
with the resulting Q-tree (right). This Q-Tree is shown again in Figure 4 (left), 
which also shows the qualitative partition obtained (right), where the state space 
is divided into 5 qualitative states, 0 1 4q q …q, , .  

3. Qualify data from the original sample in such a way that the new set of 
attributes is the Q  variable, the remaining discrete and continuous variables not 
included in the decision tree, and the action A . The continuous variables not 
considered in the RDT tree are discretized in a coarse way with equal size 
intervals (this initial discretization is improved in the refinement stage). This 
transformed data set is called the qualified data set. For the example, the state in 
each record in the data set will be represented by the corresponding qualitative 
state, 0 4q …q , instead of the numeric values of the original state variables, Vol. 
and Temp. These q–states are determined in terms of the partition of the state 
space, as shown in Figure 4.  
4. Format the qualified data set in such a way that the attributes follow a 
temporal causal ordering. For example variable tQ  must be set before 1tQ + , 1tX  

before 1 1tX + , and so on. The whole set of attributes should be the variable Q  in 

time t , the remaining system variables, 1 kX … X, , , in time t , the variable Q  in 

time 1t + , the remaining system variables in time 1t + , and the action A . Thus, 
for the gas example, each record in the qualified data set will be: ( )i i i tq a r, , , 

where iq  is the q–state, ia  is the action, ir  is the reward, and t  is time, from 

0t =  to t N=  ( N  is the number of steps in the exploration).  
5. Prepare data for the induction of a 2-stage dynamic Bayesian net. 
According to the action space dimension, split the qualified data set into A| |  
sets of samples, one for each action. In the gas case there will be 5 sets, one for 
each possible action: increase/decrease the temperature, increase/decrease the 
volume, and do nothing.  
6. Induce the transition model for each action, jA , using a Bayesian 

network learning algorithm [9]. So for our running example, we will induce a 
DBN to represent the transition model for each of the 5 actions, all in terms of 
the q–state variables.  



 
Figure 5. Exploration trace for the ideal gas domain. Each dot in the figure represents a data point 

in the exploration, with its corresponding state (Vol. and Temp.), reward (determined by the 

region), and action applied to reach this state. Thus, by applying random actions on the system, it is 

possible to capture the effects of these actions (new states) and the immediate reward received per 

state. 

At the end of this process we have learned a qualitative MDP model of the problem 
based on a random exploration of the environment, and the qualitative partition obtained 
from the reward decision tree. In this model, the transition function is represented as a 
set of 2–stage DBNs, one per action, and the reward by a decision tree; both in terms of 
the q–state variables. As mentioned before, if there are additional variables that are not 
part of the reward function, these are just incorporated into the model.  
This initial model represents a high-level abstraction of the continuous state space and 
can be solved efficiently using a standard technique, such as value iteration, to obtain 
the optimal policy. For instance, in the ideal gas example, the resulting policy will give 
the optimal action for each q-state, 0 4q …q .  

This approach has been successfully applied in several domains; however, in some 
cases the initial abstraction can miss some relevant details of the domain and 
consequently produce sub-optimal policies. We improve this initial partition through a 
refinement stage described in the next section.  

5. Qualitative State Refinement 

We have designed a value-based algorithm that recursively selects and partitions 
abstract states with high utility variance. If there are continuous dimensions that were 
not included in the initial Q-tree (because they do not affect the reward), these are 
incorporated at this stage. For this, we simply extend the Q-tree with the additional 
dimensions with an initial, coarse discretization. Before we see in detail the refinement 
algorithm, we need to define some relevant concepts.  
The border of state, is , is defined as the set of states, { }1j nS s … s= , , , such that k js S∈  

is a neighbor of is ; that is, they are adjacent in at least one dimension. A region is 

defined as i i jr s S= ∪ , that is, a state and its border states. For instance, in the ideal gas 

example, 0q  and 4q  are the border states of 3q , and { }3 3 0 4r q q q= , , , see figure 4.  

The utility variance of a region, ir , that corresponds to state is , is defined as:  

 2 2

1

1
( )

i n

n

r qk r

k

S V V
n =

= −∑  (3) 



where n  is the number of border states for is , qkV  is the value of each state, ks , in the 

region, and 
nrV  is the average value of the states in the region. The value for each state 

is obtained when we solve the qualitative MDP, as described in the previous section.  
The utility gradient gives the difference in utility between one state, 

is , and one of its 

border states, 
ks , and it is defined as follows:  

 | |i i kV Vδ = −  (4) 

 
The hyper-volume of a state, 

is , corresponds to the space occupied by the state and its 

obtained by the product of its d  dimensions:  

 
1

d

i l

l

hv x
=

= ∏  (5) 

where 
lx  is the value for each dimension l .  

The refinement algorithm has as input the initial qualitative partition obtained in the 
learning stage and an initial solution for this qualitative MDP. It also requires a 
minimum hyper-volume for a state defined by the user, as this depends on the 
application. It proceeds as follows:  

1. Initialize all the states as unmarked.  
2. While there is an unmarked qualitative state greater than the minimum 
hyper-volume:  

(a) Save a copy of the previous MDP (before the partition) and its 
solution.  
(b) Obtain the utility variance for each state in its corresponding 
region.  
(c) Select a qualitative state with the highest variance in its utility 
value with respect to its neighbors, name it 

iq .  

(d) For the qualitative state 
iq  select a continuous dimension to split 

it, from ( 0 1 nx x … x, , , ), such that it has the highest utility gradient with 

respect to its border states along this dimension.  
(e) Bisect the q-state iq  over the selected dimension (divide the state 
in two).  
(f) Solve the new MDP, which includes the new partition, using 
value iteration.  
(g) If the new MDP has the same policy as before, mark the original 
state iq  before the partition, and return to the previous MDP, otherwise, 

accept the refinement and continue.  
3. Return the final partition and its solution.  

 
The refinement process is now described for the ideal gas example. Figure 6 illustrates 3 
steps in the abstraction process for the example in figure 4. The initial partition is shown 
at the top–left. Let us assume that the state 0q  has the highest variance in utility with 

respect to its neighbors, 1 2 3 4q q q q, , , ; and that Vol.  is the dimension with the highest 

difference in utility. A bisection is then inserted to split state 0q  in the new states 0q  

and 1q  (Step 1, top–right). The remaining states are relabeled to preserve a progressive 

numbering. After solving the new MDP and verifying that the policy has changed, the 
bisection is accepted and the algorithm proceeds to Step 2 (bottom-left). In this case 1q  



is the state with the highest variance and it is split on the Temp.  dimension which is the 
dimension with the highest difference in utility. However, after solving the new MDP, 
the policy does not change, so the division is canceled and it returns to the previous 
partition, as depicted in the bottom-right of figure 6. Thus, this state will be marked and 
not considered for subsequent partitions.  
 

 
Figure 6. An example of the qualitative refinement process for a two-dimension state space. Initial 

partition: the initial solution obtained before, for each q–state its value and optimal action are 

shown. Step 1: the state with highest variance 0q  is bisected along the dimension with highest 

variance, Vol. Note that the q–states have been renamed. Step 2: now 1q  is partitioned along the 

Temp. dimension. Step 3: as there is no change in policy for the partition in Step 2, it returns to the 

partition in Step 1.  

Next we describe how the qualitative MDP approach was applied in the power plant 
domain.  

6. AsistO: A Recommender System for Power Plants 

AsistO is an intelligent assistant that provides useful recommendations for training and 
on-line assistance in the power plant domain. AsistO was built specially to demonstrate 
the potential of the qualitative MDP approach to solve planning problems in complex 
domains. The recommender system is coupled to a power plant simulator capable to 
partially reproduce the operation of a combined cycle power plant (CCPP), in particular, 
the steam generation process (HRSG), described in section 2.  
The simulator (figure 7) is provided with controls for setting up the power conditions in 
the gas and steam turbines (nominal load, medium load, minimum load, hot standby 
condition, low speed, and start-up). It includes an operation panel to configure load 
demands, unit trips, shutdowns, and other high level operations in different plant 
subsystems. It also includes a visualization tool for tracking the behavior in time of a set 



of variables selected by the user, and a function for recording historical data.  

 
Figure 7. A screen shot of human–computer interface of the steam generation simulator. The 

simulator provides controls, an operation panel, and data visualization tools. 

6.1. General Architecture 

The AsistO recommender system is composed by a decision model base, a simulation 
data base, and the following subsystems: i) data management, ii) model management, 
iii) planning subsystem, and iv) user interface. Figure 8 shows AsistO’s general 
architecture.  
The simulation data base allocates the process signals generated by the simulator 
(outputs), and the control signals (inputs) sent by an instructor to set up a specific 
electric load or failure condition in the process. On the other hand, the decision model 
base stores the qualitative MDP model of the process and its solution in form of a 
policy. That is, it has the optimal action that will be recommended to the operator for 
every state of the plant subprocess considered. The policy is based on a factored 
representation of the plant q-states (see section 4.2), and represented in the form of 
algebraic decision diagrams (ADDs) [14].  

 
Figure 8. AsistO’s general architecture. Given a state of the plant obtained from the simulation 

data base, the planning subsystem queries a recommendation to the decision model base. This 

recommendation is presented to the operator via the user interface. 



The data management subsystem is composed by a set of tools for data administration 
and analysis. The model management subsystem manipulates the transition and reward 
models, and the utility and policy functions stored in the decision model base. The 
transition model management system was implemented in Elvira [8] (which also was 
adapted to compute Dynamic Bayesian Networks), and the reward model management 
system using Weka [22]. The management of the policy and utility models is carried out 
using SPUDD [14], which includes model query and printing capabilities.  
The planning subsystem in AsistO is also based on SPUDD [14], which implements a 
very efficient version of the value iteration algorithm for MDPs as inference method. 
The planning subsystem first approximates the decision models using the data allocated 
in the simulation data base. Transition and reward models are respectively learned using 
the K2 [9] algorithm available in Elvira, and the C4.5 algorithm available in Weka 
(J4.8) [20]. Then it uses these models and its inference algorithms to obtain an optimal 
policy, from which the recommendations that will be given to the operator are obtained. 
The resulting transition and reward functions, and policy and utility functions are then 
stored in the decision model base. The planning subsystem transforms the continuous 
plant state into the qualitative representation described in sections 4 and 5 for problem 
specification and policy query purposes.  
The user interface provides the communication with the environment. In this case, the 
power plant simulator is the environment, and the operator is the actor that executes the 
recommendations that modify the environment. The user interface provides controls for 
command execution, load selection, failure simulation, and recommendation display. 
This module, which can also be used as a supervision console, includes the controls for 
random exploration and system sampling for the learning purposes described in 
section 4.3. It also provides a graphical interface to observe how fast the correct 
execution of recommendations impact on the plant operation. The main screen of the 
user interface is shown in Figure 9.  
 

 
Figure 9. User Interface. It is the graphical link between the recommender system and the operator. 

It includes supervision features, problem specification utilities, display console, and manual control 

capabilities. 



Currently AsistO is used for operator training. In a training session, the planning 
subsystem obtains the plant q-state from the simulation data base. Then it queries the 
policy function for the current q-state in the model base to obtain a recommendation. 
Both, current q-state and recommendation are shown graphically to the operator through 
the user interface, who finally decides whether or not to execute the recommended 
command. The sequential execution of these recommendations will help the operator to 
get the plant to an optimal operating condition.  

6.2. Experimental Results 

We used AsistO to run two sets of experiments with different complexities. In the first 
set of experiments, we specified a 5-action hybrid problem with 5 variables 
( Fms Ffw Pd g d, , , , ). We also defined a simple binary reward function based on the 
safety parameters of the drum ( Pd  and Fms ). The relationship between their values 
and the reward received can be seen in figure 10 (left). Central black squares denote 
safe states (desired operation regions), and white zones represent non-rewarded zones 
(indifferent regions). To learn the model and the initial abstraction, samples of the 
system dynamics were gathered using simulation. Black dots in figure 10 (right) 
represent sampled states with positive reward, red (gray) dots have no reward, and white 
zones were simply not explored. Figure 10 (left) shows the state partition and policy 
found (arrows) by the learning system. For this simple example, although the resulting 
policy is not very detailed ( qstates  are quite large), it directs the plant to the optimal 
operating condition (black region in the middle). When analyzed by an expert operator, 
this control strategy is near-optimal in most of the abstract states.  
 

  
Figure 10. Process control problem. Left: qualitative state partition in terms of the Steam Flow and 

Drum Pressure. For each q–state it shows the optimal action (arrows). The black region represents 

the desired operating state (high reward). Right: an image of the exploration trace, where black 

dots represent sampled states with positive reward, red dots (gray) are sampled states with no 

reward, and white regions are unexplored zones. 

We solved the same problem but adding two extra variables, the position for valves 
msv  and fwv , and using 9 actions (all the combinations of open-close valves msv  and 
fwv ). We also redefined the reward function to maximize power generation, g , under 

safe conditions in the drum. Although the problem increased significantly in 
complexity, the policy obtained is “smoother” than the 5-action simple version 
presented above. To give an idea about the computational saving, for a fine 
discretization (15,200 discrete states) this problem was solved in 859.2350 seconds, 



while our abstract representation (40 q-states) took only 14.2970 seconds. In both cases, 
the solutions were found using the SPUDD system [14].  
In summary, the first experiment shows that the proposed approach obtains 
approximately optimal policies; while the second experiment demonstrates a significant 
reduction in the solution time in comparison to a fine discretization of the state space.  

7. Conclusions and Future Work 

In this paper, we presented a novel and practical model-based learning approach with 
iterative refinement for solving continuous and hybrid Markov decision processes. In 
the first phase we use an exploration strategy of the environment and a machine learning 
approach to induce an initial state abstraction. We then follow a refinement process to 
improve the initial abstraction by performing local tests on the variance of utility values. 
Our approach creates significant reductions in space and time allowing to solve 
efficiently continuous and hybrid problems. We tested our method in a power plant 
domain using AsistO, showing that this approach can be applied to complex domains 
where a simple dicretization approach is not feasible or computationally too expensive.  
Since AsistO is aimed either for operation assistance and operator training, we are 
currently developing an extra module that explains the recommended commands 
generated by the planning subsystem and, provides, after a bad decision, the reason why 
a recommendation should have been followed. We plan to extend the planning 
subsystem to support partially observable MDPs, and use the AsistO architecture in 
other power plant applications.  
As future research work we will like to improve our refinement strategy to select a 
better segmentation of the abstract states and consider alternative search strategies. We 
also plan to test our approach in other domains.  
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