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Abstract. Water systems often allow efficient water uses via water reuse
and/or recirculation. The design of the network layout connecting water-
using processes is a complex problem which involves several criteria to
optimize. The use of the water pinch approach to define which of the
effluents from unitary operations are most convenient to reuse is a good
alternative used by some practitioners. Previously papers have presented
an approach to minimize the freshwater consumption and infrastructure
cost, which had been tested with real data from the Cuernavaca city
water distribution network with good results [14, 15]. One of the chal-
lenges identified from previous work, was the necessity to incorporate the
dynamic behavior of distribution systems. In this paper the response of
the optimization model to changes in the mass charges of contaminants
effluents from unitary operations is presented. The test scenario is the
distribution system of Cuernavaca México.

1 Introduction

Water pinch technology (WPT) evolved out of the broader concept of process in-
tegration of materials and energy and the minimization of emissions and wastes
in chemical processes. WPT can be seen as a type of mass-exchange integration
involving water-using operations, that enables practicing engineers to answer im-
portant questions when retrofitting existing facilities and designing new water-
using networks. There are three basic tasks in WPT: a) identification of the
minimum freshwater consumption and wastewater generation in water-using op-
erations (analysis), b) water-using network design to comply with the flow rate
targets for freshwater and wastewater through water reuse, regeneration, and
recycling (synthesis), and c) modification of an existing water-using network
to maximize water reuse and minimize wastewater generation through effective
process changes (retrofit).

Most WPT problems are formulated as non linear highly restricted program-
ming problems [1, 9, 10]. Important efforts have aimed to make the mathematical
models more robust and applicable to real world problems [2, 5, 8]. Other efforts
have aimed to apply WPT technology to other fields such as design and retrofit
of urban distribution systems [3, 14, 15].
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In general, WPT traditionally minimizes freshwater flow rate entering a sys-
tem, using mass balance and the concentrations of contaminants at the inlet
and outlet in all water-using operations as restrictions. Because of the diverse
types of water-using operations, treatment effectiveness and cost, and types of
contaminants, the criteria for efficient use of water is inherently non linear with
multiple and conflicting objectives [2, 8, 9]. Some of the criteria that can easily be
identified are: equipment cost minimization, maximization of reliability (amount
of contaminant captured at treatment plants) and minimization of wastewater
production.

In [15] an optimization bi-objective model was presented and tested with
real data from the Cuernavaca city water distribution network considering sta-
tic behavior of the mass charges from unitary operations. The model was solved
using reduced gradient over a linear combination of the two objective functions
and MDQL (Multiobjective Distributed Q-Learning). Two objectives were con-
sidered in [15], freshwater minimization entering the system and infrastructure
cost. Proposed optimization model was applied over three test cases: 1) bench-
mark problem with four unitary operations and one contaminant; 2) real world
industrial problem with ten unitary operations and four contaminants proposed
in literature [10], 3) the Cuernavaca city water distribution network retrofit
problem with six unitary operation two contaminants and three different fresh-
water sources. In this work the application of an heuristic approach used to
solve Markov decision processes MDQL were presented, comparison of results
were performed over those obtained for the same problems but applying an ag-
gregated approach solved using reduced gradient method. The objective of the
cited work was to demonstrate the capabilities of MDQL in the solution of highly
constrained optimization problems with real data.

In many real world applications, the values of the variables governing the
problem can change over time, displacing the optimum and creating what is
known as a non-stationary problem. The goal for this type of problems is to
maintain an optimal condition in the face of varying conditions of the envi-
ronment [20]. The search of the optimum then becomes a continuous process.
According to the speed of movement of the optimum, it may be necessary to
give the task to an automaton [20], but if the position of the optimum in a
dynamic process is shifting very rapidly, the way in which the search process fol-
lows the extrema takes on a greater significance for the overall quality. In these
cases iterative methods such as dynamic programming or stepwise optimization
of Bellman are more adequate [20].

MDQL has strong affinity with the characteristics of dynamic programming,
it satisfies Bellman’s optimum principle [12].

The current study builds on prior work by considering the dynamic behavior
of distribution systems in the optimization process. In this paper mass charges
or loads of contaminants change in time. The capabilities of MDQL to track the
moving optimum is evaluated graphically with the evaluation of Pareto solutions
obtained after convergence of the algorithm.
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2 Mathematical formulation

The mathematical model describing an industrial water demanding process con-
siders two main components: a) the available freshwater sources to satisfy de-
mands, and b) the water-using operations described by loads of contaminants and
concentration levels. An example of two sources and two operations is sketched in
Figure 1. This figure represents with rectangles the two unitary operations (Oi),
and with solid lines on the left side of the operations their corresponding fresh-
water demands (fi). Wastewater from operations are represented with dashed
lines on the right side of operations. The rest of the connections represent all the
potential links between unitary operations (water reuse), leaks, and treatment
plants. The direction arrow heads at the end of lines indicate the direction of
flux.

The design task is to find the network configuration that minimizes the over-
all demand for freshwater,

∑

fi, (and consequently reduce the wastewater vol-
ume

∑

Wi) compatible with minimum investment cost. In order to complete
the design task, the optimization problem is stated in terms of low freshwa-
ter consumption, a suitable network topology for water reuse, Xi,j , and a low
investment cost.
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Fig. 1. Block diagram of a water-using system with two sources and two operations.
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Unitary operations of demanded water are defined through their contaminant
loads, required flow rates, and allowable minimal and maximal contaminant
concentrations at influxes and discharges.

The objective functions for freshwater consumption minimization and for
infrastructure minimization are represented by Equations 1 and 2.

MinZ1 = F1 =
∑

j

cstj + TPC, (1)

MinZ2 = F2 =
∑

i

fi (2)

Where: F1 is the total cost of the distribution network considering the con-
nection of freshwater sources to unitary operations receiving water directly, and
the connection for reusing water between unitary operations. The total distri-
bution network cost is composed by the sum of the partial costs, cstj , of the
pipe segments used for connecting freshwater sources to unitary operations and
unitary operations to unitary operations, and TPC, the treatment plant con-
struction cost that applies only for new treatment infrastructure. In F1 we are
not considering maintenance and rehabilitation cost because the information
required to estimate this type of cost is not sufficiently validated for local con-
ditions of Cuernavaca. But also because the infrastructure cost is much greater
than maintenance and rehabilitation cost, and for the economic rule that the
infrastructure designed will be used for a payable service and the cost of the ser-
vice is estimated, most of the times, considering production costs which consider
rehabilitation and maintenance cost.

F2, is the total freshwater demanded by the system, obtained by the partial
demands of freshwater from each of the unitary operations in the system. Partial
demands from unitary operations, say operation Oi, are represented as fi. That
is fi is the partial freshwater demand of operation Oi.

2.1 Infrastructure cost

Evaluation of the first objective function, F1, depends only on the pipe segment
costs in the network. These costs are represented as cstj, and depend on three
variables (see Equation 3): a) pipe length, Lj; b) cost per unit length, PCj ;
which depends on the pipe diameter required to transport the demanded flow of
water, Dj; and c) a cost factor, CFj , related to pipe materials required to resist
corrosive effects of contaminants.

cstj = Lj × PCj × CFj (3)

As previously mentioned, PCj depends on the minimum pipe diameter, Dj =
f(Qj), required to transport the water flow through the pipe. The minimum
diameter, Dminj

, is obtained applying Equation 4; deduced from the definition
of flow (Q = velocity/area) considering maximum velocities of water in pipes
of 2.5m/s. Dminj

is approximated to the closest upper commercial diameter.
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Table 1 shows diameters and cost per unit length for commercial pipes considered
in this work. The data in Table 1 is only demonstrative and can be substituted
with real data from local markets.

Dmin = 0.714
√

Q (4)

where: Dmin is the minimal pipe diameter in mm required to transport flow rate
Q ; Q ∈ {fi, Xi,j , Wi}∀i, j and is given in m3/s.

Table 1. Cost per unit length for commercial diameter pipes.

Diameter (mm) PC $/m Diameter (mm) PC $/m

99 4.8 500 40.9

150 5.0 610 42.6

200 8.9 762 45.9

250 12.9 838 54.6

300 17.7 1, 016 69.9

350 23.6 1, 118 83

400 25.6 1, 219 94

450 34.1 1, 372 110

In a similar manner, the factor CFj is related to the capacity of the pipe
segments to resist corrosive effects due to the presence of contaminants in water
flows. Values for the CFj factor are included in Table 2, calculated considering
local prices in Mexico for non corrosive pipes.

Table 2. Cost factors for pipes resistant to abrasive effects of contaminants.

Contaminant concentration (mg/l) CF

0 ≤ c ≤ 50 1.25

50 < c ≤ 100 1.5

100 < c ≤ 150 2.0

150 < c ≤ 200 3.0

200 < c ≤ 500 5.0

500 < c 10.0

Finally the treatment plant construction cost considered in this work is 10$/l,
that is the construction cost in monetary units per liter of treatment capacity
for the plant or plants.

2.2 Freshwater demand

To guarantee steady state conditions in the system, it is necessary to restrict
the objective functions by the mass balance between unitary operations, and by
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the maximum and minimum allowed contaminant concentrations on the influxes
and discharges of operations [10].
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Fig. 2. General structure for mass balance.

The flow-rate required in each unitary operation is related to the mass load
of contaminants (∆mi,k,tot) discharged by operations. This is described in Equa-
tion 5.

fi = maxc

∆mi,k,tot

cmax
i,k,out − cmax

i,k,in

(5)

where fi is the freshwater flow rate for operation Oi; ∆mi,k,tot is the total mass
transfer for each contaminant, k, to the water used at operation Oi (this term
is also known as the contaminant mass charge [3] and is expressed in kg/h);
cmax
i,k,out and cmax

i,k,in are the maximum allowed concentration of contaminant k on
the discharge and influx of operation Oi, in mg/l respectively.

The optimization model depends on the mass balance between all inlets and
all outlets of water to the operation Oi. According to Figure 2, the expression
for the mass balance has the form shown in Equation 6.

fi +
∑

j 6=i

Xi,j + Xi,R − fi,loss −Wi −
∑

j 6=i

Xj,i −XR,i = 0 (6)

where, Xi,j is the reusable water flow rate from other operations, say Oj , in
operation Oi; Xi,R is the treated water from the wastewater treatment plants
that can be used in operation Oi; fi,loss is the portion considered as water loss in
the operation or water consumption by the operation; Wi is the wastewater flow
rate from operation Oi; Xj,i is the reusable water flow rate from operation Oi in
operations Oj ; and XR,i is the portion of the discharged water from operation Oi

that receives treatment. All flow-rates are represented in m3/h. TP in Figure 2
represents a treatment plant.

Different contaminants k can be considered in the optimization model. This
consideration requires the definition of constraints to restrict the concentration
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of contaminants at the inlets and outlets of operations, in order to guarantee
that water influxes will not affect the operation performance, and to avoid the
violation of environmental or operation norms. The satisfaction of these con-
straints will determine the quantities of fresh and reused water to supply to
operations. The contaminant concentration constraint at the influx of the ith

operation, ci,k,in is defined by Equation 7.

ci,k,in =

∑

j 6=i Xi,jcj,k,out + ck,0Xi,R − fi,lossc
max
i,k,in

∑

j 6=i Xi,j + fi + Xi,R − fi,loss

≤ cmax
i,k,in (7)

where, cj,k,out is the concentration of contaminant, k, at the discharge of opera-
tion Oj , ck,0 is the concentration of contaminant k in the treated water, cmax

i,k,in is
the maximum allowable concentration of contaminant k at the influx of operation
Oi. Concentrations are expressed in mg/l.

The same way, contaminant concentration constraint at the outlet of jth

operation, cj,k,out is defined by Equation 8.

cj,k,out = ci,k,in +
∆mi,k,tot

∑

j 6=i Xi,j + fi + Xi,R − fi,loss

≤ cmax
i,k,out (8)

Finally, non negativity constraints are established according to the following
equations.

Xi,j ≥ 0,

fi ≥ 0,

Lj × PCj × CFj ≥ 0.

3 Multiple Objective Distributed Q-Learning(MDQL)

Taking advantage of some of the characteristics of evolutionary approaches, op-
timization problems can be solved considering the search processes of a Markov
decision problem. Similar ideas have been previously used with the Ant Colony
Optimization Meta-heuristic [6, 7]. The main difference between ant Colony
Meta-heuristic and MDQL is the way value functions are updated, being the
actualization rule used in MDQL based on Markov decision precesses theory
(see [18] and [13]).

MDQL considers a group of agents searching a terminal state, st, in an en-
vironment formed by a set of states, S. The set of states, or environment is
constructed with the division of the parameter space into a fixed number of
parts, considering that all the decision variables can be discretized into a finite
number of divisions. Each division is considered as a state, as illustrated in Fig-
ure 3. An environment with these characteristics allows the agents to propose
values for each one of the decision variables in the problem.
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For each state, s ∈ S, a set of actions, As, is established, see Figure 3.
All state-action pairs have an associated value function, Q(s, a), indicating the
goodness of taking action a in state s, for reaching a terminal state st ∈ S
(complete a task).

sx 2

sx n−1

sk 2

x
min

y z k
min minmin

initial

state

As
0

s
0

x y z k

variables

x
max

y z k
max maxmax

sk p−1

sz 2

sz o−1sy m−1

sy 2

Asx6

final

state

st

Fig. 3. Variable space division for MDQL.

The search mechanism for an agent in MDQL operates when an agent located
in a state selects an action based on its value function, Q(s, a). Most of the
times the agent selects the best evaluated action (the action with the higher
estimated value for Q(s, a)), and sometimes a random action is selected with a
probability ε ≈ 0. Action value functions are updated depending on how useful an
action can be for an agent to reach a terminal state. This behavior is adjusted
with the help of a reward value, r ∈ <, and the value function for the best
evaluated action in the future state reached by the agent after the execution of
the selected action, Q(s′, a′). This update rule is expressed in Equation 9. Each
action moves the agent to a state of the next consecutive variable, i.e. assigns a
value in the discretized space of the next consecutive variable. Figure 4 shows
two traces of two different agents. Each of the two traces represents a solution
to the optimization problem, that is a set of values for the parameters of the
problem. A trace is formed by a value for each of the decision variables in the
problem, which are considered as states in the environment. Actions in states
correspond to the transportation to any of the states or partition in the next
decision variable.

Q(s, a)← Q(s, a) + α

[

r + γ max
a′∈A′

s

Q(s′, a′)−Q(s, a)

]

(9)
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Fig. 4. An example of a path taken by two agents in the MDQL implementation.

where Q(s, a) is the value function for the action, (0 ≤ α ≤ 1) is the learning
step, 1,(0 ≤ γ ≤ 1) is a discount parameter 2 r is an arbitrary reward value,
r ∈ <, γ is a discount factor, s′ and a′ are the next state and the best evaluated
action for s′ respectively.

As an agent explores the state space, the Q(s, a) estimates improve gradually,
and, eventually, each maxa′∈A′

s
Q(s′, a′) approaches: E

{
∑∞

n=1
γn−1rt+n

}

[18].
Here rt is the reward received at time t due the action chosen at time t − 1.
Watkins and Dayan [21] have shown that this Q-learning algorithm converges to
an optimal decision policy for a finite Markov decision process.

In MDQL there is a group of agents, instead of a single agent, interacting
with the environment described above, and since the task for the agents is the

1 In dynamic programming, action-value methods there is the need to estimate actions
values as a sample averages of observed rewards. The obvious implementation is
to maintain, for each action a, a record of all the rewards, r, that have followed
the selection of that action Qt(s, a) =

r1+r2+...+rka

ka
, where r1, . . . , rka are all the

rewards received following all selections of action a prior to play t. So it is easy
to devise incremental update formulas for computing averages with small, constant
computation required to process each new reward. For some action, let Qk denote
the average of the first k rewards (not to be confused with Qk(s, a), the average for
action a at the kth play). Given this average and a (k + 1)st reward, rk+1. then the
average of all k + 1 rewards can be computed by Qk+1 = Qk + α[rk+1 − Qk], being
α = 1

k+1
2 The discount parameter determines the present value for future rewards: a reward

received k time step in the future is worth only γk−1 times of what it would value
as bound as the reward sequence rk is bounded. If γ = 0, the agent is “myopic” in
being concerned only with maximizing immediate rewards.
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construction of the Pareto set, the original Q-Learning [21] algorithm must be
adapted. The main adaptations considered in MDQL are listed below.

– Decision variables in the environment have a predefined order, the agents
move in the decision variables space obeying this order, so the definition of
the values for the decision variables is made in the same order by all the
agents. Each agent assigns a value for one decision variable at a time.

– When all the agents finish (set values for all the decision variables), all
solutions are evaluated using the Pareto dominance criterion. Environments
for non dominated solutions and solutions that violate any constraint remain
in memory to be used in future episodes.

– Agents are randomly assigned to the environments in memory.
– Action values are updated in two stages. The first is made when agents make

a transition using a ‘map’ of the environment. Maps are constructed making
a copy of the environments in memory, and are used by agents to show
to the rest of the agents the experience acquired during the search process
[13]. This experience is represented by the actualization of the action value
functions in the ‘map’ using the Q-learning rule of Equation 9. At the end
of an episode and after the evaluation of solutions, non dominated solutions
receive a positive reward and solutions violating any constraint receive a
negative reward, which is used to update the original value functions in
the environment where they were found (second stage). After the update
procedure, all ‘maps’ are destroyed and a new episode initiates. More details
of MDQL algorithm can be found in [11] and [4].

To verify the MDQL capability to solve the bi-objective optimization problem
presented in section 2 two instances of the problem, proposed in [2] and and
instance of the water distribution system of Cuernavaca problem considering
static contaminant discharges were used. Obtained results and analysis can be
consulted with detail in [15].

The main objective in this paper is to show the response of MDQL to dy-
namic changes of contaminant discharges for the water distribution system of
Cuernavaca.

4 Water distribution system of Cuernavaca

There are three different types of sources of freshwater in the city, according to
the National Water Commission (NWC): 42 water springs supplying 1, 409 l/s,
328 deep wells with a contribution of 1, 503.58 l/s, and water wheels contributing
with 751.50 l/s3.

Water users are classified into five categories according to the water works
user census. A brief description of the kind of exploitation given to water by

3 It is important to note that the net extractions and run offs from the sources re-
ported are greater because they also supply freshwater to other other towns close to
Cuernavaca.
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each category is given below, accompanied with their freshwater demand taken
from [17]. In order to be consistent with the nomenclature previously used, every
category is considered as an unitary operation.

Self service (SS): Users that have its own source to satisfy any kind of needs
including human consumption.

Industrial (I): Users exploiting water to operate only industrial processes in
which there are no human needs to satisfy.

Agriculture (A): Covers all the users exploiting freshwater only for irrigation.
The main crops cultivated in the region of Cuernavaca are rice, corn, grass
and rose trees.

Services (S): Users with high consumption rates, such as hotels, schools, restau-
rants, supermarkets, etc.

Urban & Public (UP): Most of the domestic users in the city, including small
schools, stores, public offices and small workshops.

Multiple (M): Users not classified in any of the previous categories with an
activity that can be classified as a service, but with less consumption rate.

It is relevant to note that part of the demanded water is consumed by the
operation itself, another part cannot be registered and is considered as a loss
caused by leaks occurring along the distribution systems. The rest is declared
as wastewater and is supposedly discharged with the effluents to the receiving
water bodies. For Cuernavaca city this body is the Apatlaco river. It is estimated
that the water consumption and the flow lost in leaks is about 43.41% of the
water demanded.

Two contaminants indexes are considered, in connection with the contami-
nants threw by the operations to the effluents, 5 day biochemical oxygen demand
(BOD5) and total suspended solids (TSS). These indexes are used in the general
water quality index, according to the NOM-001-ECOL-1996 standard, which is
the Mexican official standard for wastewater discharges. Wastewater treatment
plants treat 339.15 l/s to BOD5 and TTS mean concentration of 50 mg/l ac-
cording to the data reported in the literature [3].

Values for both water quality indexes, cmax
i,k,out, were established using infor-

mation from studies that evaluated the degree of contamination in the Apatlaco
river [16]. For both contaminants, the concentration in the freshwater supplied
to the system is considered to be zero, see Table 3.

Figures 5 and 6 show the variation of contaminant charges of the two more
contaminant operations, agriculture and urban and public. The values repre-
sented in both Figures were obtained extracting samples of water and analyzing
its contaminant concentration. Each of the presented values in Figures were
obtained averaging 30 samples, that is, a sample were extracted every three
hours during 30 days. Contaminant charges from the rest four operations are
considered as static because the relative small amount of mass they throw. So,
Figures 5 and 6 can be considered variation laws for contaminants discharged
by monitored users. These laws are used to verify the behavior of Pareto fronts
constructed by MDQL.
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Table 3. Inflow and outflow limit concentration and the min (1) and max (2) conta-
minant mass charge for all current operations in the city of Cuernavaca.

BOD5 TSS
cmax
i,A,in cmax

i,A,out (∆mi,tot)1,2 cmax
i,B,in cmax

i,B,out (∆mi,tot)1,2Operation O
mg/l mg/l kg/h mg/l mg/l kg/h

UP 0.00 220.00 500 1, 767.74 0.00 220.00 450 1, 403.07

S 0.00 220.00 3 9.53 0.00 200.00 2.4 7.56

A 50.00 350.00 150 449.57 50.00 300.00 150 449.57

M 0.00 220.00 0 1.32 0.00 220.00 0 1.05

I 0.00 874.00 20 85.57 0.00 371.00 5 36.32

SS 0.00 220.00 0 0.60 0.00 240.00 0 0.73
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5 Results

The Cuernavaca city water distribution network solution considers the reduction
of water losses from 43 to 25% and the treatment of waste water using the current
operational capacity, that is 339.65l/s.

The MDQL operation parameters used for all test cases were: α = 0.1, γ =
0.9, ε = 0.01 and r = 1 for non dominated solutions and r = −1 for solutions
violating constraints. Previous values for the operation parameters in MDQL

are in some sense typical and were originally suggested in [19]. Some work
related with the sensitivity of the algorithm to these parameters is presented in
[12] using benchmark evaluation functions. The conclusion of the previous work
indicates that the best combination of values for the operation parameters is to
consider α ≈ 0, γ ≈ 1 and ε ≈ 0.

Discharges from unitary operations to effluents were evaluated considering
four different values of the mass charge of each of the two contaminants. Conta-
minant mass charges were taken from the variation curves presented in Figures 5
and 6. Four decrements for each of the two contaminants in the two most con-
taminant operations or users were evaluated, going from the higher to the lower
mass charges. The values of the mass charge considered are included in the legend
of Figures 7 and 8.

Obtained results are presented in Figures 7 and 8 including the best approx-
imation to the Pareto front from ten executions of the algorithm. Criterion used
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to solve the dynamic optimization problem presented considers that agents in
the algorithm start from the Pareto solutions obtained. That is, MDQL starts
with a deterministic environment constructed with fixed values for the value
functions for the first parameter of mass charge in the variation laws; when con-
vergence is reached and a Pareto set is obtained, a new cycle is started, changing
contaminant mass discharge to the next value in the variation laws. Agents start
searching (adapting solutions) from the existing environments which correspond
to the previous solutions obtained for the previous contaminant mass discharge.
Searching for new solutions, from the last Pareto set, given the new values of
contaminants discharges, significantly reduces convergence times.

The leftmost graphic includes the results obtained with the variation mass
charges of BOD5 and TSS by the agriculture user. It can be seen that MDQL

get four solutions in the Pareto front for each different value of the mass charge,
behavior that indicates that there are no more solutions in the Pareto front. The
rightmost graphic includes the Pareto fronts obtained for each value of the mass
charge for the two contaminants discharged by the urban and public user. The
same behavior is appreciated for this operation.

There is not established criteria to determine if a solution is good on not
in problems for which there is no evidence of the location of optimal solutions.
For the problem presented in this paper, and considering that the problem is
formulated with real data about the behavior of contaminants in the effluents
from unitary operations, and there the aim is to identify layouts between unitary
operations that minimize the governing criteria satisfying imposed restrictions,
an alternative is to consult human experts. The solutions generated by MDQL

were given to an expert in process engineering. The expert, analyzed the solutions
and qualified them in terms of its operational correctness.

From Figures 7 and 8 it is possible to conclude that freshwater minimization
criterion is more sensible to the variation of contaminant mass discharges, while
cost remains almost on the same values. It is important to note that MDQL finds
the same number of solutions for all values of contaminant mass discharges, which
is a consistence characteristic of the algorithm and the mathematical model. In
order to verify that there are not other Pareto optimal solutions not identified
MDQL, exhaustive search was made and no other solutions were found.

MDQL performance was evaluated calculating the number of solutions in
the Pareto set (Pareto count) along the execution. Figure 9 shows values for
Pareto count for the first 200 function evaluations. It can be appreciated that
MDQL identifies all solutions in the Pareto set in a relative short number of
evaluations. To evaluate the behavior of MDQL with more function evaluations,
Figure 10 is included. No changes on the number of solutions can be detected,
also solutions remains the same. This behavior can be considered as a consistence
characteristic, as mentioned previously.

Adaptation capability of MDQL to changes in the contaminant mass dis-
charges was also evaluated. Figure 11 shows the comparison of Pareto count
performance metric when a change in the mass discharge occurs. The graph pre-
sented in Figure 11 was constructed considering the first value for the BOD5
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Fig. 9. MDQL Performance on the solution of the Cuernavaca city water distribution
network for the first 200 function evaluations
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Fig. 10. MDQL Performance on the solution of the Cuernavaca city water distribution
network after 1000 function evaluations
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Fig. 11. Adaptation behavior of MDQL for a change on mass discharge rate

contaminant discharged by the agriculture user (451t/h). Change in the mass
of contaminant discharged was made just after 12000 function evaluations were
completed. Pareto count results indicate that after 10 evaluations of objective
functions, only 1 Pareto optimal solution were found; at 100 evaluations 2 Pareto
optimal solutions; and at 500, the four solutions in the Pareto set were obtained
by MDQL. After 500 evaluations, the number of solutions, and solutions remain
the same.

Previous behavior indicate that adaptation mechanism is not as efficient to
adapt Pareto solutions as MDQL is to find initial solutions, that is, MDQL shows
better performance, less function evaluations to reach the Pareto set, starting
with initial values of mass discharges than adapting solutions when changes in
mass discharges occurs, at least for this problem.

6 Conclusions and future work

In this work we presented a multi-objective optimization problem for water dis-
tribution systems using water pinch technology criteria, we evaluated the multi-
objective optimization model, and we verified the capability of MDQL to solve
complex real problems with highly restricted non convex spaces. MDQL capa-
bility to solve dynamic changes in the decision variables was also tested with the
variation of contaminant charges from operations.

The water pinch optimization model considers more than one criteria. The
model considers the reuse of wastewater from operations, wastewater treatment,
consumption flow-rates and leaks in the system. With the reduction of freshwater
demands it is possible to guarantee that the quality of the water served to the
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different users do not violate ecological and sanitary norms. The bi-objective op-
timization model operates considering mass balances between operations, fresh-
water sources, wastewater treatment plants, and wastewater disposal effluents.
Contaminants loads from operations to water flows are restricted by environ-
mental and operational constraints, and their variation in time is implemented
in the model, resulting in a highly non linear dynamic optimization model.

Solutions to water pinch problems, represent important technical challenges
that are only partially solved by the industry. The results presented here rep-
resent an example of how real applications can be solved with the participation
of multidisciplinary teams involving researches from different communities, as in
this case.

As future work we are considering implementing constraints to select more
efficiently different processes. For example, if wastewater treatment technology is
selected in terms of the type of contaminants, the mass remotion could be made
more effective and the system more efficient if the proper process is selected and
optimized in terms of cost and efficiency. Another important aspect to implement
is the cost function, which needs to be extended in order to quantify operation
costs, reuse costs, and other economic factors affecting the operation of a system
with these characteristics.

There is also an interest to increment the precision of Pareto solutions ob-
tained with MDQL, which at this moment depends on partition size adopted for
the parameter space. We believe that creating an adaptive mechanism for the
size of partitions can be helpful in the approximation to more precise solutions.
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