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Abstract. Instance-based learning algorithms are widely used due to
their capacity to approximate complex target functions; however, the
performance of this kind of algorithms degrades significantly in the pres-
ence of irrelevant features. This paper introduces a new noise tolerant
instance-based learning algorithm, called WIB-K, that uses one or more
weights, per feature per class, to classify integer-valued databases. A set
of intervals that represent the rank of values of all the features is au-
tomatically created for each class, and the nonrepresentative intervals
are discarded. The remaining intervals (representative intervals) of each
feature are compared against the representative intervals of the same
feature in the other classes to assign a weight. The weight represents the
discriminative power of the interval, and is used in the similarity func-
tion to improve the classification accuracy. The algorithm was tested
on several datasets, and compared against other representative machine
learning algorithms showing very competitive results.
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1 Introduction

Instance-based learning algorithms are derived from the nearest neighbor pattern
classifier [6], and their design was also inspired by exemplar-based models of
categorization [17]. Unlike other learning methods that construct an explicit
description of the target function from the training examples, instance-based
learning algorithms only store the examples, and delay the processing effort
until a new instance need to be classified. Instance-based learning algorithms are
widely used due to their advantages that include small training cost, efficiency
gain through solution reuse [1], high capacity to model complex target functions
and their ability to describe probabilistic concepts [2]. The performance of this
kind of algorithms, however, degrades significantly in the presence of irrelevant
features; so, distinguishing relevant features is a very important issue.

One way to improve the robustness of instance-based learning algorithms
against irrelevant features is through feature weighting. In feature weighting,



each feature is multiplied by a weight value proportional to its ability to distin-
guish among classes. There are many algorithms of feature weighting. M. Tahir
et al. (2007) [18] proposed a hybrid approach to simultaneously perform feature
selection and feature weighting based on tabu search (TS) and the K -NN algo-
rithms; they modified the solution encoding used by the TS algorithm by adding
feature weights and binary feature vectors, and then used a K -NN classifier to
evaluate the sets of weights produced by tabu search. Blansch et al. (2006) [4]
proposed a method that performs a modular grouping of complex data called
MACLAW. This method assigns weights to the features under a wrapper ap-
proach. A set of extractors is defined, and all the extractors are associated to a
clustering algorithm and a local weights vector. The weights are obtained from
standard cluster quality measures such as compactness. De la Torre et al. (2002)
[19] applied the discriminative feature extraction (DFE) method to weight the
contribution of each component of a feature vector. The weights are obtained
from the partial probability weighting (PPW) exponents, and each weight rep-
resents the partial probability of each component of the feature vector. Thomas
Gartner and Peter A. Flach (2000) [10] proposed an algorithm that combines
naive bayes classification with feature weighting. They employ a support vector
machine to weight the features, and, the weights are optimized to reduce the
danger of overfitting. K. Kira and L. Rendell (1992) [12] proposed a weighting
algorithm called RELIEF that estimates a feature weight W [A] as an approxi-
mation of the difference of probabilities P (different value of A | nearest instance
of different class) - P (different value of A | nearest instance of the same class)
where A is an attribute. This algorithm was designed for 2-class problems. I.
Kononenko (1994) [13] extended the RELIEF algorithm to deal with multi class
problems, finding the probabilities with respect to each class and averaging their
contribution. A good review and empirical evaluation of many feature weighting
methods can be found in (Wettschereck et al., 1997) [21].

This paper introduces a new instance-based learning algorithm, called WIB-
K, that uses one or more weights, per feature per class, for the classification of
integer-valued databases, and that is noise tolerant. A set of intervals that repre-
sents the rank of values of all the features is automatically created for each class,
the representative intervals are located by means of a majority criterion, and the
nonrepresentative intervals are considered as noise (outliers). The representative
intervals of each feature are compared against the representative intervals of the
same feature in the other classes to obtain a weight; this weight represents the
discriminative power of the interval, and is used in the similarity function to
improve the classification rate. The proposed algorithm was tested on several
integer-valued datasets from the UCI repository, and compared against other
representative machine learning algorithms, showing very competitive results.

The paper is organized as follows. Section 2 gives an overview of instance-
based learning. In Section 3 the weighting schema is described. In Section 4 the
experimental results are presented and, in Section 5, the main conclusions and
a brief discussion of future work is given.



2 Instance-Based Learning

2.1 Learning Task and Framework

Instance-based learning algorithms are derived from the nearest neighbor pattern
classifier [6]. This kind of algorithms stores and uses only selected instances to
generate classification predictions by means of a distance function. The learning
task of these algorithms is supervised learning from examples.

Each instance is represented by a set of attribute-value pairs, and all instances
are described by the same set of n attributes. This set of n attributes defines
an n-dimensional instance space. One of the attributes must be the category
attribute and the other attributes are predictor attributes.

The primary output of an instance-based learning algorithm is a function,
that maps instances to categories, called concept description; this concept de-
scription includes a set of stored instances and, possibly, information about the
classifier past performance. The set of stored instances can be modified after
each training instance is processed. All instance-based learning algorithms are
described by the following three characteristics:

1. Similarity function: computes the similarity between a training instance i
and the instances stored in the concept description. The similarities are
numerical-valued.

2. Classification function: This function receives the results of the similarity
function and the performance records stored in the concept description. It
yields to a classification for the training instance i.

3. Concept description updater: Keeps the records of classification performance
and decides the instances to be included in the concept description. It yields
to a modified concept description.

The similarity and classification functions determine how the instances stored
in the concept description are used to predict the category of the training in-
stance i.

2.2 IB-K Algorithm

IB-K is a very straightforward instance-based learning algorithm. The distance
function that it uses is:

Distance(x, y) =

√√√√ n∑
i=1

f(xi, yi)

where x is a test instance, y is a training instance, xi is the value of the i-th
attribute of instance x and f(x, y) is defined as follows:

f(xi, yi) = (xi − yi)2



Table 1. IB-K algorithm (CD = concept description)

CD ← all the labeled instances
For each x ∈ Training Set do

1. For each y ∈ CD do
Dist← Distance(x, y)
If Dist is one of the K-smallest distances Ksmall[m]← Dist

2. class(x) = majority class present in Ksmall[m]
3. CD ← CD ∪ x

The instances are described by n features. The IB-K algorithm is presented
in Table 1.

In order to label an instance, the IB-K algorithm computes the distance
between the test instance and the instances stored in the concept decription,
and stores the K nearest instances. The class of the test instance will be the
preponderant class of the K nearest instances previously obtained.

3 Feature Weighting Based on Representative Intervals

3.1 Initial Definitions

– Ω is the instance space formed by n instances and m features.
– xi ∈ Ω represents the i-th instance, 1 ≤ i ≤ n.
– xi,j represents the value of the j-th feature of the i-th instance, 1 ≤ j ≤ m.
– Cα

β is a multiset that contains all the values of feature β for all the instances
xi ∈ Ω with class(xi) = α.

Cα
β = {xi,j |class(xi) = α ∧ j = β}

– Dα
β is the set that contains all the values contained in Cα

β , but without
repeated values. This set is partially ordered under the function <. For ex-
ample, if Cα

β = {3, 5, 7, 4, 9, 3, 9, 5, 3, 5, 4, 6} then Dα
β = {3, 4, 5, 6, 7, 9}.

– f(a) is the frecuency function, it returns the number of times that a value
a ∈ Dα

β appears in Cα
β , and is defined as follows

f(a) =
∑

∀bl∈Cα
β

g(a, bl)

where 1 ≤ l ≤ |Cα
β | and g(a, bl) is defined as

g(a, bl) =
{

1 if a = bl
0 otherwise

For example, with the previous sets Cα
β and Dα

β , f(5) = 3. This function can
be viewed as histogram of the image.



3.2 Representative Intervals and Weights

First, the Dα
β set must be partitioned into collectively exhaustive and mutu-

ally exclusive subsets Dα
β,γ , where γ is the index of the partition. All the con-

secutive intervals must be grouped in exactly one partition. For example, if
Dα

β = {1, 2, 3, 5, 6, 7} then the only resultant partitions are Dα
β,1 = {1, 2, 3} and

Dα
β,2 = {5, 6, 7}.

The magnitude of a partition Dα
β,γ is:

Magnitude(Dα
β,γ) =

∑
∀t∈Dα

β,γ

f(t)

The amplitude of a partition Dα
β,γ is:

Amplitude(Dα
β,γ) = |Dα

β,γ |
All the partitions Dα

β,γ are grouped according to their amplitude. Let Eα
β,η

be the set formed by all the partitions Dα
β,γ with the same amplitude η, then,

the maximum amplitude ψ of the set Eα
β,η is:

ψ = argmax(Magnitude(Dα
β,γ))

where Dα
β,γ ∈ Eα

β,η. In order to discard the nonrepresentative intervals, con-
sidered as noise (outliers), it is necessary to define levels of confidence. This
characteristic allows the algorithm to be noise-tolerant.

If ψ is the maximum amplitude of Eα
β,η then the levels of confidence are

shown in Table 2, where % represents the integer division.

Table 2. The four levels of confidence defined to discriminate noise

Level of confidence Interval Left value Right value

High [Hi,Hf ] Hi = (Hf%2) + 1 Hf = ψ
Medium [Mi,Mf ] Mi = (Mf%2) + 1 Hi − 1
Low [Li, Lf ] Li = (Lf%2) + 1 Mi − 1
Null [0, Nf ] 0 Li − 1

The sets Dα
β,γ ∈ Eα

β,η which magnitude falls in the null level of confidence
are discarded because they are considered noise (outliers). The remaining sets
Dα

β,γ are the representative intervals of feature β for class α.
The percentage of values inside a representative interval of a feature β that

are not overlapped with any other value inside all the representative intervals of
the same feature β for all the remaining classes is the weight of the interval. The
weight must be in the range [0, 1]. For example, if an interval of 30 values has 10
overlapped values, its weight is (30 − 10)/30. The different types of overlap be-
tween two intervals are shown in Fig. 1. In general, a given interval is overlapped
by combinations of these base overlaps.



Fig. 1. The four types of overlap between two intervals: totally overlapped(A) where
non-overlapped area = 0, partially left-overlapped (B) where non-overlapped area =
(D2 − I2) − (D1 − I2), partially right-overlapped (C ) where non-overlapped area =
(D2 − I2) − (D2 − I1) and partially center-overlapped (D) where non-overlapped area
= (D2 − I2)− (D1 − I1)

The obtained weights are used in the distance function of WIB-k:

Distance(x, y) =

√√√√ m∑
i=1

(xi − yi)2w(yi)

where x is the example to label and y is the labeled example stored in the concept
description of WIB-K. If yi falls within a representative interval, its weight will
be the weight of the interval. If xi,j does not fall in any representative interval,
its weight will be the weight of the closest representative interval. The weights
are normalized.

4 Results

4.1 Data Sets

We performed experiments and comparisons over several real world datasets
from the UCI machine learning repository [14] in order to demonstrate the per-
formance of the proposed algorithm. We selected databases with integer-valued
features, without concerning about the type of the class. A brief description of
the datasets is given in Table 3.

All the data sets have been randomly partitioned in ten disjoint sets for 10-
fold cross validation. The same training and testing sets were used for all the



algorithms. Instances with missing values were removed. The compared algo-
rithms were taken from Weka class library [8] and the parameters used are the
default parameters, except for the K value that always was the same value used
in WIB-K.

Table 3. Description of the eight data sets used for experiments and comparisons

Name Instances Features Classes

Balance Scale (BS) 625 4 3
Breast Cancer (BC) 699 11 2
CMC 1473 10 3
Dermatology (D) 366 34 6
Haberman (H) 306 4 2
Hayes Roth (HR) 162 6 3
Lung Cancer (LC) 32 57 3
TAE 151 6 3

4.2 Comparison Against Instance-Based and Weighted
Instance-Based Algorithms

This subsection shows the results of the comparison of W-IBK against other
weighted and non weighted instance-based learning algorithms. IB1 and IB-
K are the implementations of the original instance-based learning algorithms
proposed by D. Aha et al. [2]. dw-IBK (1/d) and dw-IBK (1-d) are the IB-K
algorithm weighted by the distance of the nearest neighbors. (1/d) represents
that the weight is obtained from the inverse of the distance (1/distance) whereas
(1-d) means that the weight is obtained from the complemet of the distance (1−
distance). LWL is the implementation of the locally weighted learning algorithm
proposed by Atkenson et al. [3]. Finally, K-Star is the implementation of the
instance-based learner K* proposed by J. C. Cleary and L. E. Trigg [5].

Table 4 shows the classification rate (in %) comparison between WIB-K and
other weighted and non weighted instance-based learners. WIB-K has achieved
higher accuracy for all data sets except Dermatology and Hayes Roth. Even for
the Dermatology and Hayes Roth data sets, WIB-K is better than many classi-
fiers. Thus, in 6 out of 8 data sets, WIB-K has achieved the best performance.
Table 4 also shows that the proposed algorithm WIB-K is consistently better
than the original algorithms IB1 and IB-K.

Fig. 2 shows the classification rate with a bar graph. From the bar graph, it
is clear that the proposed algorithm usually obtains superior results in terms of
classification rate.



Table 4. Accuracy comparison between IB-k and other weighted and non weighted
instance-based learners

DB K WIB-K IB1 IB-K dwIB-K (1/d) dwIB-K (1-d) LWL K-Star

BS 24 90.396 79.027 89.436 89.436 89.436 53.932 88.474
BC 5 97.216 96.04 97.079 97.216 97.216 92.09 95.458
CMC 16 55.126 43.312 48.404 48.264 48.4 48.47 49.553
D 1 90.238 95.269 95.269 95.269 95.269 82.642 94.126
H 27 75.483 65.709 74.494 73.537 74.494 72.505 71.204
HR 2 75.604 76.538 62.087 67.417 67.417 79.395 61.263
LC 1 70 48.333 48.333 48.333 48.333 56.666 56.666
TAE 1 72.958 63.583 62.291 62.291 62.291 52.916 64.291

Fig. 2. Bar Graph of the results of Table 4



4.3 Comparison Against Well-known Classifiers

This subsection shows the results of the comparison of WIB-K against well-
known and representative machine learning algorithms. NB is a naive bayes
classifier that uses estimator classes [11]. SMO is the implementation of the
algorithm to train a support vector classifier proposed by J. Platt [15]. MP is
the implementation of a neural network that uses backpropagation to train. J48
is the implementation of the C4.5 decision tree proposed by R. Quinlan [16].
Finally, PART is a decision rule-based algorithm proposed by E. Frank and I.
H. Witten [9].

Table 5. Accuracy comparison between IB-k and other well-known algorithms

DB Name K WIB-K NB SMO MP J48 PART

Balance Scale 24 90.39 90.04 87.68 90.72 76.64 83.52
Breast Cancer 5 97.21 96.33 97.07 96.04 96.04 95.46
CMC 16 55.12 49.28 50.98 54.51 53.22 50.10
Dermatology 1 90.23 97.48 97.76 97.48 95.25 93.29
Haberman 27 75.48 74.83 73.52 72.87 71.89 72.54
Hayes Roth 2 75.60 74.24 53.78 74.24 80.30 75.75
Lung Cancer 1 70 70.37 48.14 51.85 48.14 48.14
TAE 1 72.95 52.98 54.30 54.30 59.60 58.27

Fig. 3. Bar Graph for the results shown in Table 5

Table 5 shows the accuracy (in %) achieved by WIB-K and other representa-
tive machine learning algorithms. The WIB-K algorithm has achieved the highest
accuracy in the Breast Cancer, CMC, Haberman, and TAE data sets, and, for



the remaining data sets, WIB-K performed better than many well-known ma-
chine learning algorithms. The other algorithms obtained the best result in at
most one data set whereas WIB-K did it in four data sets. In 4 out of 8 data
sets WIB-K achieved the best performance.

Fig. 3 shows a bar graph for the data presented in Table 5. In the bar graph
we can see that the WIB-K algorithm is highly competitive.

5 Conclusion and Future Work

In this paper we proposed a new weighted instance-based learning algorithm
to perform classification of instances defined by integer valued features. This
algorithm outputs one or more weights per feature for each class, and is noise
tolerant. The weight is used in the distance function of the IB-K algorithm to
improve accuracy rate.

The algorithm was tested on UCI databases of instances defined by inte-
ger attributes. The results indicate high competitiveness with respect to many
well-known machine learning algorithms, as well as against weighted and non
weighted instance-based learners.

The novelty of the algorithm relies in the approach to finds the intervals in
which the value of a certain feature for a certain class falls, and obtains the
weights directly from them. This approach opens new and interesting research
paths. Knowing the interval in which the value of a certain feature for a certain
class falls is important because it can give us more information about the data
behavior.

Although this algorithm is restricted to integer-valued features, it is possible
to apply it to real-valued features if, as a preprocessing step, the features are
discretized [7]. Ordered nominal features can be directly converted into integers,
however, the algorithm can not deal with non-ordered categorical features. Fu-
ture work will focus on the search of a preprocessing scheme that allows WIB-K
to deal with all kind of features.
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