
Incremental Refinement of Solutions for

Dynamic Multi Objective Optimization

Problems

Carlos E. Mariano-Romero1 and Eduardo F. Morales M.2

1 Mexican Institute of Water Technology, Paseo Cuauhnáhuac 8532
Jiutepec, Mor, 62550, Mexico,

2 INAOE, Luis Enrique Erro No. 1
Santa Maria Tonantzintla, Puebla, 72840, Mexico,

Abstract. MDQL is an algorithm, based on reinforcement learning, for
solving multiple objective optimization problems, that has been tested
on several applications with promising results [6, 7]. MDQL discretizes
the decision variables into a set of states, each associated with actions to
move agents to contiguous states. A group of agents explore this state
space and are able to find Pareto sets applying a distributed reinforce-
ment learning algorithm. The precision of the Pareto solutions depends
on the chosen granularity of the states. A finer granularity on the states
creates more precise solutions but at the expense of a larger search space,
and consequently the need for more computational resources. In this pa-
per, a very important improvement is introduced into the original MDQL
algorithm to incrementally refined the Pareto solutions. The new algo-
rithm, called IMDQL, starts with a coarse granularity to find an initial
Pareto set. A vicinity for each of the Pareto solutions in refined and a
new Pareto set is founded in this refined state space. This process contin-
ues until there is no more improvement within a small threshold value. It
is shown that IMDQL not only improves the solutions found by MDQL,
but also converges faster.
MDQL has also been tested on the solutions of dynamic optimization
problems. In this paper, it is also shown that the adaptation capabilities
observed in MDQL can be improved with IMDQL. IMDQL was tested
on the benchmark problems proposed by Jin [4]. Performance evaluation
was made using the Collective Mean Fitness metric proposed by Morrison
[10].
IMDQL was compared against an standard evolution strategy with the
covariance matrix adaptation (CMA-ES) with very promising results.

1 Introduction

One of the most important reasons for the growing interest in the solution of
dynamic optimization problems is that many real-world optimization problems
are not stationary. To solve this type of problems the optimizer must be able
to adapt itself during optimization to track the optimum. Some methods have

2

been proposed to solve not stationary optimization problems, most of them are
based in some of the following strategies to increase the ability of the methods
to track moving optima [4]:

– Maintain population diversity by inserting randomly generated individuals,
Niching or reformulating the fitness function considering the age of individ-
uals or the entropy of the population.

– Memorize the past using redundant coding, explicit memory or multiple
populations.

– Adapt the strategy parameters of the evolutionary algorithms.

MDQL is a multiple objective optimization algorithm that uses a distributed
reinforcement learning approach to find Pareto sets. It has been tested on sev-
eral bechmarking problems and on real world highly constrained optimization
problems [5] [7].

MDQL first discretizes the decision variables into a set of states,S, each as-
sociated with a set of actions A and for each action a value function to move
agents to contiguous states. A group of agents explore this state space or envi-
ronment and use a distributed reinforcement learning algorithm to find Pareto
sets. The precision of the Pareto solutions depends on the chosen granularity of
the environment. A finer granularity creates more precise solutions but at the
expense of a larger search space, and consequently the need for more computa-
tional resources.

In this paper an incremental refinement of the environment is proposed to find
more precise Pareto sets without additional computational resources. A course
environment is initially constructed and a Pareto set is found using MDQL. The
Pareto solutions found in the current environment are then considered as starting
points of a more refined environments constructed in the vicinity of each of the
Pareto solutions. This process continues until reaching a termination criterion.
With the added capability of searching for solutions from a starting Pareto set,
IMDQL is also able to dynamically adjust its Pareto front with variations in the
problem conditions.

The main motivation behind modifications presented in IMDQL was the
improvement of performance. In MDQL granularity in parameter spaces were
always with the same size and static, constant granularity. Computational effort
required to aproximate Pareto fronts, in constant granularity decision spaces,
was measured almost constant along the search space. The use of incremental
refinement approach is intented to aminorate the effort required to explore search
space to identify feasible regions, using coarse partitions, and to increment ef-
forts in feasible regions identified in order to approximate solutions with higher
precision. Incremental refinement is made arround Pareto solutions identified.

Presented results correspond to dynamic optimization problems, one of the
reasons to test IMDQL performance in the solution of this type of problems
is that they represent a challenge for most of the otimization methods which
have been applied to its solution. Another motivation is that previous estudies
made over real multi-objective applications indicate that their nature is dynamic.

3

So the validation of this new approach is made over benchmarking dynamic
optimization models as a preamble to attack more complex dynamic optimization
problems.

IMDQL was tested on the solution of benchmark problem generated with
the method proposed in [4] that considers a jumping optimum that change after
the algorith converges. Previous charateristic is difficult to solve with traditional
approaches as stated in [4]. Obtained solutions were comparared against Evolu-
tion Strategies, which was the approach used by Jin [4] to evaluate the method
proposed. Performance measurement for both techniques over the same problem
was made using Total Mean Fitness (FT), and Collective Fitness (FC) metrics
proposed in [10].

The improvements over MDQL can produce more accurate results until a
controllable degree of precision without seriously affecting the computational
resources and can be used to shift the Pareto set with changing conditions in
the problem description, both of which represent a significant improvement over
MDQL, and allow it to be applied to more demanding optimization problems.

2 Incremental Multi objective Distributed Q Learning

 x

y

state

Pareto
solution vicinity

Pareto
solution

vicinity

state

actions (down, left, right, up)

agent’s trace

Fig. 1. IMDQL

IMDQL is based on Q-learning [12]. Its learned decision policy is determined
by the state-action pair value function, Q(s, a), which estimates long-term dis-
counted rewards for each state-action pair. Given a current state s ∈ S and
available actions ai ∈ As, a Q-learning agent selects most of the time an action

4

a with the highest estimated Q(s, a) and with a small probability ε ≈ 0, selects
an alternative action. The agent then executes the action, receives an immediate
reward r, and moves to the next state s′.

In each step, the agent updates Q(s, a) by recursively discounting future
utilities and weighting them by a positive learning rate α:

Q(s, a)← Q(s, a) + α

[

r + γ max
a′∈A′

s

Q(s′, a′)−Q(s, a)

]

(1)

where (0 ≤ γ ≤ 1) is a discount parameter.

As an agent explores the state space, its estimate Q improves gradually, and,
eventually, each maxa′∈A′

s
Q(s′, a′) approaches: E

{
∑∞

n=1
γn−1rt+n

}

. Here rt is
the reward received at time t due the action chosen at time t− 1. Watkins and
Dayan [13] have shown that this Q-learning algorithm converges to an optimal
decision policy for a finite Markov decision process.

Table 1. IMDQL algorithm.

First stage

(1) Initialize Q(s, a) arbitrarily
Repeat (for n episodes)

Initialize s, copy Q(s, a) to QC(s, a)
Repeat (for each step of episode)

Repeat (for m agents)
Take action a, observe r, s′

QC(s, a)← QC(s, a)+
α [γ maxa′ QC(s′, a′)−QC(s, a)]
s← s′;

Until s is terminal
Evaluate the m proposed solutions
Assign rewards to optimal Pareto solutions found and
update the Q values in all Pareto solutions:
Q(s, a)← Q(s, a) + α [r + γ maxa′ Q(s′, a′)−Q(s, a)]
Repeat (for m agents)

Randomly select a solution
Start a new episode

Second stage

Until termination criterion
Construct a new environment for each solution
solution and its vicinity
Repeat (for p solutions)

repeat (1)

IMDQL is presented in Table 1. In IMDQL all the agents have access to a
temporary copy of the state-action pair evaluation functions (QC(s, a)). Each

5

time an agent has to select an action, it looks at this copy and decides, based on
its information, which action to take. Once the agent performs the selected ac-
tion, it updates the copy of the state-action value pair as follows, where QC(s, a)
represents a copy of the original Q(s, a) pairs.

QC(s, a)← QC(s, a) + α

[

γ max
a′∈As

QC(s′, a′)−QC(s, a)

]

(2)

Updates are performed over copies of the original Q values and the original
Q-values are consequently not affected at this stage. All the agents are moved
one step at a time, updating and sharing their common QC values until reaching
a stopping criterion. The agents use the copies of the Q values to decide which
actions to take following an ε−greedy policy. The state values that are visited
by the agents represent values for the decision variables of the multi-objective
optimization problem. When all the agents have found a solution the Q value
copies are discarded and the state-action pairs considered in the best solution
receive a reward which reinforce their values according to Eq. 1. This updates
the original Q-values from which a new copy is created for the next cycle. The
whole process is repeated until reaching a termination criterion (see Table 1).

All the agents act on the same environment and have access to the same Q

and QC values. The copies of the Q values are used as guidance to the agents of
what seems to be promising states. However, only Pareto solutions found by all
the agents receives an actual reward.

The previous procedure is repeated for a fixed number of episodes updating
the current Pareto set with new Pareto solutions found after the completion
of each episode. Solutions in the final Pareto set are used to construct new
finer environments as illustrated in Figure 1. Finally, in the second stage the
whole process is repeated for each of the environments constructed. Obtained
Pareto sets for all environments are combined to construct the final Pareto set.
Construction of new finer environments can be made until a desired level of
accuracy is achieved.

2.1 Adaptation of IMDQL to dynamic optimization problems

In many real world applications, the values of the variables governing the problem
can change over time, displacing the optimum and creating what is known as
a non-stationary problem. The goal for this type of problems is to maintain
an optimal condition in the face of varying conditions of the environment [11].
The search of the optimum then becomes a continuous process. According to
the speed of movement of the optimum, it may be necessary to give the task to
an automaton [11], but if the position of the optimum in a dynamic process is
shifting very rapidly, the way in which the search process follows the extrema
takes on a greater significance for the overall quality. In these cases iterative
methods such as dynamic programming or stepwise optimization of Bellman are
more adequate [11].

MDQL has strong affinity with the characteristics of dynamic programming,
it satisfies Bellman’s optimum principle and suffers the same deficiencies with

6

the dimensionality of problems [8]. IMDQL reduces these deficiencies by starting
from previous Pareto sets fronts and using a variable abstraction level thus
reducing the dimensionality problem.

The main consideration in the application of IMDQL is that agents in the
algorithm start from the solutions previously obtained. That is, IMDQL starts
with a deterministic environment constructed with fixed values for the value
functions for the first ladscape; when convergence is reached and a solution is
obtained, a new cycle is started, changing the landscape to the next variation
programmed. Agents start searching (adapting solution) from the existing envi-
ronments which correspond to the solutions obtained for the previous landscape.

Searching for new solutions, from the last solution, given the landscape, sig-
nificantly reduces the convergence time.

3 Test Problem

3.1 Benchmark Problem

Three types of dynamic test problems have been proposed to test optimization
methods, in the most typical the optimum moves deterministically or stochas-
tically during optimization. Another type of problems are those that use the
variation of constraints as a dynamic scheduling problem. In general most of
the dynamic optimization problems can be divided in a) problems for which the
optimum moves linearly in parameter space with time; b) prblems for which
the optimum moves nonlinearly in parameter space with time; c) problems for
which the optimum oscillates periodically among a given number of points in pa-
rameter space deterministically; and d) problems for which the optimum moves
randomly in parameter space with time.

Test problem generator proposed by Jin [4] considers dynamic weigthed ag-
gregation (DWA) approach used in multi-objective optimization to construct dy-
namic optimizatiuon problems. Dynamism is generated variating weigths. The
method ha the capability to construct problems with the characteristics men-
tioned for the four types of problems listed in previous paragraph. The use of
DWA is based on its capabilities to reach solutions in the concave regions of
multi-objective problems, good distribution of solutions along the Pareto set,
which have been previously analyzed in [3]. Also, using DWA it is possible to
construct dynamic optimization test problems being an efficient, easy tunable
and functionally powerfull tool to generate dynamic optimization test problems
[4]. Other test functions for dynamic optimization problems were previously
suggested from different authors [9], but these functions are designed for single
objective optimization.

More critical for most evolutionary algorithms is to track a jumping optimum
after algorithm has converged [1],[4] and [10]. Equation 3 represents a dynamic
optimization problem when the weight change between 0.2 and 0.8 in every 50
generations.

7

F (x) = w

n
∑

i=1

x2
i + (1.0− w)

n
∑

i=1

(xi − 2)2 + 1, (3)

3.2 Performance metric

Traditional meatrics in dynamic environments have not the capability to measure
adaptation capabilities of heuristics after a landscape change. Some researchers
have suggested the use of there adapted performance metrics based on a) the
evaluation of the distance between the optimum value and the value of the
best individual in the environment just after the envinonment change; b) off-
line measure, where the best-so-far is reset at each fitness landscape change;
c) Euclidian distance to the optimum in each generation; d) best-of-generation
averages, at each generation, for many runs; the best-of-generation minus the
worst within a small window of recent generations, compared to the best within
the window minus the worst within a window.

The first two measures require knowledge of the generation when the fitness
ladscape changed. In many real problems, and in some test problems obtaining
this information may be difficult. The third measure, the Euclidean distance
to the optimum is only available in test problems where the global optimum
is already known. The forth is the most commonly reported metric has not
the capability to measure the perfromance across the entire range of landscape
dynamics, just over especific generations. The fifth measure assumes that the
best fitness value will not change much over a small number of generations and
does not provide a convinient method for comaring the full range of landscape
dynamics [10].

Since we are concerned with the evaluation of performance across the entire
range of landscapes dynamics, the experimental unit is considered to be the
entire fitness trajectory, collected across the heuristic exposure to a large sample
of the landscape dynamics. In this sense Total Mean Fitness (TMF) is proposed
in Equation 4.

TF =

∑M

m=1

(

∑

G

g=1
FBG

G

)

M
(4)

Where: FT = Constant, for G =∞ is the total averge fitness for the heuris-
tic over its exposure to all the possible landscape dynamics; FBG is the best-
of-generation; M is the number of runs of the hueuristic; G is the number of
generations.

As can be noted a very large experiments are required to use this performance
metric. But it is possible that an heuristic approches a constat just after fewer
generations, depending on the behavior of the heuristic during the solution of
an especific problem. This situation could be presented if: a) the heuristic has
a reasonably recovery time for all type of landscape changes; b) The global
maximum fitness can be assumed to be restricted to a relatively small range

8

of values. In order to evaluate the satisfaction of any of this two conditions
Collective Mean Fitness (FC) metric is proposed in Equation 5.

TC =

∑M

m=1

(

∑

G′

g=1
FBG

G′

)

M
≈ TF (5)

Collective Mean Fitness (CMF)is defined as the average best-of-generation
values, averaged over a sufficient number of generations, G′, required to expose
the heuristic to a representative sample of all possible landscape dynamics, fur-
ther averaged over multiple runs. CMF will aproach TMF after a sufficiently
large exposure to the landscape dynamics. The value for G′ has to be defined
experimentally evaluating the fluctuations of FC over a fixed number of genera-
tions.

4 Results

The tracking performance of IMDQL for n = 3 is presented in Figure 2. To
solve the problem presented in Eq. 3. Parameter space was partioned with initial
increments of x equal to 0.1. One step of refinement were considered to reach
final incremetns for x equal to 0.01. IMDQ operation parameters used were:
α = 0.1, γ = 0.9 with an ε-greedy strategy with ε = 0.1. Dashed line in 2
represent real solution for the test problem represented in 3, solid line represent
the solutions obtained with IMDQL.

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

Time

B
es

t F
itn

es
s

Fig. 2. Tracking a jumping optimum using IMDQL

As mentioned in previous paragraphs, benchmarking problem in Eq. 3 repre-
sents a dynamic optimization problem when the weight change between 0.2 and

9

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

Time

B
es

t F
itn

es
s

True
IMDQL

Fig. 3. Adaptation of IMDQL to landscape changes

0 10 20 30 40 50 60 70
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Total Mean Fitness Evaluation for MDQL and IMDQL
7 runs of 1,000 episodes each

G x 100

T
ot

al
 M

ea
n

F
itn

es
s

MDQL
IMDQL

T
C

=1.03

T
C

= 1.045

Fig. 4. Comparison between IMDQL and MDQL to landscape changes and evaluation
of TMF metric

10

0.8 in every 50 generations. For IMDQL a generation is equivalent to an episode
(see Section 2 for details). For these experiments IMDQL a run consist of 1, 000
episodes (200 landscape changes). It can be appreciated in 2, represented with
solid lines the behavior of IMDQL to landscape changes during its execution. It
can be also appreciated, represented with the dotted line, the exact solution to
the benchmarking problem used.

Figure 3 present the behavior of IMDQL after the execution of several
episodes. It can be appreciated that obtained solutions get closer to the real
solutions. Another important fact to be noted is IMDQL estability of soltutions
with time, that is, algorithm’s capabilities to adapt when changes in lanscape
are presented. This capability is measured using TMF and CMF metrics. Results
from the evaluation with both metrics are presented in Figure 4.

In order to compare the performance of IMDQL, the CMA-ES obtained from
[2] was executed considering a parent and offspring population sizes of 15 and
100 respecively and the initial stepsizes were configured to 0.1. No ellitism nei-
ther recombination were considered. CMA-ES is unable to track the moving
optimum closely, the solution implemented with the CMA-ES was to check con-
tinuously the stepsizes, reducing its values to 0.1 when they grow-up. With this
consideration TMF after 7 executions with 1, 000 generations each was equal to
1.183, compared with 1.0037 obtained with IMDQL it can be appreciated that
adaptation capabilities of IMDQL are better.

5 Discussion

Considering these results it can be say that IMDQL can: (i) produce more ac-
curate solutions, (ii) reduce convergence times, and (iii) adjust the Pareto set to
changing conditions on the operation parameters of the problem.

6 Conclusions

References

1. J. Branke. Evolutionary Optimization in Dynamic Environments. Kluwer Aca-
demic Publisher, Boston, USA, 2002.

2. N. Hansen. CMA Evolution Strategy (Covariance Matrix Adaptation).
http://www.bionik.tu-berlin.de/user/niko/cmaesintro.html.

3. Y. Jin, M. Olhofer, and B. Sendhoff. Evolutionary dynamic weighted aggrega-
tion for multiple optimization: Why does it work? In Genetic and Evolutionary
Computation Conference, pages 1042–1049, San Francisco, CA, USA, 2001. IEEE.

4. Y. Jin and B. Sendhoff. Constructing Dynamic Optimization Test Problems Us-
ing the Multi-objective Optimization Concept. In G. R. R. et al., editor, Appli-
cations of Evolutionary Computing. Proceedings of Evoworkshops 2004: EvoBIO,
EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, and EvoSTOC, pages 525–536,
Coimbra, Portugal, April 2004. Springer. Lecture Notes in Computer Science Vol.
3005.

11

5. C. Mariano. Reinforcement Learning in Multiobjective Optimization. PhD thesis,
ITESM Campus Cuernavaca, 2001.

6. C. Mariano, V. Alcocer, and E. Morales. Multi-objective optimization of wa-
ter using systems. European Journal on Operational Research, 181(3):1691–1707,
september 2007.

7. C. Mariano and E. Morales. A new approach for the solution of multiple objective
optimization problems based on reinforcement learning. Lecture Notes in Artificial
Intelligence, 1793(1):212–223, April 2000.

8. C. Mariano and E. Morales. A new updating strategy for reinforcement learning
based on Q-learning. Lecture Notes in Artificial Intelligence, 2167(1):324–335, July
2001.

9. R. Morrison and K. D. Jong. A test problem generator for non stationary environ-
ments. In Proceedings of Congress on Evolutionary Computation, pages 2047–2053,
1999.

10. R. W. Morrison. Performance measurement in dynamic environmets. In Pro-
ceedings of the Workshop on Evolutionary Algorithms for Dynamic Optimization
Problems (GECCO 2003), 2003.

11. H. Schwefel. Evolution and Optimum Seeking. John Wiley and Sons, New York,
USA, 1995.

12. C. Watkins. Learning from Delayed Rewards. PhD thesis, Cambridge University,
1978.

13. C. Watkins and P. Dayan. Q-learning. Machine Learning, 3(1):279–292, 1992.

