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Abstract. We present two feature selection methods, inspired in the Shannon’s 
entropy and the Information Gain measures, that are easy to implement. These 
methods apply when we have a database with continuous attributes and discrete 
multi- class. The first method applies when attributes are independent among 
them given the class. The second method is useful when we suspect that 
interdependencies among the attributes exist. In the experiments that we realized, 
with synthetic and real databases, the proposed methods are shown to be fast and 
to produce near optimum solutions, with a good feature reduction ratio.  

1   Introduction 

Feature selection has shown to be promising pre-processing step in data mining 
because it can eliminate the irrelevant or redundant attributes that cause the mining 
tools to become inefficient and ineffective [1]; at the same time, it can preserve, and 
in many cases, increase the classification quality of the mining algorithm and help in 
the understanding of the induced models, as they tend to be smaller.  

Although there are many feature selection algorithms reported in the specialized 
literature [1], none of them is perfect: some of them are effective, but very costly in 
computational time (e.g., wrappers methods [2]), and others are fast, but less 
effective in the feature selection task (e.g., filter methods [3]). Most of them need 
pure discrete data (e.g., nominal attributes with a nominal class) or pure continuous 
data (e.g., continuous attributes with a continuous class). So, if data has continuous 
attributes, they need to be discretized (either all the attributes or the class), however 
the results vary depending on the discretization method that is utilized [4].  

In this article we propose two easy to implement feature selection methods that 
apply over continuous data with discrete class in a supervised learning context. The 
first method assumes that the attributes are independent among them given the class. The 
second method is useful when we suspect that interdependencies among the attributes exist. 
Both methods are inspired in the Shannon’s n-dimensional entropy and the 
Information Gain measures. We show that the proposed methods are fast and produce 
near optimum solutions, selecting few attributes, according to the experiments that 
we realized, with synthetic and real databases. 

To cover these topics, the article is organized as follows:  Section 2 introduces ours 
feature selection methods; Section 3 details the experiments; in Section 4 we discuss 
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and survey some works related with ours methods; conclusions and future research 
directions are offered in Section 5.   

2   Proposed Feature Selection Methods 

2.1   vG Method: When Attributes Are Independent 

vG is inspired in Shannon’s entropy and Information Gain, which emerged from the 
Information Theory arena. So, we begin our description introducing these basic 
concepts [5]. Formally, the entropy Hn of a nominal, or discrete, set of probabilities  
p1 ,…, pn has been defined as:  

Hn    =  – Σ   pi    log2     pi                                                    (1) 

Additionally, there is a less used, and known, entropy version Hc for continuous 
data; according to [5] is defined as:  

Hc  =  – ³  p(x) log2  p(x)  dx                                                (2)    

but generally, the density distribution function p(x), is unknown: Miller[6] tried to 
estimate this  function, using Voronoi regions (a kind of discretization), but he 
concluded that this process has exponential complexity). As Shannon [5], physicists 
and statisticians point out [6], a reasonable approach is to assume that this density 
distribution is Gaussian, whose standard deviation is S. If we realize some algebraic 
manipulations over (2), assuming p(x) to be Gaussian, we obtain: 

H c (x) =  log2  {  2 π e   }1/2  S                                                   (3) 

Observing (3) we can say that, in this terms, the entropy of one-dimensional 
Gaussian distribution depends on its standard deviation S: if S is relative small, then 
the entropy is small, and vice versa. 

On the other hand, Information Gain (over nominal data, with nominal classes  
c1, …, cn) tell us how much information we obtain if consider some particular 
attribute: 

In(x) = Hn (c1, …, cn) –  {  Q1/ T  Hn (c1)  + …+ Qn/ T  Hn (cn)  }               (4) 

where Qn/ T is the weight (instances quantity) for class n, respect to the total instance 
quantity T.  

So, if we combine these ideas, we obtain a new form of Information Gain Ic 
applied to continuous data. For a database with continuous attributes and n nominal 
classes we propose the next equation (where  S2  means variance): 

I c (x)  =   S2 (c1, …, cn)  –  { (Q1/ T)  S2 (c1)  +…+ (Qn/ T)   S2 (cn)   }          (5) 

With equation (5) we can obtain feature relevance in a filter-ranking fashion, without 
requiring parameters' adjustments. For example, if we have a continue attribute At1: 

At1 Values 0.8 0.7 0.8 0.6 0.2 0.1 0.3 0.1 0.3 
At1 Class c1 C1 C1 c1 c2 C2 c2 c2 c2 
 

Then S2 (c1, …, cn)  = S2 (0.8,0.7,0.8,0.6,0.2,0.1,0.3,0.1 0.3) = 0.085, and too  S2 
(c1)   = S2 (0.8,0.7,0.8,0.6)=0.009, and S2(c2) =S2 (0.2,0.1,0.3,0.1,0.3)=0.01. 
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Applying equation (5): I c (At1) =  0.085 – { 4/9 *  0.009  +  5/9  * 0.01 } = 0.075. If 
we repeat the process for more attributes and we obtain that: I c (At2) = 0.003, I c 
(At3) = 0.28, I c (At4) = 0.04, then the attribute ranking is At3, At1, At4, At2, where 
At3 is the best attribute, and so on. 

By analogy, we call our method for feature selection as Variance Gain (vG).  Thus, 
the proposed method consist of: 

1. Perform data normalization1, between 0 and 1 (to maintain the same scale for 
all database continuous attributes). 

2. Apply vG to each attribute (to obtain the relevance for each one). 
3. Realize a descending ordering attribute-metric (attribute ranking process). 
4. Select the best attributes (to select the best ranking attributes, we use a 

threshold defined by the largest gap between two consecutive ranked attributes, 
e.g., a gap greater than the average gap among all the gaps, according to [4]).  

5. Use the selected attributes to perform induction (data mining process). 

vG uses a simple metric based on testing decreasing values of variance in the class 
after selecting an attribute and results useful for the feature selection task. As shown 
in Section 3, vG is also a very effective and competitive alternative. 

2.2   dG Method: When There Are Interdependencies Among the Attributes 

The proposed method to realize non-myopic [5] feature selection is inspired also in 
the Shannon’s (n-dimensional) entropy and the Information Gain measures. So, in 
analogous way, we begin our description introducing related basic concepts.  

Formally, the entropy H of a numerical, or continuous distribution with an n-
dimensional distribution p(x1, x2, …, xn)  has been defined [6] as:  

H    =  – ³…³   p(x1, x2, …, xn) log2     p(x1, x2, …, xn)  dx1  dx2 …  dxn             (6) 

Generally p(x1, x2, …, xn)  is unknown, and must be estimated, but this process has 
exponential complexity [7]. Again, following to Shannon, physicists and statisticians, 
we assume that this density distribution is Gaussian. If we realize some algebraic 
manipulations over (6), assuming the n-dimensional Gaussian distribution with 
associated quadratic form aij    we obtain: 

H  =  log2  {  2 π  e   }n/2  | aij|
-1/2                                              (7) 

where  | aij| is the determinant whose elements are the covariance matrix aij .  
Observing (7) we can say that, for this case, the n-dimensional entropy depends on 

the covariance matrix determinant. Indeed, the covariance matrix is the natural 
generalization to higher dimensions of the concept of the variance of a scalar-valued 
random variable. Also we point out that the geometric meaning of a determinant is 
just the volume of the n-dimensional parallelepiped that n vectors (in our case, n 
attributes) forms. This means that, while more volume, the vectors are more 
independents and therefore, a larger n-dimensional entropy is obtained, and vice-
versa: if |aij| is relative small, then the n-dimensional entropy is small, indicating us 
that the features are inter-dependents. 
                                                           
1 One can easily scale it so the variance is 1 and mean is 0, which is also popular. 
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So again, we propose combine ideas from equations (4) and (7) to obtain a new 
form of a non-myopic Information Gain: dG (determinant Gain) applied to continuous 
and n-dimensional data. Then, for a database with continuous attributes and discrete 
multi-class we propose the next equation: 

dG  =    | aij| (c1 ,…, cn)  –  { (Q1/ T) | aij|  (c1)  +  …+ (Qn/ T) | aij| (cn)  }        (8) 

With equation (8) we can obtain a measure of subset feature relevance, without 
tuning of parameters and in a very simple way. For instance, we can consider the 
well-known XOR problem: applying the proposed metric we obtain the following 
evaluations for attributes X and Y: dG(X) = 0 – (0 + 0) =  0.0; dG(Y)=  0 – (0 + 0) =  
0.0; dG(X,Y)= 0.0625 – (0 +  0)=  0.0625. 

These results imply that if we consider X or Y in an isolated fashion, they cannot 
predict the class. On the other hand, if we evaluated the joint contribution of X and Y, 
the dG value is greater, and therefore implies that this subset is a better predictor of 
the class. In order to find the best (or near best) attribute subset we can apply best-first 
search. Thus, the non-myopic feature selection method proposed consist of: 

Given a dataset with N attributes and M instances (where || . || is the cardinal of a 
set): 

1. Perform data normalization, between 0 and 1 (to maintain the same scale for 
all database continuous attributes); 

2. Apply dG for each attribute; 
3. While (available memory) or (unexplored nodes) do 

begin 
     select for expansion the feature subset  F  with the best dG 
    (and better than his parent node); 
    for I := 1 to (N – ||F||  ) do 
        begin 
            obtain dG   ( F ∪   I |  I   ∉   F ); 
        end; 
end; 

4. Use the best evaluated attribute subset to perform induction (data mining 
process). 

 
The proposed method dG is tested in the next Section. 

3   Experiments 

We conducted several experiments with real and synthetic datasets to empirically 
evaluate if vG and dG can do better in selecting features than other well-known 
feature selection algorithms, in terms of learning accuracy, attribute reduction and 
processing time. We also choose synthetic datasets in our experiments because the 
relevant features of these datasets are known beforehand.  

3.1   Experimentation Details 

The experimentation objective is to observe vG and dG behavior related to 
classification quality (predictive accuracy), attribute reduction and response time. 
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First, we test ours proposed methods with a real database with 24 attributes and 
35,983 instances; this database contains information of Mexican electric billing 
customers, where we expect to obtain patterns of behavior of illicit customers.  

We test too with five well-known databases, taken form the UCI repository [8] (see 
Table 2 for details).  

To obtain additional evidence, we experiment with the corrAL (and corrAL-47) 
synthetic dataset, proposed in [4], that has four relevant attributes (A0, A1, B0, B1), 
plus one irrelevant ( I ) and one redundant ( R ) attributes; the class attribute is then 
defined by the function Y = (A0 ∧A1) ∨ (B0 ∧ B1).  

In order to compare the results obtained with vG and dG, we use Weka´s [9] 
implementation of ReliefF, CFS, OneR and ChiSquared feature selection algorithms. 
These implementations were run using Weka´s default values, except for ReliefF, 
where we define to 5 the number of neighborhood, for a more efficient response time. 
Additionally, we experiment with 7 Elvira´s [10] filter-ranking methods: 
Bhattacharyya, Matusita, Euclidean, Mutual Information, Shannon entropy, Kullback-
Leibler 1 and 2. All the experiments were executed in a personal computer with a 
Pentium 4 processor, 1.5 GHz, and 250 Mbytes in RAM.  In the following Section the 
obtained results are shown.   

Table 1. J4.8´s accuracies for 10-fold-cross validation using the features selected by each 
method (Electric billing database) 

Method 
Total 

features 
selected

Accuracy
(%)

Pre-
processing 

time 
CFS 1 90.18 9 secs. 

dG 2 90.70 43 secs. 

vG 3 94.02 0.7 secs. 

Bhattacharyya 3 90.21 6 secs. 

Matusita distance 3 90.21 5 secs. 

ReliefF 4 93.89 14.3 mins. 

Euclidean distance 4 93.89 5 secs. 

Kullback-Leibler 1 4 90.10 6 secs. 

Mutual Information 4 90.10 4 secs. 

Kullback-Leibler 2 9 97.50 6 secs. 

OneR 9 95.95 41 secs.

Shannon entropy 18 93.71 4 secs. 

ChiSquared 20 97.18 9 secs. 

All attributes 24 97.25 0
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3.2   Experimental Results  

Testing over the Mexican electric billing database, we use the selected features for 
each method as input to the decision tree induction algorithm J4.8 included in the 
Weka tool (J4.8 is the last version of C4.5, which is one of the best-known induction 
algorithms used in data mining). We notice that dG obtains good accuracy with only 2 
attributes, better than other methods that select 3 and 4 attributes (Table 1). On the 
other hand, dG is faster than ReliefF, although this method obtains better accuracy, 
but selecting more attributes (4 attributes). We notice too that vG obtains an excellent 
accuracy with 3 features and it has the best processing time. 

To have a better idea of the vG and dG performance, we can compare the results 
presented previously against the results produced by an exhaustive wrapper approach.  
In this case, we can calculate that, if the average time required to obtain a tree using J4.8 
is 1.1 seconds, and if we multiply this by all the possible attribute combinations, then we 
will obtain that 12.5 days, theoretically, would be required to conclude such a process. 

Testing over five UCI datasets, vG and dG obtains similar average accuracy as 
CFS and ReliefF, but in general with less processing time and better feature reduction 
than ReliefF (Table 2). SOAP’s results were taken from [11]: although this method is 
very fast, it cannot reduce considerably the quantity of attributes for Ionosphere 
dataset.  

Table 2. J4.8´s accuracies using the features selected by each method for five UCI datasets 

Autos 
(25/205/7) 

Horse-c
(27/368/2) 

Hypothyroid
(29/3772/4) 

Sonar
(60/208/2) 

Ionosphere 
(34/351/2) Method 

TF Ac Pt TF Ac Pt TF Ac Pt TF Ac Pt TF Ac Pt

Avg. 
Acc

All atts 25 82 0 27 66 0 29 99 0 60 74 0 34 91 0 82.4

vG 8 75 0.01 3 69 0.02 4 95 0.2 11 73 0.03 4 91 0.3 80.6

dG 7 75 12 2 68 14 5 95 26 9 75 14 3 88 18 80.2

CFS 6 74 0.05 2 66 0.04 2 96 0.3 18 74 0.09 8 90 3 80.0

ReliefF 11 74 0.4 3 66 0.9 6 93 95 4 70 0.9 6 93 4 79.2

SOAP 3 73 0.01 3 66 0.02 2 95 0.2 3 70 0.02 31 90 0.01 78.8

Mutual I 3 72 0.9 4 68 1 2 90 1.4 18 73 1 3 86 1 77.8

OneR 5 70 0.8 3 67 1 3 88 1.3 12 72 1 4 85 1 76.4

KL-1 3 71 0.9 4 61 1.2 3 92 1.7 16 70 1 2 86 1 76.0

KL-2 4 68 0.9 4 62 1.1 2 89 1.5 11 68 1 3 83 1 74.0

Matusita 3 66 1.7 3 61 2.3 2 91 3.3 17 68 2.5 2 83 2 73.8

Bhattac 3 67 0.8 3 60 1 1 90 1.4 9 68 1 2 83 1 73.6

Euclidea 2 66 1 3 62 1.4 2 90 1.2 10 67 1.1 2 82 1 73.4

ChiSqua 3 67 1 2 60 1.6 3 88 1.3 11 65 1.2 2 80 1 72.0

Shannon 4 66 0.9 4 61 1.3 2 87 1.6 9 66 1 2 80 1 72.0

“(25/205/7)” means (attributes, instances, classes) for Autos dataset, and so on.                
 TF=Total features selected          Ac=Accuracy (%)            Pt=Pre-processing time (secs.)  
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Finally, when we test with the corrAL and corrAL-47 datasets [4], our dG method 
produces the best results (Table 3) because it selects the perfect attributes, it is to say, 
it can detect effectively the important ones (A0, A1, B0 and B1); although vG cannot 
obtain the perfect quantity of attributes, it can detect the important ones; results for 
FCBF, CFS and Focus methods was taken from [4]. Elvira´s ranking methods obtain 
poor results, so we prefer instead show results for Symmetrical Uncertainty (SU) and 
Gain Ratio metrics. 

Table 3. Features selected by different methods (corrAL and corrAL-47 datasets) 

Method CorrAL corrAL-47 
dG A0, A1, B0, B1 A0, A1, B0, B1 
vG R, A0, A1, B0, B1 R,B1,B11,A1,A11,A0,A01,B0
ReliefF R, A0, A1, B0, B1 R,B11,A0,A00,B1,B10,B0,B00,B02,A1,A10
FCBF(log) R, A0 R, A0, A1, B0, B1 
FCBF(0) R, A0, A1, B0, B1 R, A0, A1, B0, B1 
CFS A0, A1, B0, B1, R A0, A1, B0, B1, R 
Focus R A0, A1, A12, B0, B1, R 
SU (Weka) R, A1, A0, B0, B1 A01, A0, A07, B01, B0, A11, A1, R 
Gain Ratio 
(Weka)

R, A1, A0, B0, B1 A01,A0,A07,B0,B01, A1, R, A11

OneR R, A1, A0, B0, B1 A01,A0,A07,B01,B0, A11, A1, R, A05, B13
ChiSquared R, A1, A0, B0, B1 A01,A0,A07, B01,B0, A11, R, A1, B13  
 
We point out that these results suggest that dG method effectively captures inter-

dependencies among attributes and therefore, it is a non-myopic feature selection 
method. 

Pre-processing time for dG method was inferior to one second when experiment 
with the corrAL dataset, and with the corrAL-47 dataset this time was 59 seconds 
(due to combinatorial search): we think that this response time is reasonable, but we 
recognize that the other ten tested methods only need around 10 seconds to conclude 
this task. 

4   Discussion and Related Work 

There is a great variety of feature selection filter methods for nominal data. Some 
authors consider the ID3 algorithm [12] as one of the first proposed approaches to 
filter (in a embedded way). Although some ID3´s extensions (like C4.5 and J4.8) 
manages continuous data, they perform a kind of internal binary split discretization 
so, these extensions, do not operate directly over continuous data. 

Among the pioneering filter methods, and very much cited, are Focus [13] (that 
makes an exhaustive search of all the possible attribute subsets, but this is only 
appropriate for problems with few attributes), and Relief [14] and ReliefF (that has 
the disadvantage of not being able to detect redundant attributes, and also it is time 
consuming). 
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Koller [15] uses a distance metric called cross-entropy or KL-distance, that 
compares two probability distributions and indicates the error, or distances, among 
them, plus a Markov Blanket, and obtains around 50% reduction on the number of 
attributes, maintaining the quality of classification and being able to significantly 
reduce processing times (for example, from 15 hours of a wrapper scheme application, 
to 15 minutes for the proposed algorithm). The final result is “sub optimal” because it 
assumes independence between attributes, which it is not always true.  

Piramuthu [3] evaluates 10 different measures for the attribute-class distance, using 
Sequential Forward Search (SFS), that includes the best attributes selected by each 
measure into a subset, such that the final result is a better attribute subset than the 
individual groups proposed by each method. However, the results are not compared 
with the original complete attribute set and so, it is not possible to conclude anything 
about the effectiveness of each measure; although SFS manages to reduce the search 
space, multiple mining algorithm runs, varying the attribute subsets, are necessary to 
validate the scheme and this is computationally expensive. 

SOAP is a method that operates on numerical attributes and discrete or nominal 
class [11] and has a low computational cost: it counts the number of times the class 
value changes with respect to an attribute whose values have been sorted into 
ascending order. SOAP reduces the number of attributes as compared to other 
methods; nevertheless, the user has to supply the number of attributes that will be 
used in the final subset. This is a common problem with the filter-ranking methods, 
that output a ordered list of all attributes, according to its relevance. 

In the scenario with pure continuous data, we can apply Regression Tress [16]: this 
method determines relevant attributes by means of co-variance between each 
continuous attribute and the continuous class. 

Molina [17] tried to characterize 10 different feature selection methods by 
measuring the impact of redundant and irrelevant attributes, as well as of the number 
of instances. Significant differences could not be obtained, and it was observed that, 
in general, the results of the different methods depended on the data being used.  

Perner and Apté [5] realized an empirical evaluation of feature selection based on a 
real-world data set, applying the CM feature subset selection method: they showed 
that accuracy of the C4.5 classifier could be improved with an appropriate feature pre-
selection phase that at the same time reduces attribute quantity; however, due to the 
paper’s goal, they did not realized further experiments to emphasize the CM’s 
response time, attribute reduction or the CM’s ability to detect attribute interactions.  

Other proposals for feature selection explore the use of neural networks, fuzzy 
logic, genetic algorithms, and support vector machines [1], but they are 
computationally expensive and have one, or more, user’s parameters to adjust. In 
general, it is observed that the methods that have been proposed: a) need nominal 
data; b) obtain results that vary with the domain of the application; c) obtain greater 
quality results, only with greater computational cost; d) depend on suitable tuning; 
and e) they suffer of myopic feature selection. 

5   Conclusions and Future Work 

We have presented two feature selection new methods easy to implement that try to 
overcome some drawbacks found with traditional pure nominal or discrete feature 
selection methods. 
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From the experimentations presented, with a real Mexican electric billing database, 
five UCI datasets and two synthetic datasets, the proposed methods vG and dG 
represents a promising alternatives, compared to other methods, because of its 
acceptable processing time and good performance in the feature selection task in both, 
accuracy and attribute reduction. Additionally, ours methods works without user 
parameters that generally imply some kind of special and time consuming tuning. 

Some future research issues arise with respect to vG and dG testing and 
improvement. For example: experimenting with more real and challenging databases 
(e.g., future work will be the application of the formalism to other very large power 
system databases such as the national power generation performance database, the 
national transmission energy control databases, the de-regulated energy market 
database, and the Mexican electric energy distribution database); applying other data 
mining induction-classification algorithms (e.g., Naïve Bayes classifier, 1NN, etc.); 
perform more experiments following [18]; apply statistical tests to observe if the 
differences in accuracies of the proposed methods are  significant and apply other 
functions to overcome the Gaussian distribution assumption.  
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