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Abstract

We present a general framework for developing ser-
vice robots that can help people in daily activi-
ties. This framework is based on a general, dis-
tributed architecture which integrates several compo-
nents; (i) coordinator, (ii) navigator, (iii) perception,
and (iv) human-robot interface. The coordinator uses
a decision-theoretic approach to select the appropri-
ate action according to the current state. The naviga-
tor allows the robot to localize itself and navigate in a
dynamic environment, using natural landmarks. The
perception module combines vision, sonar and lasers
so that the robot can detect the relevant objects in
the environment, including people. The human-robot
interface provides a natural communication with peo-
ple, using voice, gestures and portable devices. This
provides a general and flexible framework for devel-
oping house hold robots, so the same infrastructure
can be applied to different tasks by just changing the
coordinator, reducing costs in the development of dif-
ferent applications.

Keywords: service robots, architectures, naviga-
tion, perception, human-robot interaction.

1 Introduction

We are concerned with the problem of building ser-
vice mobile robots. For example, robots that can
help elderly people in their home, robots that can
serve as hosts and guides in museums or shopping
malls, robots that can serve as aides in hospitals, etc.

Such robots need navigation, mapping, localization
and obstacle avoidance capabilities to move around
in an uncertain and changing environment. They also
need to model the dynamics of people in an environ-
ment, including their locations in space and their be-
havioral patterns. Finally, human users require such
robots to present clear, simple and natural interac-
tive interfaces, which enable easy exchanges of in-
formation between robots and humans. Several ap-
plications of service robots require similar capabili-
ties. For instance, in most applications the robot has
to navigate from one place to another, has to local-
ize itself, has to identify and interact with people,
among other common tasks. Thus, if we can have a
set of software modules to perform these tasks and a
general architecture to combine them, we can easily
adapt a robot for different service applications. In
this work we propose a general architecture for ser-
vice robots, including several general purpose com-
ponents for (i) navigation and localization, (ii) per-
son detection, (iii) human-robot communication, and
(iv) task coordination. We illustrate this framework
in the design of two different service robots, a mes-
senger and a host.

2 Related work

Building service robots to help people has been the
subject of recent research. The challenge is to achieve
reliable systems that operate in highly dynamic en-
vironments and have easy to use interfaces. This in-
volves solving both the more traditional robot prob-
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lems of navigation and localization and the more re-
cent problems in human-robot interaction.

RHINO [4], was one of the most successful service
robots ever built. It was designed as a museum tour
guide. RHINO successfully navigated a very dynamic
environment using laser sensors and interacted with
people using prerecorded information; a person could
select a specific tour of the museum by pressing one
of many buttons on the robot. RHINO’s task plan-
ning was specified using an extension to the GOLOG
language called GOLEX.

MINERVA [14], was the successor of RHINO. It
differed from RHINO in that it could generate tours
of exhibits in real-time as opposed to choosing one
of several predetermined tours. MINERVA also im-
proved on the interaction by incorporating a steerable
head capable of displaying different emotional states.
The GOLOG language was combined with decision
theoretic planners in DTGOLOG, used in the imple-
mentation of a service delivery robot [3].

More recently, the robot PEARL escorted elderly
people around an assisted living facility [12]. Its nav-
igation and localization used probabilistic techniques
with laser sensors. PEARL is more focused on the
interaction side with an expressive face and a speech
recognition engine. One of PEARL’s contributions is
the use of a hierarchical partially observable Markov
decision process (HPOMDP), which is an extension of
hierarchical MDPs (HMDPs) [5] to model uncertain
observations. HMDPs use an specified hierarchical
decomposition of the domain, and introduce abstract

actions in higher level MDPs which invoke the poli-
cies of lower-level MDPs.

3 Software Architecture

Crucial to the design of a human-interactive mobile
robot is the ability to rapidly and easily modify the
robot’s behavior. These design constraints call for
a mobile robot to have a modular software system,
with a planning module that coordinates the different
software modules to achieve the goal.

Our software architecture is based on a Behavior-
based architecture [1]. A behavior is an independent
software module that solves a particular problem,

such as navigation or face detection. We refer to be-
haviors interchangeably as modules. Behaviors exist
at 3 different levels:

Functional level: The lowest level behaviors inter-
face with the robot’s sensors and actuators, re-
laying commands to the motors or retrieving in-
formation from the sensors.

Execution level: Middle level modules perform the
main functions, such as navigation, localization,
speech recognition, etc. These interface with the
lowest level through a shared memory mecha-
nism. Each middle level module computes some
aspect of the state of the environment. The out-
puts of these modules are typically reported to
the highest level modules.

Decision level: The highest level coordinates the
middle level modules using a global planner
based on Markov decision processes.

This architecture can be implemented in a dis-
tributed platform, such that each level and each mod-
ule within a level could be on a different proces-
sor. A transparent communication mechanism per-
mits different configurations without need to modify
the modules. Thus, some processing could be done
on board the robot (lower level modules) and other
off board (high level modules).

4 Coordinator

4.1 Markov Decision Processes

Markov decision processes (MDPs) have become the
semantic model of choice for decision theoretic plan-
ning (DTP) in the AI community [13]. They are sim-
ple for domain experts to specify, or can be learned
from data. They have many well studied properties
including approximate solution and learning tech-
niques. An MDP is a tuple {S,A, Pr, R}, where S
is a finite set of states and A is a finite set of ac-
tions. Actions induce stochastic state transitions,
with Pr(s, a, t) denoting the probability with which
state t is reached when action a is executed at state s.
R(s, a) is a real-valued reward function, associating
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with each state s and action a. Solving an MDP is
finding a mapping from states to actions. Solutions
are evaluated based on an optimality criterion such
as the expected total reward. An optimal solution
is one that achieves the maximum over the optimal-
ity measure, while an approximate solution comes to
within some bound of the maximum.

The space and time complexity of MDPs increases
with the number of states. This problem is reduced
by using factored representations [10], in which the
state is decomposed in a set of variables or factors,
and the transition functions are represented using dy-
namic Bayesian nets. However, if we require simul-
taneous actions using a single MDP, we need to con-
sider all the possible action combinations, which will
imply an additional increase in the size of the state-
action space. So we propose a framework for task
coordination based on multiple MDPs, that we call
Multiply Sectioned Markov Decision Processes (MS-

MDPs) [6].

4.2 Multiply Sectioned MDPs

A MS-MDP is a set of N MDPs, all of which share the
same goal and state space, but have different action
sets. We assume that the actions of each MDP do not
conflict with the other processes, so that each action
set can be executed concurrently with the others. We
do not find optimal solutions for the global MDP, but
simply simultaneously execute the optimal solutions
from each sub-MDP. Intuitively, we can think that
each MDP is solving one aspect of the global task,
coordinated by a common state vector, and in this
way accomplish the common goal.

Given that we have a factored representation of
the state space, each MDP only needs to consider
the state variables that directly influence its actions
and reward. This implies that each MDP, Pi, will in
general have a subset of the state variables spanning
its local state space, Si. Further, we do not consider
the effects of combined actions. These two aspects
can make a considerable reduction in the action-state
of the problem.

Although the assumption of no conflicts could seem
too restrictive, it is not so for many applications. If
there are potential conflicts there are two basic al-

ternatives. One is to duplicate certain resources, for
example, have one camera for navigation and another
for human interaction. The other is to impose cer-
tain restrictions, such as do not look for persons while
navigating.

5 Map Building and Navigator

A mobile robot requires a model or map of its envi-
ronment to perform many tasks. Our map building
module uses information from a laser scan, its odome-
ter and a sonar ring to construct an occupancy grid
map using particle filters. Due to space constraints,
we will not describe this module in detail (see [9] for
more information).

The ability for mobile robots to locate themselves
in an environment is not only a fundamental problem
in robotics but also a pre-requisite to many tasks such
as navigation. There are two types of localization
problems: local and global. Local localization tech-
niques aim to compensate for odometric errors during
navigation and require information about the initial
position of the robot. Global localization aims to lo-
cate the robot’s position without prior knowledge of
its current location. These problems are particularly
hard in dynamic environments where new obstacles
can corrupt the robot’s sensor measurements [4].

In order to locate itself either during navigation
or globally, this module uses natural landmarks that
have the advantage that the environment does not
need to be transformed. In this work, we use dis-
continuities, that can be easily extracted from laser
scanner data with high accuracy, to solve the local
and global localization problem.

A discontinuity is defined as an abrupt variation
in the measured distance of two consecutive readings
of the laser, as shown in Figure 1. Given a set of
landmarks (discontinuities), a triangulation process
is performed between all the visible landmarks to es-
timate the robot’s position. The information from
all the visible landmarks is combined considering the
angle between landmarks, the distance between the
robot and its farthest landmark, and if there are land-
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Figure 1: An example of a discontinuity extracted
from laser scanner data.

Figure 2: Global localization: after the discrete re-
laxation algorithm a few cells are the most probable
locations.

marks at both sides of the robot or only one, to give
more accurate estimates.

For the global localization problem, a ray tracing
approach is used to simulate laser readings on the
map. Each cell is associated with all its visible land-
marks and their values. This process is performed
off-line once a map is constructed. To match a cell
with the current readings of the robot, an initial stage
filters out a large number of candidate positions with
a fast algorithm. It counts the number of discon-
tinuities obtained from the laser data that matches
the distance, depth, and orientation of the previously
stored discontinuities associated to each cell. A mod-
ified discrete relaxation algorithm is used in a second

Figure 3: Re-planning with obstructed paths.

stage to determine the similarity of each cell with the
observations of the robot, considering the distances
between the discontinuities in this stage. Our global
localization algorithm is able to locate the robot even
with new obstacles as can be seen in Figure 2, where
5 new obstacles are added to the environment (see [8]
for more details).

The navigation module uses a dynamic program-
ming algorithm, with exponential costs near obsta-
cles, to find the least expensive path. In order to
avoid new obstacles, the robot is sensing its environ-
ment while moving. In case a new obstacle is placed
in front of the robot the module finds an alternative
path, as shown in Figure 3 (see [7] for more details).

6 Perception

Service robots require a sophisticated perception to
operate in complex and dynamic environments. We
use a multi–modal approach, combining several types
of sensors, such as vision, sonar, laser, and sound.
Some perception capabilities are integrated within
specific modules, such as the navigator and gesture
recognizer. Other are developed as specific modules
such that they could be used by different subsystems.
One example is a person detector.

The person detector combines sound and vision to
detect persons in the environment. The sound sub-
system detects the proximity of people by differenti-

4



ating speech from non-speech sounds. Based on fre-
quency attributes from the sound signal, a Bayesian
classifier was trained with samples of speech and
other common sounds. On-line, the sound classifier
can detect a person when she speaks in a range of
about 4 meters. The vision subsystem is based on
color information to detect people, basically faces.
We combined several color models and used a fea-
ture selection approach to determine the best color at-
tributes (R,G,Y) for skin detection [11]. These com-
ponents are integrated using a Bayesian classifier in a
robust and very efficient skin detector. Both subsys-
tems are combined using a probabilistic OR, assum-
ing that they are independent. That is, a person is
detected if P (S OR V ) = 1[(1−P (S))(1−P (V ))] >

T , where P (S) is the probability of speech given by
the sound subsystem, P (V ) is the probability of skin
given by the vision subsystem, and T is a threshold.
Figure 4 shows an example of face and hand detec-
tion.

Figure 4: Face detection and tracking of the user’s
right hand.

7 Human-Robot Interface

Service robots require a natural and effective commu-
nication with humans. We consider a multi–modal
framework for human–robot interaction with 3 main
modes: (i) speech, (ii) gestures, and (iii) portable de-
vices. For speech communication we use a standard,
off-the-shelf speech recognition and synthesis system.
Depending on the domain, a specific vocabulary and
syntax is defined which is used by the recognition
system. For many applications, a reduced vocabu-
lary with a simple syntax is appropriate.

Beside speech, gestures are an important element

in human–human communication, and are also use-
ful for human–robot interaction. Some commands
are easier to communicate with gestures, such as go
there, bring me that object, etc. Also, gestures could
help as a complement to speech. We have designed
a set of natural gestures to command mobile robots,
and a gesture recognition system based on dynamic
Bayesian networks (DBN) [2]. Once a person is de-
tected, the gesture recognition system localizes the
hand and tracks it in a video sequence (see figure 4).
Motion and posture attributes are obtained from the
sequence [2], and are the inputs the DBN models.
The probability of each model given the observation
sequence is computed, and the model (gesture) with
highest probability is selected. The current system
can recognize 9 types of gestures with a precision of
over 90%.

Portable devices, such as PDAs and cell phones,
are another alternative to communicate with service
robots. These are particularly useful when the robot
is out of sight. Based on a PDA, we developed a sim-
ple and effective interface to command mobile robots.
In the screen a reduced map of the environment or
the robots view is displayed. The user can command
the robot to go to certain location by: (i) pointing to
a location in the map, or (ii) by using the control keys
(forward, backward, left, right) based on the view of
the environment from the robot camera.

8 Applications

We have applied our proposed architecture to two
service robot applications: a delivery robot and a
host robot.

The delivery robot’s goal is to accept a message
for a particular person, search for this person and
deliver the message. The robot uses the perception
module to locate person. It then uses its natural
language module to receive a message in natural lan-
guage and the name of the person to whom this mes-
sage should be delivered. The robot moves through
its environment using its navigation capabilities and
its human localization module to find persons. It
then uses again its natural language interface mod-
ule and asks the human for his/her name. In case
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it matches the target’s name it delivers the message,
otherwise it continues searching for persons in the
environment.

The host robot goal is to provide information about
a particular place to visitors, in our case, information
is provided about a University and its research group.
This robot also requires the map building, localiza-
tion and navigation modules, the human recognition
module, the natural language interface, and uses the
gesture recognition module. Once a person is rec-
ognized, the robot starts a dialog with the human
to give information about a particular place. The
robot is able to move to designated places of inter-
est using its navigation module even in the presence
of new obstacles. It can then provide information
about that particular place and can also project pre-
viously stored videos. The user is also able to direct
the robot to particular places using arm movements
and the gesture recognition module.

The messenger robot has been tested successfully
in a real environment. We have tested independently
the different modules for the host robot, which are
currently being integrated. New modules can be
added or interchanged to create new host robots with
different capabilities. For instance, a new application
can be created just by changing the dialogs of the
natural language module.

9 Summary and Future Work

A general framework for creating service robots has
been described. The architecture uses an MDP
framework and a set of independent modules that
can be incorporated and interchange for different ap-
plications.

There are several research directions that we are
planning to follow, creating other modules and im-
prove existing ones. We are planning to incorporate
a module that can be used to teach the robot by
example. We also plan to combine the gesture recog-
nition and natural language modules to enhance our
human-robot interface. Finally, we want to improve
our coordinator so that it can deal with conflicting
situations that can arise when two modules require
the same resources at the same time.
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