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ABSTRACT
MDQL is an algorithm, based on reinforcement learning, for
solving multiple objective optimization problems, that has
been tested on several applications with promising results
[1]. MDQL discretizes the decision variables into a set of
states, each associated with actions to move agents to con-
tiguous states. A group of agents explore this state space
and are able to find Pareto sets applying a distributed rein-
forcement learning algorithm. The precision of the Pareto
solutions depends on the chosen granularity of the states.
A finer granularity on the states creates more precise solu-
tions but at the expense of a larger search space, and con-
sequently the need for more computational resources. An
important improvement is presented. The new algorithm,
called IMDQL, starts with a coarse granularity to find an ini-
tial Pareto set. A vicinity for each of the Pareto solutions in
refined and a new Pareto set is founded in this refined state
space. This process continuous until there is no more im-
provement within a small threshold value. It is shown that
IMDQL not only improves the solutions found by MDQL,
but also converges faster and is capable to approximate dy-
namic Pareto fronts.

The main consideration in the application of IMDQL to
dynamic environments is that the agents in the algorithm
start from the Pareto solutions obtained. Agents start with
a deterministic environment constructed with fixed values
for the value functions for the first dynamic parameters;
when convergence is reached and a Pareto set is obtained,
a new cycle is started, changing to the next value for the
dynamic parameters. Agents start searching (adapting so-
lutions) from the existing environments which correspond
to the Pareto solutions obtained for the previous value for
the dynamic parameters. Searching for new solutions, from
the last Pareto set, given the new values for the dynamic
parameters, significantly reduces the convergence time.

IMDQL is tested on a real water distribution network
design involving water-reusing treatment plants and differ-
ent contaminants concentrations [1]. In this problem, the
concentration of contaminants can change over time so the
search for optimal solutions becomes a continuous process.
It is shown that IMDQL improves on the solutions found by
MDQL with fixed concentrations and, that due to its incre-
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Figure 1: Agriculture user
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for urban and public user. Comparison of Pareto fronts.
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Figure 2: Urban and Public user

mental nature, it is able to adequately adjust its Pareto set
solutions with dynamic changes in the contaminants con-
centrations as long as they are within the vicinity of the
previous Pareto set. This is, to our knowledge, the first
multi-objective optimization algorithm that is able to dy-
namically adjust the Pareto set with changing conditions
and that can adjust the accuracy of its solutions.

The solutions were also compared against MDQL that
was compared against a reduced gradient method using a
weighted combination of the two objective functions [1], see
Figures 1 and 2 for comparisons of Pareto fronts obtained
with MDQL, ×, and IMDQL, 2.
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