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Abstract

Industrial water systems often allow efficient water uses via water reuse and/or recirculation. The design of the network
layout connecting water-using processes is a complex problem which involves several criteria to optimize. Most of the time,
this design is achieved using Water Pinch technology, optimizing the freshwater flow rate entering the system. This paper
describes an approach that considers two criteria: (i) the minimization of freshwater consumption and (ii) the minimization
of the infrastructure cost required to build the network. The optimization model considers water reuse between operations
and wastewater treatment as the main mechanisms to reduce freshwater consumption. The model is solved using multi-
objective distributed Q-learning (MDQL), a heuristic approach based on the exploitation of knowledge acquired during
the search process. MDQL has been previously tested on several multi-objective optimization benchmark problems with
promising results [C. Mariano, Reinforcement learning in multi-objective optimization, Ph.D. thesis in Computer Science,
Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Cuernavaca, March, 2002, Cuernavaca, Mor.,
México, 2001]. In order to compare the quality of the results obtained with MDQL, the reduced gradient method was
applied to solve a weighted combination of the two objective functions used in the model. The proposed approach was
tested on three cases: (i) a single contaminant four unitary operations problem where freshwater consumption is reduced
via water reuse, (ii) a four contaminants real-world case with ten unitary operations, also with water reuse, and (iii) the
water distribution network operation of Cuernavaca, Mexico, considering reduction of water leaks, operation of existing
treatment plants at their design capacity, and design and construction of new treatment infrastructure to treat 100% of the
wastewater produced. It is shown that the proposed approach can solved highly constrained real-world multi-objective
optimization problems.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Water pinch technology (WPT) evolved out of the
broader concept of process integration of materials
and energy and the minimization of emissions and
wastes in chemical processes. WPT can be seen as
a type of mass-exchange integration involving
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water-using operations, that enables practicing
engineers to answer important questions when retro-
fitting existing facilities and designing new water-
using networks. There are three basic tasks in
WPT: (a) identification of the minimum freshwater
consumption and wastewater generation in water-
using operations (analysis), (b) water-using network
design to comply with the flow rate targets for fresh-
water and wastewater through water reuse, regener-
ation, and recycle (synthesis), and (c) modification of
an existing water-using network to maximize water
reuse and minimize wastewater generation through
effective process changes (retrofit).

Nowadays most WPT problems are formulated
as non-linear highly restricted programming prob-
lems [1,13,14]. Important efforts have aimed to
make the mathematical models more robust and
applicable to real-world problems [2,7,10]. Other
efforts have aimed to apply WPT technology to
other fields such as design and retrofit of urban dis-
tribution systems [3].

In general, WPT traditionally minimizes fresh-
water flow rate entering a system, using mass bal-
ance and the concentrations of contaminants at
the inlet and outlet in all water-using operations
as restrictions. Because of the diverse types of
water-using operations, treatment effectiveness and
cost, and types of contaminants, the criteria for effi-
cient use of water is inherently non-linear, multiple
and conflicting [2,10,13]. Some of the criteria that
can easily be identified are: equipment cost minimi-
zation, maximization of reliability (amount of
contaminant captured at treatment plants) and min-
imization of wastewater production.

This paper describes a mathematical formulation
that extends WPT analysis with elements of capital
cost of the required pipe work. Consequently, the
optimization is based on cost efficient networks
and networks featuring freshwater consumption.
The model involves two criteria: (i) the minimiza-
tion of freshwater consumption and (ii) the minimi-
zation of infrastructure costs. Two techniques are
used to solve this problem: (1) weighted aggregation
considering variation in the weight coefficients in
order to construct the Pareto set and using a
reduced gradient method, and (2) MDQL, a heuris-
tic approach based on the exploitation of the know-
ledge generated during the search process. Results
obtained with both approaches are compared with
solutions reported in the literature for the solution
of the single-objective problem that minimizes the
freshwater flow rate entering the system.

The proposed multi-objective optimization
model was applied to three test cases: (a) Four
water-using operations and single contaminant, (b)
ten water-using operations and four contaminants
and (c) Cuernavaca’s water distribution network
operation considering two different strategies: (c.1)
reduction of leaks in the network and operation of
wastewater treatment plants at their design capac-
ity, and (c.2) reduction of leaks in the network,
operation of wastewater treatment plants at their
design capacity, and construction of new treatment
infrastructure to reach 100% wastewater treatment.
It is shown that the highly constrained subjective
optimization real-world problems can be solved
with MDQL.

Section 2 presents the mathematical formulation
for the bi-objective optimization problem. In Sec-
tion 3 the weighted aggregation method and the
MDQL heuristic approach are described. Section 4
describes the three cases under study and discusses
the main results. Section 5 gives conclusions and
future research directions.

2. Mathematical formulation

The mathematical model describing an industrial
water demanding process considers two main com-
ponents: (a) the available freshwater sources to sat-
isfy demands, and (b) the water-using operations
described by loads of contaminants and concentra-
tion levels. An example of two sources and two
operations is sketched in Fig. 1. This figure repre-
sents with rectangles the two unitary operations
(Oi), and with solid lines on the left side of the
operations their corresponding freshwater demands
(fi). Wastewater from operations are represented
with dashed lines on the right side of operations.
The rest of the connections represent all the poten-
tial links between unitary operations (water reuse),
leaks, and treatment plants. The direction arrow
heads at the end of lines indicate the direction of
flux.

The design task is to find the network configura-
tion that minimizes the overall demand for fresh-
water,

P
fi, (and consequently reduce the wastewater

volume
P

W i) compatible with minimum investment
cost. In order to complete the design task, the optimi-
zation problem is stated in terms of low freshwater
consumption, a suitable network topology for water
reuse, Xi,j, and a low investment cost.

Unitary operations of demanded water are
defined through their contaminant loads, required
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flow rates, and allowable minimal and maximal con-
taminant concentrations at influxes and discharges.

The objective functions for freshwater consump-
tion minimization and for infrastructure minimiza-
tion are represented by Eqs. (1) and (2)

MinZ1 ¼ F 1 ¼
X

j

cstj þ TPC; ð1Þ

MinZ2 ¼ F 2 ¼
X

i

fi; ð2Þ

where F1 is the total cost of the distribution network
considering the connection of freshwater sources to
unitary operations receiving water directly, and the
connection for reusing water between unitary oper-
ations. The total distribution network cost is com-
posed by the sum of the partial costs, cstj, of the
pipe segments used for connecting freshwater
sources to unitary operations and unitary opera-
tions to unitary operations, and TPC, the treatment
plant construction cost that applies only for new
treatment infrastructure. In F1 we are not consider-
ing maintenance and rehabilitation costs.

F2, is the total freshwater demanded by the sys-
tem, obtained by the partial demands of freshwater
from each of the unitary operations in the system.
Partial demands from unitary operations, say oper-
ation Oi, are represented as fi. That is fi is the partial
freshwater demand of operation Oi.

2.1. Infrastructure cost

Evaluation of the first objective function, F1,
depends only on the pipe segment costs in the net-
work. These costs are represented as cstj, and
depend on three variables (see Eq. (3)): (a) pipe
length, Lj; (b) cost per unit length, PCj; which
depends on the pipe diameter required to transport
the demanded flow of water, Dj and (c) a cost factor,
CFj, related to pipe materials required to resist cor-
rosive effects of contaminants. It is important to
note that the main objective of this work is to dem-
onstrate the benefits obtained by the solution of the
multi-objective approach, compared with those
obtained with a single objective approach. For this
reason, some considerations regarding the hydraulic
behavior of the network are not included

cstj ¼ Lj � PCj � CFj: ð3Þ
As previously mentioned, PCj depends on the mini-
mum pipe diameter, Dj = f(Qj), required to transport
the water flow through the pipe. The minimum
diameter, Dminj , is obtained applying Eq. (4); de-
duced from the definition of flow (Q = velocity/area)
considering maximum velocities of water in pipes of
2.5 m/seconds. Dminj is approximated to the closest
upper commercial diameter. Table 1 shows diame-
ters and cost per unit length for commercial pipes
considered in this work. The data in Table 1 is only
demonstrative and can be substituted with real data
from local markets

Dmin ¼ 0:714
ffiffiffiffi
Q

p
; ð4Þ

i, 1

2,1

X1,2

X2,1

X1,2

O
1

O
2

W 1

W2

f1

f2

f1,loss

f2,loss

XR,1

XR,2
X2,R

X1,R

Reusable water from treatment plants  (X )

Fresh water, f

Wastewater, Wi

Water losses, f

Reusable water from O1

Reusable water from O2 (X

i, loss

i, R

i, 2 )

)(X

X

Fig. 1. Block diagram of a water-using system with two sources
and two operations.

Table 1
Cost per unit length for commercial diameter pipes

Diameter (mm) PC ($/m)

99 4.8
150 5.0
200 8.9
250 12.9
300 17.7
350 23.6
400 25.6
450 34.1
500 40.9
610 42.6
762 45.9
838 54.6
1016 69.9
1118 83
1219 94
1372 110
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quired to transport flow rate Q ; Q 2 {fi,X i,j,Wi}
"i, j and is given in m3/seconds.

In a similar manner, the factor CFj is related to
the capacity of the pipe segments to resist corrosive
effects due to the presence of contaminants in water
flows. Values for the CFj factor are included in
Table 2, calculated considering local prices in Mex-
ico for non-corrosive pipes.

Finally the treatment plant construction cost
considered in this work is 10$/l, that is the construc-
tion cost in monetary units per liter of treatment
capacity for the plant or plants.

2.2. Freshwater demand

To guarantee steady state conditions in the sys-
tem, it is necessary to restrict the objective functions
by the mass balance between unitary operations,
and by the maximum and minimum allowed con-
taminant concentrations on the influxes and dis-
charges of operations [14].

The flow-rate required in each unitary operation
is related to the mass load of contaminants (Dmi,k,tot)
discharged by operations. This is described in Eq. (5)

fi ¼ max
c

Dmi;k;tot

cmax
i;k;out � cmax

i;k;in

; ð5Þ

where fi is the freshwater flow rate for operation Oi;
Dmi,k,tot is the total mass transfer for each contami-
nant, k, to the water used at operation Oi (this term
is also known as the contaminant mass charge [3]
and is expressed in kg/hours); cmax

i;k;out and cmax
i;k;in are

the maximum allowed concentration of contami-
nant k on the discharge and influx of operation
Oi, in mg/l, respectively.

The optimization model depends on the mass
balance between all inlets and all outlets of water
to the operation Oi. According to Fig. 2, the expres-
sion for the mass balance has the form shown in Eq.
(6)

fi þ
X
j 6¼i

X i;j þ X i;R � fi;loss � W i

�
X
j 6¼i

X j;i � X R;i ¼ 0; ð6Þ

where Xi,j is the reusable water flow rate from other
operations, say Oj, in operation Oi; Xi,R is the trea-
ted water from the wastewater treatment plants that
can be used in operation Oi; fi,loss is the portion con-
sidered as water loss in the operation or water con-
sumption by the operation; Wi is the wastewater
flow rate from operation Oi; Xj,i is the reusable
water flow rate from operation Oi in operations Oj

and X R,i is the portion of the discharged water from
operation Oi that receives treatment. All flow-rates
are represented in m3/hours. TP in Fig. 2 represents
a treatment plant.

k different contaminants can be considered in the
optimization model. This consideration requires the
definition of constraints to restrict the concentration
of contaminants at the inlets and outlets of opera-
tions, in order to guarantee that water influxes will
not affect the operation performance, and to avoid
the violation of environmental or operation norms.
The satisfaction of these constraints will deter-
mine the quantities of fresh and reused water to sup-
ply to operations. The contaminant concentration
constraint at the influx of the ith operation, ci,k,in

is defined by Eq. (7)

ci;k;in ¼
P

j6¼iX i;jcj;k;out þ ck;0X i;R � fi;losscmax
i;k;inP

j 6¼iX i;j þ fi þ X i;R � fi;loss

6 cmax
i;k;in;

ð7Þ
where cj,k,out is the concentration of contaminant, k,
at the discharge of operation Oj, ck,0 is the concen-

Table 2
Cost factors for pipes resistant to abrasive effects of contaminants

Contaminant concentration (mg/l) CF

0 6 c 6 50 1.25
50 < c 6 100 1.5
100 < c 6 150 2.0
150 < c 6 200 3.0
200 < c 6 500 5.0
500 < c 10.0

i,k,out

C0

X
i,R

Ci,k,out
XR,i

TP

floss

O i

Xj,i
Ci,k,out

W i
Ci,k,out

XR,i
C

Xi,j
Cj,k,out

fi

Xi,R
C0

fi,loss
Ci,k,out

Fig. 2. General structure for mass balance.
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tration of contaminant k in the treated water, cmax
i;k;in

is the maximum allowable concentration of contam-
inant k at the influx of operation Oi. Concentrations
are expressed in mg/l.

The same way, contaminant concentration con-
straint at the outlet of jth operation, cj,k,out is
defined by Eq. (8)

cj;k;out ¼ ci;k;in þ
Dmi;k;totP

j 6¼iX i;j þ fi þ X i;R � fi;loss

6 cmax
i;k;out:

ð8Þ

Finally, non-negativity constraints are estab-
lished according to the following equations:

X i;j P 0;

fi P 0;

Lj � PCj � CFj P 0:

3. Solution methods

For multi-objective optimization problems there
is not a single solution, but a set of non-dominated
solutions (Pareto-set), such that the quality of a
solution can be improved with respect to a single
criterion only by becoming worse with respect to
at least one other criterion [5].

In this sense, we propose the use of two tech-
niques especially designed to solve optimization
problems with more than one criterion. The first,
uses an aggregated function constructed with the
use of weight coefficients representing the relative
importance of the two objective functions. The
resulting optimization problem is solved by the
reduced gradient method for five combinations of
weights to construct the Pareto set. The second tech-
nique, called MDQL, is a heuristic approach based
on the solution of Markov decision processes [15].
MDQL is capable of exploiting the knowledge
acquired during the solution process, and has been
tested on several benchmark problems showing
good performance (e.g., [15,16]).

3.1. Aggregated function

This approach is probably the most known and
simplest way to solve this type of problems. Some
of the first references on it are [12,25]. The main idea
is to construct a weighted combination of the objec-
tive functions. The weighted function is then used
on a single objective optimization problem. In gen-
eral, the weight coefficients, pi, are real values such

that p i P 0 "i = 1, . . . ,k for k objectives. It is also
recommended to use normalized weight coefficients,
so
Pk

i¼1pi ¼ 1. More precisely, the multi-objective
optimization problem is transformed to the problem
stated in Eq. (9), which will be called from now on
the ‘‘weighted problem’’

min
Xk

i¼1

pi � F i; ð9Þ

where pi P 0 "i = 1, . . . ,k and
Pk

i¼1pi ¼ 1.
This approach guarantees the optimality of the

Pareto set if the weighted coefficients are positive
or the solution is unique [4,18]. Pareto set construc-
tion is made with the variation of the weight coeffi-
cients values, solving the weighted problem as
many times as the number of variations of the weight
coefficients can be configured. This procedure can be
computationally expensive and slow, although it is a
simple approach to generate some Pareto solutions.

The weighted problem of the two objective func-
tions presented in Section 2, is shown in Eq. (10)

F ¼ p1

X
i

fi þ p2

X
j

cstj þ TPC

 !
: ð10Þ

Its solution is obtained through the reduced gradi-
ent method with the use of the GAMS/MINOS pro-
gram [11]. The weight coefficients combinations
used are included in Table 3.

3.2. Multiple objective distributed Q-learning

(MDQL)

In order to efficiently solve optimization prob-
lems with more than one objective function it is
desirable to use population based approaches, that
is, approaches with the capability to generate more
than one solution concurrently. Moreover, it is nec-
essary to apply the dominance optimality criterion
to evaluate the generated solutions. This is the main
hypothesis of much of the recently developed
approaches designed to efficiently solve multi-objec-

Table 3
Weight coefficient combinations used by the reduced gradient
approach

Combination p1 p2

1 0.10 0.90
2 0.25 0.75
3 0.50 0.50
4 0.75 0.25
5 0.90 0.10

C.E. Mariano-Romero et al. / European Journal of Operational Research 181 (2007) 1691–1707 1695



Aut
ho

r's
   

pe
rs

on
al

   
co

py

tive optimization problems based on evolutionary
computation. However, evolutionary approaches
do not exploit the knowledge generated along the
search process [23].

Taking advantage of some of the characteristics
of evolutionary approaches, optimization problems
can be solved considering the search processes of a
Markov decision problem. Similar ideas have been
previously used with the ant colony optimization
meta-heuristic [8,9].

MDQL considers a group of agents searching a
terminal state, st, in an environment formed by a
set of states, S. The set of states, or environment,
is constructed with the division of the parameter
space into a fixed number of parts, considering that
all the decision variables can be discretized into a
finite number of divisions. Each division is consid-
ered as a state, as illustrated in Fig. 3. An environ-
ment with these characteristics allows the agents to
propose values for each one of the decision variables
in the problem.

For each state, s 2 S, a set of actions, As, is estab-
lished, see Fig. 3. All state-action pairs have an
associated value function, Q(s,a), indicating the
goodness of taking action a in state s, for reaching
a terminal state st 2 S (complete a task).

The search mechanism for an agent in MDQL
operates when an agent located in a state selects
an action based on its value function, Q(s,a). Most
of the time the agent selects the best evaluated
action (the action with the higher estimated value
for Q(s,a)), but sometimes a random action is
selected with a probability � � 0. Action value func-
tions are updated depending on how useful an
action can be for an agent to reach a terminal state.

This behavior is adjusted with the help of a reward
value, r 2 R, and the value function for the best
evaluated action in the future state reached by the
agent after the execution of the selected action,
Q(s 0,a 0). This update rule is expressed in Eq. (11)

Qðs; aÞ  Qðs; aÞ þ a½r þ c max
a02A0s

Qðs0; a0Þ � Qðs; aÞ�;

ð11Þ
where Q(s,a) is the value function for the action,
(0 6 a 6 1) is the learning step, r is an arbitrary re-
ward value, r 2 R, c is a discount factor, s 0 and a 0

are the next state and the best evaluated action for
s 0, respectively.

As an agent explores the state space, the Q(s,a)
estimates improve gradually, and, eventually, each
maxa02A0s Qðs

0; a0Þ approaches: E
P1

n¼1c
n�1rtþn

� �
[22].

Here rt is the reward received at time t due the
action chosen at time t � 1. Watkins and Dayan
[24] have shown that this Q-learning algorithm con-
verges to an optimal decision policy for a finite Mar-
kov decision process.

In MDQL there is a group of agents, instead of a
single agent, interacting with the environment
described above, and since the task for the agents is
the construction of the Pareto set, the original
Q-learning [24] algorithm must be adapted. The main
adaptations considered in MDQL are listed below:

• Decision variables in the environment have a pre-
defined order, the agents move in the decision
variables space obeying this order, so the defini-
tion of the values for the decision variables is made
in the same order by all the agents. Each agent
assigns a value for a decision variable at a time.

sx 2

sxn − 1

sk 2

x
min

y z k
min min min

initial
state

As
0

s
0

x y z k
variables

x
max

y z k
max maxmax

skp − 1

sz 2

szo − 1sym − 1

sy 2

Asx6

final
state
st

Fig. 3. Variable space division for MDQL.
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• When all the agents finish (set values for all the
decision variables), all solutions are evaluated
using the Pareto dominance criterion. Environ-
ments for non-dominated solutions and solutions
that violate any constraint remain in memory to
be used in future episodes.

• Agents are randomly assigned to the environ-
ments in memory.

• Action values are updated in two stages. The first
is made when agents make a transition using a
‘map’ of the environment. Maps are constructed
making copies of the environments in memory,
and are used by agents to show to the rest of
the agents the experience acquired during the
search process [17]. This experience is represented
by the actualization of the action value functions
in the ‘map’ using the Q-learning rule of Eq. (11).
At the end of an episode and after the evaluation
of solutions, non-dominated solutions receive a
positive reward and solutions violating any con-
straint receive a negative reward, which is used
to update the original value functions in the envi-
ronment where they were found (second stage).
After the update procedure, all ‘maps’ are
destroyed and a new episode initiates. More
details of MDQL algorithm can be found in
[15,6].

4. Test cases

The proposed mathematical model was validated
and MDQL was tested on three cases described in
the following sections.

The MDQL operation parameters used for all
test cases were: a = 0.1, c = 0.9, � = 0.01 and r = 1
for non-dominated solutions and r = �1 for solu-
tions violating constraints. Previous values for the
operation parameters in MDQL are in some sense
typical and were originally suggested in [23]. Some
work related with the sensitivity of the algorithm
to these parameters is presented in [16] using bench-
mark evaluation functions. The conclusion of the
previous work indicates that the best combination
of values for the operation parameters is to consider
a � 0, c � 1 and � � 0.

4.1. Four water-using operations

The first test case considers four water-using
operations (O1, O2, O3, and O4) and a single fresh-
water source. Table 4 shows the allowable values

for freshwater, fi, the maximum concentration at
influxes, cmax

i;k;in, and at discharges, cmax
i;k;out, and the total

mass transfer for contaminants, Dmi,k,tot, for the
four unitary operations. The objective is to find a
network configuration connecting the four unitary
operations to the source, with the lowest cost and
the lowest freshwater consumption, considering
reuse as the sole mechanism to reduce freshwater
demands.

Fig. 4 shows a non-optimized solution where
water demands in all water-using operations are
satisfied with freshwater, resulting in a flow of
112.5 t/hours and with a cost of infrastructure of
$1875.00 monetary units.

MDQL implementation for the solution of this
test case considers the range and number of divi-
sions for the variables shown in Table 5. These val-
ues represent increments of 0.2 m3/hours for all
variables, which is the criterion used for the param-
eter space partition in the three problems. For
example considering O1, with a maximum fresh-
water flux equal to 0 6 f1 6 20 m3/hours, it is
divided in 100 states (each state represents a varia-
tion of 0.2 m3/hours for f1). The same number of
divisions is considered for the rest of the variables.
Each action moves the agent to a state of the next
consecutive variable, i.e. assigns a value in the dis-
cretized space of the next consecutive variable.
Fig. 5 shows two traces of two different agents.
Each of the two traces represents a solution to the

Table 4
Operation parameters for test case 1

Operation f

(m3/hours)
cmax

i;k;in
ðmg=lÞ

cmax
i;k;out

ðmg=lÞ
Dmi,k,tot

(g/hours)

O1 20 0.0 100.0 2000
O2 100 50.0 100.0 5000
O3 40 50.0 800.0 30,000
O4 10 400.0 800.0 4000

O1

O2

O3

O
4

100 m

100 m

100 m

100 m

100 m

20 t/h

50 t/h

37.5 t/h

5 t/h

waste waterFresh water
source

Fig. 4. Non-optimized solution for the first test case.
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optimization problem, that is a set of values for the
parameters of the problem.

Twenty agents are considered for the solution
of all cases. When all agents conclude an episode
(definition of the 24 variables), the 20 solutions
obtained are evaluated under the dominance crite-
rion. Non-dominated solutions receive a reward
value, r, used to update that state-action value func-
tion participating in its construction. The environ-
ment settings with non-dominated solutions and
solutions violating constraints are stored in memory
and used in the next episode.

Results obtained by MDQL are shown in Fig. 6
represented with *, corresponding to the best solu-
tions found from 20 different algorithm runs with
the same parameters. Fig. 6 also includes the five
solutions obtained by the weighted function
approach, represented with s. As can be appreci-
ated, MDQL generated more solutions over the
Pareto front, 13, some of them coincide with those
found by the mathematical programming approach.
The solutions found by the weighted functions
approach are shown in Fig. 7. It is also important
to notice that for this type of problem the Pareto
set is small because of the restrictions.

CPU time to complete the Pareto front using the
aggregated function approach and mathematical
programming (solution marked with the s) was
around 5 seconds. This time is obtained with the
sum of the CPU time required to obtain each of
the five solutions on the Pareto front, not consider-
ing the time required to change the weight coeffi-
cients. Besides, the average CPU time required by
MDQL to define the Pareto front presented in
Fig. 6 was around 8 seconds. Considering that the
Pareto front obtained by MDQL contains 13 solu-
tions and if we extrapolate the time taken by the
mathematical approach, it will require 13 seconds
for the same number of solutions found by MDQL.

MDQL was also tested with a finer discretization
ranges, the double of states per variable, obtaining
the same solutions. This behavior of MDQL indi-
cates that the reported Pareto set is the optimal
solution for the test case considered and for this dis-
cretization level adopted.
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Fig. 5. An example of a path taken by two agents in the MDQL implementation for the first test case.
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Fig. 6. Pareto fronts obtained for the first test case: (s)
mathematical programming solutions; (�) MDQL solutions;
(�) solution obtained for the minimization of freshwater
consumption as a sole objective.

Table 5
Variable space configuration for the first case

Variable Range Number of states

f1 0–20 100
f2 0–100 500
f3 0–40 200
f4 0–10 50
X1,j; j 2 1,2,3,4 0–20 100
X2,j; j 2 1,2,3,4 0–100 500
X3,j; j 2 1,2,3,4 0–40 200
X4,j; j 2 1,2,3,4 0–10 50
W1 0–20 100
W2 0–100 500
W3 0–40 200
W4 0–10 50

1698 C.E. Mariano-Romero et al. / European Journal of Operational Research 181 (2007) 1691–1707



Aut
ho

r's
   

pe
rs

on
al

   
co

py
4.2. Real industrial problem with ten operations

and four contaminants

The second test case was reported by Alva-
Argaez [2] and Alcocer and Arreguı́n [1]. This case
was constructed with real data obtained from an
industrial process in the United Kingdom, consider-
ing ten unitary operations, O = O1,O2, . . . ,O10, and
four types of contaminants, U = A,B,C,D. Opera-
tion parameters are included in Table 6.

This problem was also solved in [3] by mathemat-
ical programming considering the sole objective
function of freshwater minimization. Reported
results for this test case indicate that the optimal
value for the objective function is 594.80 m3/hours,
which is identical to the result reported in [2]. The
similarity of results indicates that the two models
are identical and that the results reported in this
work can be compared with them.

For this second case only MDQL was applied
due to the approximation of the Pareto fronts
obtained with MDQL and the mathematical pro-
gramming approach observed in the first case and
other problems previously solved [15,16]. Fig. 8

includes the solutions obtained with MDQL. The
solution reported in [3] is also plotted. As in the first
test case, the solution for the single objective func-
tion is located in the upper left corner of the graph,
the region for the lowest flow rates and highest
costs. This seems logical because the solution of
the optimization problem with a single freshwater
minimization objective function is equivalent to a
zero weight coefficient p2 for the cost objective
function Z2 in the mathematical programming
approach.

In Fig. 8 it can be appreciated that the solution
obtained for the single objective function (reported
in [3]) is non-dominated with respect to those
obtained by MDQL, with the best evaluation for
the freshwater minimization criterion. This situation
is also presented in the solution of the first test case.
This behavior can be attributed to the precision of
float numbers, and to the discretization levels for
the parameter space. The combination of these
two factors causes a truncation of the variables,
and consequently in the solutions. Reported solu-
tions are the best from ten executions of the algo-
rithm with the same operation parameters. In four
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Fig. 7. Solutions found with the aggregated function approach.
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of the ten executions MDQL converge to the same
Pareto front reported in Fig. 8, in two executions
only nine of the ten solutions reported were found
and in four cases only eight solutions were found
(these cases are considered the worst Pareto fronts
found).

In addition, the mean number of solutions in
the Pareto front (Pareto Counting) compared with
the number of evaluation functions is presented
in Fig. 9. The number of function evaluations
presented in Fig. 9 is the global number of func-
tions evaluated by MDQL. For instance, it can be
appreciated that MDQL converges most of the
times to the same number of solutions in the Pareto
front, and that after several repetitions MDQL
reach the same solutions on the Pareto front. This
can be said because Pareto fronts generated in dif-
ferent episodes were compared and the solutions

were the same (for the same discretization of the
environment), the only difference between Pareto
fronts was the number of solutions obtained. These
results were the main reason that motivated the
authors to abstain to make a more extensive evalu-
ation of the performance of MDQL on the solution
of this type of problems using other performance
metrics.

The solutions obtained for the second test case
make evident the advantages when more than one
criteria are considered, as there is more flexibility
to take a good decision. Additionally, and consider-
ing the type of problems exposed in this paper, the
analysis effort required to build an optimization
model for problem with more than one criteria is
not much greater than the required for the single
objective case, but results are more valuable, from
the point of view of information content.

Table 6
Operation parameters for the second test case

Operation O cmax
i;j;in ðmg=lÞ cmax

i;j;out ðmg=lÞ f (m3/hours)
(A–B–C–D) (A–B–C–D)

O1 200–500–100–1500 25,000–20,000–28,500–230,000 24.87
O2 350–3000–500–400 8000–9000–24,080–3000 40.98
O3 350–450–150–500 3500–2500–1500–1500 39.20
O4 800–650–450–300 15,000–5000–700–1500 4.00
O5 1300–2000–2000–4000 2000–7000–9000–10,000 3.92
O6 3000–2000–100–0 12,000–10,000–8000–200 137.50
O7 450–0–250–560 2000–3000–1000–12,000 290.96
O8 100–250–200–550 3450–4000–700–7000 23.81
O9 150–450–3000–100 1000–1000–4000–100 65.44
O10 0–0–0–0 100–100–100–100 4.00
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Fig. 8. Solutions found by MDQL on the second test case (�)
and the solution found with the a single objective model (s).
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Fig. 9. Average number of solutions in the Pareto front vs
average number of function evaluations in MDQL.
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Average CPU time taken by MDQL to obtain
the Pareto front presented in Fig. 8 was around
20 seconds.

4.3. Water distribution system of Cuernavaca

The Cuernavaca city water distribution system,
in México, operates as illustrated in Fig. 10. There
are three different types of sources of freshwater in
the city, according to the National Water Commis-
sion (NWC): 42 water springs supplying 1409 l/sec-

onds, 328 deep wells with a contribution of
1503.58 l/seconds, and water wheels contributing
with 751.50 l/seconds.1

Water users are classified into five categories
according to the water works user census. A brief
description of the kind of exploitation given to
water by each category is given below, accompanied

Apatlaco river

and consumption

and consumption

and consumption

and consumption
leaks

leaks and
consumption

leaks and
consumption

Water Sources

Wells
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Springs
1,409 l/s
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3,664.08 l/s
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leaks
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Industrial
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1.36 l/s

2.24

47.58 l/s

 l/s

16.19 l/s

0.58 l/s

20.46
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6.96
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1,436.21 l/s

0.78 l/s
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220 mg/l
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Treatment
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Agriculture

816 l/s

1,409 l/s

593 l/s 177.9 l/s

1,291 .59 l/s
 339.65 l/s

1,972.47 l/s

220 mg/l

339.65 l/s
50 mg/l

415.1 l/s
350 mg/l

Fig. 10. Current operation of the distribution system of the city of Cuernavaca, Mexico.

1 It is important to note that the net extractions and run offs
from the sources reported are greater because they also supply
freshwater to other towns close to Cuernavaca.
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with their freshwater demand taken from [20].
In order to be consistent with the nomenclature
previously used, every category is considered as an
unitary operation.

Self service: Users that have its own source to
satisfy any kind of needs including human con-
sumption. Water demand for this type of users
is 1.36 l/seconds.
Industrial: Users exploiting water to operate only
industrial processes in which there are no human
needs to satisfy. Water demand for this unitary
operation is 47.58 l/seconds.
Agriculture: Covers all the users exploiting fresh-
water only for irrigation. The main crops culti-
vated in the region of Cuernavaca are rice,
corn, grass and rose trees. This is the second most
water demanding operation in the system with
593.00 l/seconds.
Services: Users with high consumption rates,
such as hotels, schools, restaurants, supermar-
kets, etc. Freshwater demand for this operations
ascends to 16.19 l/seconds.
Urban and public: Most of the domestic users in
the city, including small schools, stores, public
offices and small workshops. This is the most
demanding operation with a demand of 3003 l/
seconds.
Multiple: Users not classified in any of the previ-
ous categories with an activity that can be classi-
fied as a service, but with less consumption rate.
This operation demands 2.24 l/seconds.

It is relevant to note that part of the demanded
water is consumed by the operation itself, another
part cannot be registered and is considered as a loss
caused by leaks occurring along the distribution
systems. The rest is declared as wastewater and is
supposedly discharged with the effluents to the
receiving water bodies. For Cuernavaca city this

Table 7
Inflow and outflow limit concentration for all current operations in the city of Cuernavaca

Operation O BOD5 TSS

cmax
i;A;in ðmg=lÞ cmax

i;A;out ðmg=lÞ Dmi,tot (kg/hours) cmax
i;B;in ðmg=lÞ cmax

i;B;out ðmg=lÞ D mi,tot (kg/hours)

Urban and public 0.00 220.00 1767.74 0.00 220.00 1,403.07
Services 0.00 220.00 9.53 0.00 200.00 7.56
Agriculture 50.00 350.00 449.57 50.00 300.00 449.57
Multiple 0.00 220.00 1.32 0.00 220.00 1.05
Industrial 0.00 874.00 85.57 0.00 371.00 36.32
Self Service 0.00 220.00 0.60 0.00 240.00 0.73

Table 8
Cuernavaca city municipal and industrial wastewater treatment
plant capacity [19]

Design (l/seconds) Operation (l/seconds)

Municipal plant 1 15.00 13.00
Municipal plant 2 27.00 9.00
Municipal plant 3 38.00 13.00
Municipal plant 4 1.70 1.50
Municipal plant 5 0.16 0.15
Municipal plant 6 400.00 300.00
Municipal plant 7 4.00 3.00
Municipal plant 8 8.00 0.00
Municipal plant 9 10.00 0.00
Municipal plant 10 8.00 0.00

Total 511.86 339.65

Industrial plant 1 23.00 16.00
Industrial plant 2 0.90 0.80
Industrial plant 3 5.00 3.50
Industrial plant 4 4.00 3.60
Industrial plant 5 1.40 0.60

Total 34.50 24.50
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Fig. 11. Cuernavaca city distribution system results for the first
strategy.
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body is the Apatlaco river. It is estimated that the
water consumption and the flow lost in leaks is
about 43.41% of the water demanded by operations
[21]. This estimation is illustrated with the label
‘leaks and consumption’ in Fig. 10 for every opera-
tion considered.

Two contaminants indexes are considered, in
connection with the contaminants threw by the
operations to the effluents, 5 day biochemical oxy-
gen demand (BOD5) and total suspended solids
(TSS). These indexes are used in the general water
quality index, according to the NOM-001-ECOL-
1996 standard, which is the Mexican official
standard for wastewater discharges. Wastewater
treatment plants treat 339.15 l/seconds to BOD5

and TTS mean concentration of 50 mg/l according
to the data reported in the literature [3].

Values for both water quality indexes, cmax
i;k;out,

were established using information from studies
that evaluated the degree of contamination in the
Apatlaco river [19]. For both contaminants, the
concentration in the freshwater supplied to the sys-
tem is considered to be zero, see Table 7.

There are 15 wastewater treatment plants in
Cuernavaca city, ten of those plants treat municipal
wastewater while five plants are used for treatment
of industrial wastewater. The total treated wastewa-
ter flow-rate is 364.15 l/seconds [19]. Table 8 shows
the design and current operation treatment capacity
for the 15 plants in the city.
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Fig. 12. Solution with the lowest freshwater demand in the Pareto set found for the first strategy.
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As can be seen, municipal plant 6 operates at
75% of its capacity, while the rest of the plants work
at an average of 35.44% of their design capacity,
treating only 39.65 l/seconds when they could treat
111.86 l/seconds. Since great quantities of wastewa-
ter can be treated with the same infrastructure, with-
out the investment in new treatment plants, this can
be seen as an opportunity area that can help to
improve the system’s performance.

Two strategies were evaluated to improve the
performance of the system. The first one considers
the operation of the treatment plants at their current
operation capacity, that is 339.65 l/seconds, and the
reduction of leaks in the distribution network from

43% to 25%. The second strategy considers the oper-
ation of the existing treatment plants at their design
capacity, 511.86 l/seconds, a leak reduction pro-
gram to decrease the non-accounted water from
43% to 25%, and the construction of new additional
water treatment plants to increase the treatment
capacity in the city to 100%. The second strategy
was designed to improve the water quality in the
receiving body according to the NOM-001-ECOL-
1996 official standard, in this case the Apatlaco
river.

4.3.1. Results for the first strategy

This strategy reduces Cuernavaca city water dis-
tribution network leaks from 43% to 25%. The
waste water treatment plants operation maintain
their current levels, that is, 339.65 l/seconds. Urban
and public water demand is covered with 3003 l/sec-
onds from wells, springs and water wheels, but
1291.6 l/seconds, that is, 43% of this demand is lost
through domiciliary and network leaks (see Fig. 10).

Results are presented in Fig. 11. The main
change in the operation of the water distribution
network in Cuernavaca found by MDQL is to sup-
ply water for agriculture from three different
sources: the mayor quantity from the wastewater
treatment plants, followed by the freshwater and a
minor quantity of wastewater from the urban and
public sector. This operation guarantees acceptable
levels of contaminant according to standards. The
main water savings is obtained from the freshwater
that is no longer supplied to agriculture. The results
can be analyzed from two perspectives: (a) incre-
ment of the irrigated area since there is an increment
of water availability in the region, and (b) reduction
of freshwater sources exploitation with a benefit to
the environment.

Analyzing the left most solution in Fig. 11, which
is shown in Fig. 12, it can be seen that the total
demanded freshwater flow-rate by the system is
2752.6 l/seconds, representing a decrement of approxi-
mately 24.87% (see Fig. 10), that is, 911.57 l/seconds
of the amount of water taken from the sources. As
previously mentioned, the main change is in agricul-
ture, for which water demand flow-rate could be
satisfied with 339.65 l/seconds taken from waste-
water treatment plants, 996 l/seconds with wastewa-
ter from the urban and public sector, and 234.15 l/
seconds with fresh water taken from springs in the
city.

This savings in freshwater can be used to increase
the irrigated surface in about 511 ha of corn,
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Fig. 13. Cuernavaca city distribution system analysis results
obtained by the second strategy.
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Fig. 14. Comparison of the Pareto fronts obtained for the two
strategies used for the Cuernavaca city water distribution system.
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1,080 ha of beans, 219 ha of sugar cane, or 859 ha of
onion, considering irrigation depths of 74, 35, 172,
and 44 cm, respectively.

On the other hand, freshwater savings represent
approximately 28.74 millions of m3 per year that
could increase water availability in the Cuernavaca
valley aquifer from eight millions of cubic meters
to 36.74 millions of cubic meters.

Finally, it can be appreciated that the solution of
the bi-objective model for the case of the distribu-
tion network of Cuernavaca city with MDQL
approach allows, the construction of a Pareto set
with three optimal solutions. Only the left most
one was analyzed in detail since it represents the

lowest freshwater demand solution, but the same
analysis can be made with the other two.

4.3.2. Results for the second strategy
The second operation strategy considers the

operation of existing wastewater treatment plants
to their design capacity, that is, treatment capacity
is increased to 511.86 l/seconds with no investment
cost. As in the previous strategy, a leak reduction
to 25% is considered.

The Pareto front obtained for this test case is
shown in Fig. 13. MDQL was capable of finding
four solutions. The left most solution with the low-
est freshwater demand of 2581.3 l/seconds and cost
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Fig. 15. Solution with the lowest freshwater demand in the Pareto front found with the second strategy.
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of $1796 is shown in Fig. 15. The construction of
two new wastewater treatment plants is proposed
in this solution. The first proposed wastewater treat-
ment plant capacity is 81.38 l/seconds. This pro-
posed plant can receive 4.6% of the discharged
wastewater from the urban and public sector, and
53% of the discharged water by the multiple sector.

The second proposed wastewater treatment plant
capacity is 1130.44 l/seconds and could receive the
rest (95.4%) of the discharged wastewater by the
urban and public sector.

Similarly to the results found for the first strat-
egy, demanded water by agriculture is satisfied with
the total of the municipal treated water, and with
81.38 l/seconds coming from the new plant pro-
posed in the design. Industrial water is treated inde-
pendently in the existing industrial treatment plants.

Water savings arise since a considerable flow of
freshwater is not longer supplied to the agriculture
sector. This reduction represents an increase of the
irrigated surface in the Cuernavaca valley of
approximately 642 ha for corn, 1,357 ha for beans,
276 ha for sugar cane, or 1,080 ha for onion, with
water depths of 74, 35, 172 and 44 cm, respectively.
There are 34.15 millions of cubic meters per year of
freshwater savings that could increment the fresh-
water availability of the aquifer from eight to
44.13 millions of cubic meters per year.

As can be seen from Fig. 13, the left most solu-
tion is the lowest freshwater flow-rate demand solu-
tion of both strategies. It is also the highest cost
solution, but at the same time all the discharged
water by the Cuernavaca city water distribution
system is treated so it represents the lowest contam-
ination levels (see Figs. 15 and 12 wastewater
discharges to the Apatlaco river). Qualitative, effi-
ciency is measured in terms of the remaining con-
taminant concentration in discharged wastewater
to the reception bodies. This parameter is not
included in the optimization model, but according
to the environmental standards (included in the
model) solutions for both strategies are feasible
and do not violate them.

Fig. 14 shows the Pareto fronts obtained with the
two strategies and facilitates the analysis and deci-
sion making. It is desirable to construct graphs with
Pareto fronts obtained from different strategies to
appreciate potential benefits. In this case it is possi-
ble to evaluate that the solutions with the mayor
benefit in terms of freshwater savings is obtained
with the second strategy with a high cost (left most
second strategy solution). As previously mentioned,

solutions for the two strategies are in accordance
with environmental standards, so, if cost is consid-
ered as the main criterion for decision making, a
desirable solution could be the left most solution
of the first strategy.

5. Conclusions and future work

In this work we presented a multi-objective opti-
mization problem for water distribution systems
using water pinch technology criteria, we evaluated
the multi-objective optimization model, and we
verified the capability of MDQL to solve complex
real problems with highly restricted non-convex
spaces.

The water pinch optimization model considers
more than one criteria. The model considers the
reuse of wastewater from operations, wastewater
treatment, consumption flow-rates and leaks in the
system. With the reduction of freshwater demands
it is possible to guarantee that the quality of the
water served to the different users do not violate eco-
logical and sanitary norms. The bi-objective optimi-
zation model operates considering mass balances
between operations, freshwater sources, wastewater
treatment plants, and wastewater disposal effluents.
Contaminants loads from operations to water flows
are restricted by environmental and operational con-
straints, resulting in a highly non-linear model.

The proposed model was tested on three cases: (i)
a four unitary operations and one contaminant; (ii)
a real industrial process in the UK with ten unitary
operations and four contaminants, and (iii) the
Cuernavaca city water distribution operation sys-
tem. A heuristic approach based on the solution
of Markov decision processes, MDQL, was used
to solve these cases. Although MDQL performance
was previously measured on several benchmark
problems [15–17] with very promising results, we
wanted to verify its performance in the solution of
highly restricted real problems. A weighted aggre-
gated function was also used as a mean of compar-
ison, selected on the basis of previous results and
convergence properties reported in the literature
[18].

The application of MDQL to the solution of
water pinch problems with highly restricted non-lin-
ear spaces makes evident that the algorithm is rela-
tively robust. MDQL does not depend on complex
codings or operators and its reinforcement learning
approach allows it to improve its performance dur-
ing the search process. We have already tested some
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of MDQL’s characteristics on a previous work [17].
Our results in a highly restricted real-world applica-
tion reinforces our hypothesis that learning during
the search process is relevant to find good solutions
for optimization problems.

Solutions to water pinch problems, represent
important technical challenges that are only par-
tially solved by the industry. The results presented
here represent an example of how real applications
can be solved with the participation of multidisci-
plinary teams involving researches from different
communities, as in this case.

As future work we are considering implementing
constraints to select more efficiently different
processes. For example, if wastewater treatment
technology is selected in terms of the type of con-
taminants, the mass remotion could be made more
effective and the system more efficient if the proper
process is selected and optimized in terms of cost
and efficiency. Another important aspect to imple-
ment is the cost function, which needs to be
extended in order to quantify operation costs, reuse
costs, and other economic factors affecting the oper-
ation of a system with these characteristics.

Related with the optimization model presented in
this paper, an extension of the model is being pre-
pared. This extension considers the analysis in detail
of the mass exchange in unitary operations opening
the possibility to make dynamic analysis of the phe-
nomenon. With the use of this extension it could be
possible to make finer optimization of the process
and to construct operation manuals to make the
operation of systems optimal.
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