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Abstract— This paper introduces a global localization system
based on natural landmarks for indoor mobile robots. The
proposed approach is based on recognition of natural landmarks
from laser scanner data. A previously built grid-based map is
pre-processed off-line to obtain a model of landmarks and their
attributes for each cell. The robot’s position and orientation
are calculated by finding correspondence between the identified
landmarks from robot’s current position and the landmarks
associated to the model. This proposed approach called GL2
follows a two stage process. Initially a fast initial filter based
on the number and type of landmarks is used to substantially
reduce the search space. The second stage uses a modified discrete
relaxation algorithm to perform a more detailed analysis and find
the robot’s location and orientation. It is shown the robustness of
the algorithm in complex and real office like environments, even
in the presence of previously unknown obstacles.
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I. INTRODUCTION

The ability for mobile robots to locate themselves in their
environment is not only a fundamental problem in robotics
but also a pre-requisite to many tasks such as navigation.
There are two types of localization problems: local localization
and global localization. Local localization techniques aim
to compensate for odometric errors during navigation and
require information about the initial position of the robot.
The vast majority of existing localization algorithms address
this problem (see e.g., [1] for a review). A more difficult
task is the global localization problem where the aim is to
locate the robot’s position without prior knowledge of its
current location. Even more difficult is the kidnapped robot
problem [4], in which a robot is moved to another place
without being told. These problems are particularly hard in
dynamic environments where new obstacles can corrupt the
robot’s sensor measurements [5]. This work is focused on
global localization using natural landmarks. The general idea
consists of pre-processing a previously known grid-based map
to obtain a model of visible landmarks and their attributes
for each cell. The global localization problem is then reduced
into finding correspondence between the landmarks associated
to a cell and the landmarks observed by the robot from its
current position. The proposed approach called GL2, follows
a two stage process. During the first stage a fast initial filter

is used to eliminate a large set of possible candidates. This
filter is based on the number and type of landmarks observed
by the robot from its position. The second stage consists on a
more detailed comparison to eliminate most of the remaining
candidates. This detailed correspondence is determinated using
a modified discrete relaxation algorithm based on the spatial
distribution of landmarks. It is shown the robustness of GL2 in
complex and real office like environments, even in the presence
of new obstacles. This paper is organized as follows. Section 2
describes some previous related work. Section 3 describes the
specific kind of natural landmarks used in this work and how to
identify them. Section 4 describes how a grid-based map is pre-
processed to obtain a model based on landmarks. In Section
5, the global localization algorithm proposed in this paper is
introduced. Section 6 describes some experiments and results
with the proposed method and Section 7 gives conclusions and
future research directions.

II. RELATED WORK

Many authors have used information on cells trying to
solve the global localization problem. Due to the difficulty to
compare the observations with all the cells, in [9] the authors
suggested to use a sampling mechanism guided by a similarity
function. They found, however, some problems in defining a
monotonically increasing similarity function and an adequate
sampling mechanism. Several recent methods have been pro-
posed in the literature for the global localization problem.
The most promising ones share the same mathematical basis
and use Markov localization algorithms with filter conditions
(e.g., [10]), multi-hypotheses Kalman filters which represents
beliefs using mixtures of Gaussians (e.g., [12]) or Monte Carlo
localization algorithms (e.g., [11]). The former two assume
Gaussian noise and require parametric models, while the later
can represent multi-modal probability distributions, however,
it is difficult to estimate the number of particles to use. All of
these methods are probabilistic and require the robot to move
around while the probabilities converge towards one localized
peak. In this paper, a simple, yet robust and effective method is
proposed that can deal with real office like environments. GL2
can effectively deal with noise and new obstacles not included
in the original map. In the following section a natural landmark
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extraction algorithm is presented.

III. NATURAL LANDMARKS

Different natural landmarks have been proposed in the
literature to find the robot’s position. In [6], walls are used as
natural landmarks, obtained through the Hough transform. In
[6] a detector of concave corners is used, which are extracted
from the data of a laser sensor. Similarly, in [7], discontinuities
are used to solve the problem of local localization. In this
case we use a laser sensor: the Sick-LMS200 which obtains
the distance to the closest obstacle over a plane parallel to
the floor. Precision is of ±5mm in distance measured every
1, 0.5 or 0.25 degrees. In this work we use discontinuities,
corners and walls as landmarks to solve the global localization
problem. Combining these three types of landmarks gives
the robot the capacity to identify enough landmarks from
any position in a wide variety of environments. Another
advantage of the approach is that landmarks can be easily
extracted from laser scanner data with high accuracy. Natural
landmarks are identified in three steps: the first step identifies
discontinuities and based on them the whole laser range is
divided into segments. The second step identifies corners from
the segments by dividing them in sub-segments. The third
step takes the remaining segments and performs a fast local
Hough transform to calculate the parameters associated with
possible walls. By identifying landmarks from the simplest to
the more complex the identification process is simplified. Each
landmark (discontinuity, corner or wall) is associated with a set
of distinctive attributes. This process is described as follows.

A. Discontinuities

A discontinuity is defined as an abrupt variation in the
measured distance of two consecutive readings of the laser,
as shown in Figure 1.

(a) Attributes of a dis-
continuity

(b) Type of disconti-
nuity (attribute T).

Fig. 1. An example of a discontinuity

As shown in Figure 1(a) a discontinuity can be associated
with different attributes: the distance (D) between robot and
discontinuity, the depth (P) or difference between two con-
tiguous readings that caused the discontinuity, the angle (θ)
of the discontinuity with respect to the front of the robot, and
the type (T) that determines if a discontinuity is left (l) or
right (r) oriented according to the location of the non visible
region (see Figure 1(b)). Once a set of Nd discontinuities has
been identified the whole laser range is divided into Nd + 1

Fig. 2. Tree of segments after identify discontinuities and corners.

segments. This corresponds with the first level of the segment’s
tree in Figure 2.

B. Corners

Each segment is considered in order to try to identify
corners. The farthest point in the segment from an imaginary
line passing by the initial and final point of the segment is
obtained. If the distance between this point and the imaginary
line is greater than a threshold µe then it is considered as a
corner. The segment is divided using the corner and the same
process is performed on each of the sub-segments. As shown
in Figure 2, at the end of the process, segment division can
be seen as a tree of segments. Leafs of the tree are possible
walls (see Figure 2).

C. Walls

Each leaf of the tree is taken and a fast local Hough
transform if performed in order to calculate the parameters of
the corresponding lines. Walls are lines in laser readings. This
local Hough transform is fast because there is only one possible
line in each segment. This avoids using clustering techniques
which are necessary to find local maximums when it is possible
to find more than one line. A natural landmark, mi, can be
represented by a tuple of four attributes: (D, θ,A, T ). D and
θ are the distance from the landmark to the robot and the
orientation of the landmark relative to the robot respectively.
T is the type of the landmark; l for left discontinuity, r for right
discontinuity, e for corner and p for walls. A is a distinctive
attribute and its value depends on the type of the landmark; for
discontinuities A is depth (P in Fig 1), for corners A is concave
(cc) or convex (cx) and for walls A is the length of the wall.
Figure 3 shows an example of natural landmarks identified by
GL2. In the following section, the pre-processing of a grid-
based map in order to obtain a model of the environment based
on landmarks is presented.

IV. PRE-PROCESSING OF A GRID-BASED MAP

The global localization algorithm presented here is part
of a complete robotic system. There are other modules like
planning, navigation and map building. The map building
module [15] exports a grid-based map so in this work we
assume that a grid-based map of the environment has been
previously built by the robot. Each cell in the map is associated
with an occupancy probability. The pre-processing stage only
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(a) Laser readings.

No D θ A T Type of landmark
1 2.18 -73.0 1.41 l left discontinuity
2 1.10 -6.0 0.40 l left discontinuity
3 1.11 10.0 0.41 r right discontinuity
4 2.17 -47.0 cc e corner
5 1.71 -68.0 cx e corner
6 1.84 36.0 cc e corner
7 3.46 -89.50 1.06 p wall
8 1.59 -89.75 0.85 p wall
9 1.49 0.0 1.36 p wall

10 1.10 0.0 0.39 p wall
11 1.50 0.0 0.80 p wall
12 1.10 89.75 1.43 p wall

(b) Set of identified natural landmarks.

Fig. 3. Identification of natural landmarks

needs to know if a cell is occupied or not which can be
determined with a threshold value. The objective of the pre-
processing stage is to associate a set of landmarks and their
attributes to each cell. We use ray tracing to simulate the laser
readings and then extract the landmarks from the simulated
readings. A range of 360◦ is considered for each cell. At the
end of this process each cell ci of the map is associated with
a set Ci which contains all the landmarks “visible” from that
cell. The attribute θ is relative to the coordinate system of the
map; this is important because after the position of the robot
has been determined, the attribute θ will be used to calculate
the orientation of the robot relative to the map.

As expected, the size of the cells have a direct impact on
memory and computational requirements of the system and
on the magnitude of the error in the position and orientation
of the robot. Larger cells produce larger localization errors
but smaller memory requirements, while smaller cells produce
more accurate position estimates but require more computa-
tional power.

V. GLOBAL LOCALIZATION METHOD

The objective of the localization method is to determine the
position and orientation of the robot in a map. The first step
consists of obtaining the landmarks that the robot observes
at 360◦. In our experiments we used a Nomad Scout II
mobile robot equipped with a laser range finder Sick LMS200
considering an angular resolution of 0.5◦. Since this sensor
obtains the distance and angle of the nearest obstacles within
a range of 180◦, the landmarks are obtained in two steps. First
the landmarks set C1 is extracted from the current position of
the robot, the robot is rotated 180◦ and another set C2 of
landmarks is extracted. Obviously it is not easy to exactly
rotate 180◦ degrees. An algorithm of pose tracking which
is also part of the whole robotic system is used to turn
precisely [16]. The final set of observed landmarks Co is the

Fig. 4. The complete 360◦ landmark set is extracted in two steps due to the
limited visibility range of the sensor we have (Sick LMS200).

Fig. 5. The problem of finding the correspondence between the model and
observations of the robot.

union of C1 and C2 as shown in Figure 4. From here on
Co = (do1, do2, ..., dok) will refer to the set of k landmarks
observed by the robot and Cm = (dm1, dm2, ..., dmj) will refer
to the set of j landmarks associated with a cell of the model.

The information stored in each cell by the pre-processing
stage is used to calculate the robot’s position. As illustrated in
Figure 5, this process consists of matching observed landmarks
(Co) with landmarks in the stored model (Cm). In many
cases there is no exact match due to noise in the sensors
measurements or changes in the environment. In real office like
environments it is common for people to move objects, such
as chairs or tables, from their original position. In Section V-B
a discrete relaxation algorithm is presented to deal with this
matching problem.

Searching through all the cells associated with the map
and matching their landmarks with the landmarks observed
by the robot would require considerable computation power.
To simplify this process, GL2 follows a two stage process.
The first stage gets rid a large number of candidate positions
with a filter based on the number and type of landmarks.
The second stage performs a more detailed analysis on the
remaining cells, based on spatial distribution of the landmarks.
These two stages are described in the following sections.

A. Initial Filter

The initial filter counts the number of landmarks obtained
from the laser readings that match the distance, orientation,
distinctive attribute and type of the previously stored land-
marks associated to each cell. A tolerance of 10 centimeters
for the distance and depth of each discontinuity is employed
for the search process. This last consideration is not due to
the imprecision of the sensor but to the map. The number
of landmarks with similar attributes to the observed ones is
divided among M , with M the total of landmarks associated
to each cell. Figure 6(b) shows the result of applying this initial
filter to the map given the landmarks observed by the robot;
the darker regions represents the higher percentage values and
consequently the most probable cells for the robot’s location.
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(a) Simulated environ-
ment.

(b) After the first filter.

(c) After discrete re-
laxation.

Fig. 6. Results from the first filter applied to a simulated environment.

B. Algorithm of discrete relaxation

From the initial filter only those cells that have half or more
of the larger percentage are considered in the second phase.
In this paper, a modified discrete relaxation algorithm is used
to determine the similarity of each cell with the observations
of the robot.

Consider the matching problem shown in Figure 5. By itself
the discrete relaxation algorithm can be very inefficient if all
the possible assignments are considered. However, using the
information of attributes associated to the obtained landmarks
in the pre-processing stage, only a small subset of possible
matches, usually 2 or more, are considered, which considerably
reduces the complexity. An example of this is shown in
Table I(a): the initial possible matchings are initialized with
0 while the rest are not considered. This happens because in
practice it is very difficult to find two landmarks with the same
values in their attributes. To obtain more accurate matches
than those obtained during the first stage, we also consider
the Euclidean distance and the angular difference between
landmarks in this stage.

In Table II the modified discrete relaxation algorithm is
presented. At the end of the discrete relaxation algorithm, the
maximum value of each line in matrix A has the number
of matches of the i-th observed landmark. In Table I(b) the
maximum of each row gives the matchings of landmarks
between set Co and Cm. Obviously the maximum of each row
can be at most i− 1 for i observations. In Table II R(Pi, Pj)
denotes a relation between two landmarks, this relation is the
Euclidean distance and the angular difference, the ≈ operator
is used because distance and angle measure can not be strictly
equal due to sensor and map imprecision, consequently a

TABLE I
EXAMPLE OF DISCRETE RELAXATION ALGORITHM.

dm1 dm2 dm3 dm4 dm5

do1 - - - 0 0
do2 0 0 0 - -
do3 - 0 0 - -

(a) Initial possible matchings.

dm1 dm2 dm3 dm4 dm5

do1 - - - 0 2
do2 2 0 1 - -
do3 - 2 1 - -

(b) After discrete relaxation.

TABLE II
THE DISCRETE RELAXATION ALGORITHM.

Let Pi, i = 1 . . . N be the observed landmarks
Let S(Pi), i = 1 . . . M be the set of initially compatible labels
Let A[N ][M ] be a matrix of counters
procedure Discrete Relaxation(P,S) {
repeat {
for each(Pi, S(Pi)) do {

for each landmark Lk in S(Pi)
for each relation R(Pi, Pj) in the observations

if ∃Lm ∈ S(Pj) in the model with R(Lk, Lm) ≈ R(Pi, Pj)
then A[Pi][S(Pi)] = A[Pi][S(Pi)] + 1

}
} until i = N ;
}

threshold is used. A description of the basic discrete relaxation
algorithm can be found in [8].

Figure 6(c) shows the result after applying the discrete
relaxation algorithm to the map shown in Figure 6(b). The
algorithm of discrete relaxation does not need to find an exact
correspondence with each observation, and the geometric re-
strictions among landmarks play a relevant role in the matching
process. At the end of this stage only a few cells remain, all of
them together. It is clear that these cells have the same number
of landmarks matching with observations. To choose only one
of them a least-square criterion is used.

C. Least-square criterion

At this point only a small number of cells remain, all
of them have the same number of landmarks and the same
matchings. To decide which of them corresponds with the
position of the robot a least-square criterion is used. For this
purpose we take advantage of the attribute D of landmarks
(distance from the robot to the landmark). The best adjustment
of observations Co with the model is obtained by calculating
the square of the difference between the value of attribute D

on each corresponding match. In Equation 1, N is the number
of matchings, E(cj) is the adjustment error of the j-th cell cj ;
Doi and Dmi are the attribute D of landmarks doi and dmi

respectively.
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Fig. 7. Orientation of the robot relative to the map

E(cj) =

N∑

i=1

(Doi − Dmi)
2 (1)

In this way the cell ck that corresponds with the position
of the robot is:

ck = argmin(E(cj)) (2)

D. Determining orientation of the robot

To calculate the robot orientation given the robot position
is quite simple. Let doi be a landmark in the observations and
dmi a landmark in the model of the final position cell. For
each landmark match (dmi, doi), the arithmetic difference is
calculated between the attribute θoi of doi and the attribute
θmi of dmi. Remember that θmi is the orientation of a
landmark relative to the map’s coordinate system and θoi is
the orientation of a landmark relative to the robot’s coordinate
system. The final orientation is the average of all calculated
differences. In Figure 7 θ̂i is the i-th difference between
orientation in observations and orientation in the model, XM ,
YM is the Cartesian coordinates system of the model and XR,
YR is the Cartesian coordinates system of the robot, small
circles and small squares represents dmi and doi landmarks
respectively. In Equation 3, N is the number of matchings,
θoi and θmi are the attribute θ of doi and dmi respectively.

θR =

∑N

i=1
θ̂i

N
where θ̂i = θoi − θmi (3)

VI. EXPERIMENTS AND TESTS

We performed several experiments with GL2 to different
office-type environments and placing the robot in different
positions. We emphasized in our tests different places which
could have similar characteristics in terms of landmarks with
other positions in the maps, with very encouraging results.
The maps used in the tests have some imprecision as they
were build with a laser sensor by the robot. The size of the
cells is 0.05 m. To consider more realistic conditions, we also
added new objects to the environment at different places after
the construction and pre-processing of the map.

Each new obstacle can represent a person or additional
furniture obstructing some of the original landmarks and
creating new ones. Figure 8 shows the performance on GL2
with 5 new obstacles. As can be seen from the figure, the initial

TABLE III
AVERAGE PERFORMANCE OF GL2 FOR 30 RANDOM POSITIONS ON 3

DIFFERENT SIMULATED ENVIRONMENTS

Time No. Time Memory Loc.
No. stage 1 cells stage 2 used success

Map cells (secs.) stage 2 (secs.) (Mb) (%)
Map1 480x580 1.7 2,246.5 0.3 18.66 100
Map2 340x400 0.509 790.8 0.164 3.93 100
Map3 280x280 0.176 297.1 0.130 0.8 100

TABLE IV
AVERAGE PERFORMANCE OF GL2 FOR 30 RANDOM POSITIONS ON 2

DIFFERENT REAL ENVIRONMENTS

No. Time No Time Mem. Loc.
cells stage 1 cells stage 2 used success.

Map (seg.) stage 2 (seg.) (Mb) (%)
Offices 250x400 0.645 567.3 0.279 14.93 96.6

Laboratory 190x170 0.398 1120.2 0.180 7.3 100

filter finds several probable locations for the robot, however the
discrete relaxation algorithm continues to successfully locate
the position of the robot.

Table III has the performance times of GL2 with 3 different
maps on simulation. Map2 is the one shown in Figure 8(a) of
approximately 10× 10 meters. Map1 is twice as big as Map2
(20×20 meters), while Map3 is half of its size (5×5 meters).
Table III includes the number of cells, the average time used
in the first filter process for 30 random positions, the average
number of cells used in the discrete relaxation algorithm, the
average processing time for the discrete relaxation algorithm
and the memory space required to save the model. Table IV
has the performance times of GL2 with 2 different real maps.
Laboratory map is the one shown in Figure 9 of approximately
8 × 8 meters. The map was built with the map building
module in the Intelligent Systems Laboratory of the Campus.
Offices map is the one shown in Figure 10 of approximately
15 × 8 meters. It corresponds to offices of staff members of
the Campus. It is a challenging environment because of the
open/close doors and mobile furniture. Table IV includes the
number of cells, the average time used in the first filter process
for 30 random positions, the average number of cells used
in the discrete relaxation algorithm, the average processing
time for the discrete relaxation algorithm and the memory
space required to save the model. The 96.6% in localization
success in Table IV is because one of the experiments was
not successful. The problem is associated with similar regions
of the map, it happens because sometimes there are more
than one region in the map that matches with the landmarks
observed by the robot. This situation is difficult to find in
real environments due to the variety of landmarks used in this
work. Note that even in Map1 the memory space required is
small in comparison with the capacity of actual computers.
All tests were run with an AMD Athlon laptop at 1.53 MHz,
192Mb of memory. For simulation we use the software of
the Player/Stage project which is focused on robot and sensor
applications. Further information about player/stage can be
found in [14].
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(a) Additional objects
added

(b) Most probable
cells after first filter

(c) Final position
found

Fig. 8. Experiment with new objects added to the environment

Fig. 9. Map of the Intelligent Systems Laboratory of approximately 8×8
meters.

Fig. 10. Map of the offices of aproximately 15×8 meters.

VII. CONCLUSIONS AND FUTURE WORK

Mobile robot localization has been estimated as the most
fundamental problem to provide autonomous capabilities to
a mobile robot [13]. In this paper, we have described a
global localization algorithm which shows good performance
in complex office environments in the presence of noise and
new obstacles. The algorithm is based on detecting natural
landmarks and obtaining their attributes, and follows a two
stage process. The first stage eliminates a large number of
possible candidates, while the second stage performs a more
detailed refinement process. There are several research di-
rections that are worth exploring. In particular, we would
like to improve the robustness of the system in cases where
there are few landmarks by incorporating another type of
natural landmarks. The precision of the localization process
is proportional to the size of the cells in the grid map, while
the processing time and memory requirements are inversely
proportional to the size of the cell.
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