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{areyes,pibar@iie.org.mx}, {esucar,emorales}@inaoep.mx

Abstract. Markov decision processes (MDPs) have developed as a stan-
dard for representing uncertainty in decision-theoretic planning. How-
ever, MDPs require an explicit representation of the state space and the
probabilistic transition model which, in continuous or hybrid continuous-
discrete domains, are not always easy to define. Even when this repre-
sentation is available, the size of the state space and the number of state
variables to consider in the transition function may be such that the
resulting MDP cannot be solved using traditional techniques. In this pa-
per a reward-based abstraction for solving hybrid MDPs is presented.
In the proposed method, we gather information about the rewards and
the dynamics of the system by exploring the environment. This infor-
mation is used to build a decision tree (C4.5) representing a small set
of abstract states with equivalent rewards, and then is used to learn a
probabilistic transition function using a Bayesian networks learning al-
gorithm (K2). The system output is a problem specification ready for
its solution with traditional dynamic programming algorithms. We have
tested our abstract MDP model approximation in real-world problem
domains. We present the results in terms of the models learned and their
solutions for different configurations showing that our approach produces
fast solutions with satisfying policies.

1 Introduction

A Markov Decision Process (MDP) [14] models a sequential decision problem,
in which a system evolves in time and is controlled by an agent. The system
dynamics is governed by a probabilistic transition function that maps states and
actions to new states. At each time, an agent receives a reward that depends on
the current state and the applied action. Thus, the main problem is to find a con-
trol strategy or policy that maximizes the expected reward over time. A common
problem with the MDP formalism is that the state space grows exponentially
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with the number of domain variables, and its inference methods iterate explic-
itly over the state and action spaces. Thus, in large problems, MDPs become
impractical, inefficient and in many cases intractable.

Significant progress has been made on MDP problem specification through
the use of factored representations [8]. These representations describe a system
using only a small set of features (or factors) by exploiting the structure that
many domains exhibit. In a factored MDP the transition model is represented as
a dynamic Bayesian network (DBN) and the reward function as a decision tree.
Factored MDPs have also been used in reinforcement learning contexts. For ex-
ample, [10] presented an efficient and near-optimal algorithm for reinforcement
learning in MDPs whose transition model was factored. In that work, they as-
sumed that the graphical structure (but not the parameters) of the DBN was
given by an expert. More recently in [17], a novel method for approximating
the value function and selecting good actions for MDPs with large state and
action spaces is described. In this method the model parameters can be learned
efficiently because values and derivatives can be computed by a particular type
of graphical model called product of experts.

Although factored representations can often be used to describe a problem
compactly, they do not guarantee that a factored model can be solved effec-
tively, particularly in continuous or highly dimensional domains. Abstraction
and aggregation are techniques [2] that aid factored representations to avoid
this problem. Several authors use these notions to find computationally feasible
methods for the construction of (approximately) optimal and satisfying policies.
For example, Dean and Givan [6], and Pineau et al [13] use the notions of ab-
straction and aggregation to group states that are similar with respect to certain
problem characteristics to further reduce the complexity of the representation or
the solution. Feng et al [9] proposes a state aggregation approach for exploiting
structure in MDPs with continuous variables where the state space is dynami-
cally partitioned into regions where the value function is the same throughout
each region. The technique comes from POMDPs to represent and reason about
linear surfaces effectively. Li and Littman [11] addresses hybrid state spaces in-
cluding a comparison with the method of Feng et al.

Our approach is closely related to this work, however it differs on some as-
pects to offer simplicity in the abstraction construction, and an alternative to
learn a complete MDP model from data. The proposed method is inspired on
the qualitative change vectors used in [18, 16], which are particularly suitable for
domains with continuous spaces. While other approaches [12, 3] start from a uni-
form grid over an exhaustive variable representation, we deduce an abstraction,
called qualitative states, from the reward function structure. In our approach, a
set of sampling data denoting the rewards and transitions in continuous terms
are first collected to approximate the reward function with a tree learning algo-
rithm (C4.5 [15]). Given a set of qualitative restrictions imposed by the reward
function tree, the continuous information about the state transitions is trans-
formed into abstract data that are processed by a Bayesian learning algorithm
(K2 [4]) to produce a factored transition model. The resulting approximation



can be solved easily using standard dynamic programming algorithms. Since the
abstraction is built over the factors related to the reward function, the method
can work with both, pure continuous or hybrid continuous-discrete spaces. We
have tested our abstract MDP model approximation with different configura-
tions of a motion planning problem of different complexities. We present the
results in terms of the models learned showing that our approach produces fast
solutions with satisfying policies.

This paper is organized as follows: we start describing the standard MDP
model and its factored representation. Section 3 develops the abstraction process.
Then, we present our learning system and the experimental results. We finally
conclude and give future directions of this work.

2 Markov Decision Processes

Formally, an MDP is a tuple M =< S, As, Φ, R >, where S is a finite set of states
{s1, . . . , sn}. As is a finite set of actions for each state. Φ : A× S → Π(S) is the
state transition function specified as a probability distribution. The probability
of reaching state s′ by performing action a in state s is written as Φ(a, s, s′).
R : S × A → ℜ is the reward function. R(s, a) is the reward that the agent
receives if it takes action a in state s.

A policy for an MDP is a mapping π : S → A that selects an action for each
state. Given a policy, we can define its finite-horizon value function V π

n : S → ℜ,
where V π

n (s) is the expected value of applying the policy π for n steps starting
in state s. The value function is defined inductively with V π

0 (s) = R(s, π(s))
and V π

m(s) = R(s, π(s))+Σs′∈SΦ(π(s), s, s′)V π
m−1(s

′). Over an infinite horizon, a
discounted model is used to have a bounded expected value, where the parameter
0 ≤ γ < 1 is the discount factor, used to discount future rewards at a geometric
rate. Thus, if V π(s) is the discounted expected value in state s following policy π
forever, we must have V π(s) = R(s, π(s)) + γΣs′∈SΦ(π(s), s, s′)V π

m−1(s
′), which

yields a set of linear equations in the values of V π().
A solution to an MDP is a policy that maximizes its expected value. For the

discounted infinite–horizon case with any given discount factor γ ∈ [0, 1), there
is a policy V ∗ that is optimal regardless of the starting state that satisfies the
Bellman equation [1]:

V ∗(s) = maxa{R(s, a) + γΣs′∈SΦ(a, s, s′)V ∗(s′)}

Two popular methods for solving this equation and finding an optimal policy
for an MDP are: (a) value iteration and (b) policy iteration [14].

2.1 Factored MDPs

In a factored MDP, the set of states is described via a set of random variables X =
{X1, . . . , Xn}, where each Xi takes on values in some finite domain Dom(Xi). A
state s defines a value xi ∈ Dom(Xi) for each variable Xi. Thus, the set of states
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Fig. 1. A simple DBN with 5 state variables for one action (left). Influence Diagram
denoting a reward function (center). Structured conditional reward (CR) represented
as a binary decision tree (right)

S = Dom(Xi) can be exponentially large, making it impractical to represent the
transition model explicitly as matrices. Fortunately, the framework of dynamic
Bayesian networks (DBN) [7, 5], and the decision trees gives us the tools to
describe the transition model and the reward function concisely.

A Markovian transition model Φ defines a probability distribution over the
next state given the current state and an action a. Let Xi denote the variable
Xi at the current time and X ′

i the variable at the next step. The transition
graph of a DBN is a two–layer directed acyclic graph GT whose nodes are
{X1, . . . , Xn, X ′

1, . . . , X
′

n}. In the graph, the parents of X ′

i are denoted as
Parents(X ′

i). Each node X ′

i is associated with a conditional probability distri-
bution (CPD) PΦ(X ′

i | Parents(X ′

i)), which is usually represented by a matrix
(conditional probability table) or more compactly by a decision tree. The transi-
tion probability Φ(a, si, s

′

i) is then defined to be ΠiPΦ(x′

i | ui) where ui is the
value in s of the variables in Parents(X ′

i).

Like an action’s effect on a particular variable, the reward associated with
a state often depends only on the values of certain features of the state. This
reward or penalty is independent of other variables, and individual rewards can
be associated with the groups of states that differ on the values of the relevant
variables. The relationship between rewards and state variables is represented
in value nodes in influence diagrams represented by the diamond in figure 1
(center). The conditional reward tables (CRT) for such a node is a table that
associates a reward with every combination of values for its parents in the graph.
This table is locally exponential in the number of relevant variables. Although
in the worst case the CRT will take exponential space to store in many cases
the reward function exhibits structure allowing it to be represented compactly
using decision trees or graphs (as in figure 1 right).



Fig. 2. Transformation of the reward decision tree (left) into a Q-tree (right). Nodes
in the tree represent continuous variables and edges evaluate whether this variable is
less or greater than a particular bound.

3 Hybrid MDPs

3.1 Qualitative states

Let us first define a qualitative state (or q–state) qi as a set of continuous states
that share similar immediate rewards. In consequence, a qualitative state space
Q is a set of aggregated states q1, q2, ..qn that have this property in common.
The qualitative state space can also be simply called as the qualitative partition.

Similarly to the reward function in a factored MDP, the qualitative partition
Q is represented by a binary decision tree (Q–tree). The reward decision tree is
then transformed into a Q-tree by simply renaming the reward values to q-state
labels. Each leave in the Q–tree is labeled with a new qualitative state. Even for
leaves with the same reward value, we assign a different qualitative state value.
This produces more states but at the same time creates more guidance that helps
to produce more adequate policies. States with similar reward are partitioned so
each q–state is a continuous region. Figure 2 shows this tree transformation in
a two dimensional domain.

Each branch in the Q–tree denotes a set of constraints for each q–state qi

that bounds a continuous region. The relational operators used in this approach
split each continuous domain dimension in two portions. These operators are
< and ≥. For example, assuming that the immediate reward is a function of
the linear position in a motion planning domain, a qualitative state could be a
region in an x − y coordinates system bounded by the constraints: x ≥ val(x0)
and y ≥ val(y0), expressing that the current x coordinate is limited by the
interval [val(x0),∞], and the y coordinate by the interval [val(y0),∞]. Figure
3 illustrates the constraints associated to the example presented above, and its
representation in a 2-dimensional space. It is evident that a qualitative state can
cover a large number of states (if we consider a fine discretization) with similar
properties.



Fig. 3. In a Q-tree, branches are constraints and leaves are qualitative states (left). A
graphical representation of the tree is also shown (right). Note that when an upper or
lower variable bound is infinite, it must be understood as the upper or lower variable
bound in the domain.

3.2 Hybrid MDP Model Specification

We can define a hybrid MDP as a factored MDP with a set of hybrid qualitative–
discrete factors. The qualitative state space Q, is an additional factor that con-
centrates all the continuous variables. The idea is to substitute all these variables
by this abstraction to reduce the dimensionality of the state space. Thus, a hybrid
qualitative-discrete state is described in a factored form as sh = {X1, . . . , Xn, Q},
where X1, . . . , Xn are the discrete factors, and Q is a factor the represents the
relevant continuous dimensions in the reward function.

3.3 Learning Hybrid MDPs

The hybrid MDP model is learned from data based on a random exploration of
a simulated environment with white Gaussian noise introduced on the actions
outcomes of the step size. This noise was added to simulate probabilistic real
effects of actions. We assume that the agent can explore the state space, and
for each state–action can receive some immediate reward. Based on this random
exploration, an initial partition, Q0, of the continuous dimensions is obtained,
and the reward function and transition functions are induced.

Given a set of state transition represented as a set of random variables,
Oj = {Xt,A,Xt+1}, for j = 1, 2, ..., M , for each state and action A executed
by an agent, and a reward (or cost) Rj associated to each transition, we learn a
qualitative factored MDP model:

1. From a set of examples {O, R} obtain a reward decision tree, RDT , that
predicts the reward function R in terms of continuous and discrete state
variables, X1, . . . , Xk, Q.

2. Obtain from the decision tree, RDT , the set of constraints for the continuous
variables relevant to determine the qualitative states (q–states) in the form
of a Q-tree. In terms of the domain variables, we obtain a new variable Q



representing the reward-based qualitative state space whose values are the
q–states.

3. Qualify data from the original sample in such a way that the new set of
attributes are the Q variables, the remaining discrete state variables not
included in the decision tree, and the action A. This transformed data set is
called the qualified data set.

4. Format the qualified data set in such a way that the attributes follow a
temporal causal ordering. For example variable Qt must be set before Qt+1,
X1t before X1t+1, and so on. The whole set of attributes should be the
variable Q in time t, the remaining state variables in time t, the variable Q
in time t+1, the remaining variables in time t+1, and the action A.

5. Prepare data for the induction of a 2-stage dynamic Bayesian net. According
to the action space dimension, split the qualified data set into |A| sets of
samples for each action.

6. Induce the transition model for each action, Aj , using the K2 algorithm [4].

This initial model represents a high-level abstraction of the continuous state
space and can be solved using a standard solution technique, such as value
iteration. In some cases, our abstraction can miss some relevant details of the
domain and consequently produced sub-optimal policies. This occurs particularly
for domains in which the regions with rewards or punishments are very few
or cover a low fraction of the state space. For these cases, we are currently
developing a second phase which introduces additional partitions in abstract
states with high variance with respect to their neighbors.

4 Experimental Results

We tested our approach in a robot navigation domain using a simulated envi-
ronment. In this setting goals are represented as light-color square regions with
positive immediate reward, and non-desirable regions as dark-color squares with
negative reward. The remaining regions in the navigation area receive 0 reward
(white). Experimentally, we express the size of a rewarded region (non zero re-
ward) as a function of the navigation area. Rewarded regions are multivalued
squares that can be distributed randomly over the navigation area. The number
of these squares is also variable.

The robot sensor system included x-y position, angular orientation, and nav-
igation bounds detection. In a set of experiments the possible noisy actions are
discrete orthogonal movements to the right, left, up, and down. Figure 4 (left)
shows an example of a navigation problem with 12 rewarded regions. The reward
function in these cases have four possible values. The motion planning problem
is to automatically obtain a satisfying policy for the robot to achieve its goals
avoiding negative rewarded regions.

The abstraction was tested with several problems of different sizes and com-
plexities, and compared to a fine discretization of the environment in terms of
precision and complexity. The precision is evaluated by comparing the policies



Fig. 4. Abstraction process. Left: Robot navigation area showing the distribution of
goals (light color) and non-desirable zones (dark color). The simulated released robot is
located at the left-bottom corner. Center: Exploration trace adding a 10% of Gaussian
noise respecting to the action step. Right: initial qualitative states and their corre-
sponding policies; u = up, d = down, r = right and l = left.

and values per state. The policy precision is obtained by comparing the policies
generated with respect to the policy obtained from a fine discretization. In other
words, we count the number of fine cells in which the policies are the same:

PP = (NEC/NTC) × 100, (1)

where PP is the policy precision in percentage, NEC is the number of fine cells
with the same policy, and NTC is the total number of fine cells. This measure is
pessimistic because in some states it is possible that more than one action have
the same or similar value, and in this measure only one is considered correct.
The utility error is calculated as follows: the utility values of all the states in
each representation is first normalized. The sum of the absolute differences of
the utility values of the corresponding states is evaluated and averaged over all
the differences.

Figure 4 shows an example of one of the test cases. The left figure shows the
motion planning problem. The center figure illustrates the exploration process.
The right figure shows the qualitative states and their corresponding policies.

Table 1 presents a comparison between the behavior of seven problems solved
with a simple discretization approach and our qualitative approach. Problems
are identified with a number as shown in the first column. The first five columns
describe the characteristics of each problem. For example, problem 1 (first row)
has 2 reward cells with values different from zero that occupy 20% of the number
of cells, the different number of reward values is 3 (e.g., -10, 0 and 10) and we
generated 40,000 samples to build the MDP model. Table 2 presents a compar-
ison between the qualitative and a fine representation. The columns describes
the characteristics of the qualitative model in terms of utility error in % and
policy precision.

As can be seen from Table 1, there is a significant reduction in the complexity
of the problems using our abstraction approach. This can be clearly appreciated
from the number of states and processing time required to solve the problems.



Table 1. Description of problems and comparison between a “normal” discretization
and our qualitative discretization in terms of complexity and run time.

Problem Discrete Qualitative

Learning Inference Learning Inference

no. reward no. no. no. time no. time no. time no. time
id reward size reward samples states (ms) itera- (ms) states (ms) itera- (ms)

cells (% dim) values tions tions
1 2 20 3 40,000 25 7,671 120 20 8 2,634 120 20
2 4 20 5 40,000 25 1,763 123 20 13 2,423 122 20
3 10 10 3 40,000 100 4,026 120 80 26 2,503 120 20
4 6 5 3 40,000 400 5,418 120 1,602 24 4,527 120 40
5 10 5 5 28,868 400 3,595 128 2,774 29 2,203 127 60
6 12 5 4 29,250 400 7,351 124 7,921 46 2,163 124 30
7 14 3.3 9 50,000 900 9,223 117 16,784 60 4,296 117 241

Table 2. Comparative results between the abstraction and a fine discretization in
terms of precision and errors.

Qualitative

Utility error Policy precision
id (%) (%)
1 7.38 80
2 9.03 64
3 10.68 64
4 12.65 52
5 7.13 35
6 11.56 47.2
7 5.78 44.78

This is important since in complex domains where it can be difficult to define
an adequate abstraction or solve the resulting MDP problem, one option is to
create abstractions and hope for suboptimal policies. To evaluate the quality of
the results Table 2 shows that the proposed abstraction produces on average
only 9.17% error in the utility value when compared against the values obtained
from the discretized problem.

5 Conclusions and Future Work

In this paper, a novel approach for solving continuous and hybrid MDPs is de-
scribed. In the first phase we use an exploration strategy of the environment
and a machine learning approach to induce an initial state abstraction. Our ap-
proach creates significant reductions in space and time allowing to solve quickly
relatively large problems. The utility values on our abstracted representation
are reasonably close (less than 13%) to those obtained using a fine discretiza-
tion of the domain. Although tested on small solvable problems for comparison
purposes, the approach can be applied to more complex domains where a simple
discretization approach is not feasible. For space reasons, we did not include the
partial models resulting of the learning process for the motion planning example.
However they are available for clarifications.



As current research work we are including a refinement strategy of the ab-
straction to select a better segmentation of the abstract states and use alterna-
tive search strategies. We are also testing our approach in more sophisticated
domains such as process control. The results of this research are oriented to built
an intelligent assistant for training operators in power plants.
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