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Abstract. With the increasing size of databases, feature selection has become a 
relevant and challenging problem for the area of knowledge discovery in 
databases. An effective feature selection strategy can significantly reduce the 
data mining processing time, improve the predicted accuracy, and help to 
understand the induced models, as they tend to be smaller and make more sense 
to the user. Many feature selection algorithms assumed that the attributes are 
independent between each other given the class, which can produce models 
with redundant attributes and/or exclude sets of attributes that are relevant when 
considered together. In this paper, an effective best first search algorithm, called 
buBF, for feature selection is described. buBF uses a novel heuristic function 
based on n-way entropy to capture inter-dependencies among variables. It is 
shown that buBF produces more accurate models than other state-of-the-art 
feature selection algorithms when compared on several real and synthetic 
datasets. Specifically we apply buBF to a Mexican Electric Billing database and 
obtain satisfactory results. 

1   Introduction 

Data mining is mainly applied to large amounts of stored data to look for the implicit 
knowledge hidden within this information. To take advantage of the enormous 
amount of information currently available in many databases, algorithms and tools 
specialized in the automatic discovery of hidden knowledge within this information 
have been developed. This process of non-trivial extraction of relevant information 
that is implicit in the data is known as Knowledge Discovery in Databases (KDD), in 
which the data mining phase plays a central role in this process.   

It has been noted, however, that when very large databases are going to get mined, 
the mining algorithms get very slow, requiring too much time to process the 
information. Another scenario is when acquiring some attributes is expensive. One 
way to approach this problem is to reduce the amount of data before applying the 
mining process. In particular, the pre-processing method of feature selection, applied 
to the data before mining, has been shown to be promising because it can eliminate 
the irrelevant or redundant attributes that cause the mining tools to become inefficient 
and ineffective. At the same time, it can preserve-increase the classification quality of 
the mining algorithm (accuracy) [1].   
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Although there are many feature selection algorithms reported in the specialized 
literature, none of them are perfect: some of them are effective, but very costly in 
computational time (e.g. wrappers methods), and others are fast, but less effective in 
the feature selection task (e.g. filter methods). 

Specifically, wrapper methods, although effective in eliminating irrelevant and 
redundant attributes, are very slow because they apply the mining algorithm many 
times, changing the number of attributes each time of execution as they follow some 
search and stop criteria [2]. Filter methods are more efficient; they use some form of 
correlation measure between individual attributes and the class [3][4]; however, 
because they measure the relevance of each isolated attribute, they cannot detect if 
redundant attributes exist, or if a combination of two (or more) attributes, apparently 
irrelevant when analyzed independently, are indeed relevant [5].  

In this article, we propose a feature selection method that tries to solve these 
problems in a supervised learning context. Specifically, we use a heuristic search 
alternative, inspired by the Branch & Bound algorithm, which reduces considerably 
the search space, thus reducing the processing time. Additionally, we propose a novel 
evaluation criterion based on an n-way entropy measure that, at the same time, selects 
the relevant attributes and discovers the important inter-dependences among variables 
of the problem. 

To cover these topics, the article is organized as follows: Section 2 surveys related 
work; Section 3 introduces our feature selection method; Section 4 details the 
experiments, emphasizing over the Mexican electric billing database; conclusions and 
future research directions are given in Section 5.   

2   Related Work 

The emergence of Very Large Databases (VLDB) leads to new challenges that the 
mining algorithms of the 1990´s are incapable to attack efficiently. According to [6], 
from the point of view of the mining algorithms, the main lines to deal with VLDB 
(scaling up algorithms) are: a) to use relational representations instead of a single 
table; b) to design fast algorithms, optimizing searches, reducing complexity, finding 
approximate solutions, or using parallelism; and c) to divide the data based on the 
variables involved or the number of examples. In particular, some of these new 
approaches in turn give origin to Data Reduction that tries to eliminate variables, 
attributes or instances that do not contribute information to the KDD process. These 
methods are generally applied before the actual mining is performed.  

In fact, the specialized literature mentions the curse of dimensionality, referring to 
the fact that the processing time of many induction methods grows dramatically 
(sometimes exponentially) with the number of attributes. Searching for improvements 
on VLDB processing power (necessary with tens of attributes), two main groups of 
methods have appeared: wrappers and filters [6]. We focus our research in filter 
methods because of their relatively low computational cost. 

Narendra [7] and others [8], [9], [10] have proposed a filter method for optimal 
feature selection. In general, they use the Branch & Bound algorithm, starting the 
search with all the D features and then applying a backward elimination feature 
strategy, until they obtain d optimal features (d < D). Additionally, they use a 
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monotonic subset feature evaluation criterion: e.g., when augmenting (subtracting) 
one feature to the feature subset, the criterion value function always increases 
(decreases). The monotonicity property allows us to prune unnecessary sub-trees (e.g. 
sub-trees that do not improve the solution because they have values less than the 
bound obtained for another sub-tree). These approaches have demonstrated to be 
efficient; however, they have several drawbacks, because they need: 

 
• An a priori definition of the number of features d (equal to the maximum tree deep 

level to consider); this is a problem because, in most cases, the number of relevant 
attributes is previously unknown, 

• To start evaluating all the features (top-down strategy); this strategy represents 
high computational cost at the beginning of the subset feature search process, 

• To use a monotonic subset evaluation criterion: although a monotonic criterion 
permits safe sub-trees cut offs, it assumes that the features are independent between 
each other, given the class attribute. 

Trying to tackle these problems, in this paper we propose a bottom-up Best First 
method that is described in the next Section. 

3   Bottom-Up Best First 

The proposed method has two basic components: a) the evaluation function of each 
feature subset (in a supervised learning context), and b) the search strategy.   

3.1   Evaluation Criterion 

With respect to the feature subset evaluation criterion, we proposed a non-monotonic 
function. This function is calculated in a similar way to the Shannon entropy, only 
that instead of considering the entropy of one single feature, or attribute, against the 
class attribute (2-way entropy, or traditional entropy), it is calculated considering the 
entropy of two (or more attributes) against the class (n-way entropy). With this 
approach, we sought to capture the inter-dependences among attributes.   

Formally, the traditional entropy H of a variable X after observing values of 
another variable Y is defined as  

      H (X | Y) =  – Σ j P(yj )  Σ i P ( xi  | yj   ) log2 (P ( xi  | yj   )),            (1) 

where P(xi | yj ) is the posterior probabilities of X given the values of Y. We obtain the 
n-way entropy Hn with the same equation but, instead of using the count of only one 
attribute, we count the number of times that a particular combination of attribute 
values appears, against the class value, taking into account all the instances of the 
dataset. In this form, if the n-way entropy Hn decreases, using a particular feature 
subset, means that we have additional information about the class attribute.  

For instance, if U and V are different attribute subsets, C is the class attribute, and 
if Hn(U|C) > Hn(V|C), then we conclude that subset V predicts better than subset U. 
The idea of calculating in this manner the n-way entropy is inspired by the work of 
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Jakulin and Bratko [11]. Although they calculate this in a more costly way using the 
concept of Interaction Gain I. For instance, they obtain the 3-way interactions using:  

      I (X; Y; C) = H(X|C) + H(Y|C) – H(X,Y|C) – { H(X) + H(Y) – H(X,Y)  },       (2) 

so, we experiment with the n-way entropy variant Hn because of its simplicity and its 
relative low computational cost.   

Nevertheless, a defect or problem with the n-way entropy Hn is that it decreases 
quickly when the number of the combined attribute values grows, resulting in a 
“false” low entropy.  In an extreme case, it is possible that we can count as many 
different combined attribute values as the total number of dataset instances.  If we 
count as many combined attribute values as instances, then the entropy will be zero 
(perfect). However, this does not necessarily reflect, in an effective way, how that 
combination of attributes is relevant.  The specialized literature has already reported 
how the entropy tends to prefer those attributes that have many different values, then, 
an attribute randomly generated could be considered better than another attribute 
observed from the real system.   

Although there are some proposals to mitigate the problem (e.g. gain ratio or 
symmetrical uncertainty), they usually add an extra computational cost; instead, we 
directly apply a reward to the n-way entropy considering the number of values that a 
specific attribute (or attributes) can take.  Our proposed evaluation criterion, or 
metric, is defined as: 

 
   nwM =  λ  ( Hn ) + (1 –  λ)(tot.combined attribute values  / tot. instances)    (3) 

 
With this metric, a balance between the n-way entropy Hn and the combined 

attribute values is sought, obtaining a metric, now called nwM, to detect relevant and 
inter-dependant features. The λ parameter can take values between zero and one and 
it is defined by the user according to how much weight he desires to give to each 
term. We empirically test the proposed metric, and obtain very promising results (see 
Section 4).   

3.2   Search Strategy 

With respect to the search strategy, we propose to explore a search tree with forward 
feature selection or bottom-up schema.   

The idea consists in using a best first search strategy: always expanding 
(aggregates a new feature) to the node (attribute subset) whose metric is the best of 
the brother nodes (node with the smaller nwM) and better than the parent node, 
stopping the search when none of the expanded nodes is better than the parent node.  
In this case, following the best first search strategy, the search continues selecting the 
best non-expanding node, according to the metric, and expanding until none of the 
children nodes are better than the parent node, and so on.   

Thus, the proposed search schema explores the most promising attribute 
combinations according to the non-monotonic metric, generating several possibly 
good solutions. At the same time, it carries out sub-tree pruning, when the nwM 
metric has indicated, heuristically, that continuing to explore some of those sub-trees, 
 



288 M. Mejía-Lavalle and E.F. Morales 

Given a dataset with D features and N instances, and λ ∈ [0,1), 
 

1. obtain nwM (2-way entropy) for each feature in the dataset; 
2. while (available memory) or (unexplored nodes) do begin 
3.    select for expansion the feature subset F with the best nwM and  

                                                                         better than his parent node; 
4.    for  I := 1 to (D –  || F || ) do begin 
5.      obtain nwM ( F ∪ I  | I ∉ F );                
6.    end; 
7. end; 
8. show feature subset with the best nwM; 

 

Fig. 1. buBF algorithm 

maybe will not improve the evaluation criterion. The search process stops due to 
insufficient memory, or when all the nodes have been expanded. The modified 
algorithm, called now bottom-up Best First (buBF), is shown in Fig. 1 (|| . || is the size 
of a set). 

The proposed search seems like a Branch & Bound strategy, in the sense that it 
prunes sub-trees that maybe will not conduct to better solutions, according to the 
evaluation criterion. Nevertheless, it is not exactly equal to the feature selection 
Branch & Bound schema reported in the specialized literature.  

The basic differences consist of: 

• Instead of removing attributes and evaluating the resulting feature subset (backward 
elimination), our method adds attributes and evaluates (forward selection). Using 
forward selection we will be able to process datasets with more features. 

• Instead of using a monotonic evaluation criterion, a non-monotonic criterion is 
employed. Although sub-tree pruning is not safe using a non-monotonic criterion, 
our heuristic measure captures attributes inter-dependencies. 

• Instead of having to define an a priori tree depth, in our case the tree depth search is 
variable, and depends on the evaluation criterion: this criterion indicates stopping 
the depth search when none children node is better than the parent node.   

• In our case, adding nodes (attributes) is sought to determine not only the relevant 
attributes, but also their inter-dependences, since other methods reported in the 
literature assumes attribute independence [9].   

4   Experiments 

We conducted several experiments with real and synthetic datasets to empirically 
evaluate if buBF can do better in selecting features than other well-known feature 
selection algorithms, in terms of learning accuracy and processing time. We choose 
synthetic datasets in our experiments because the relevant features of these datasets 
are known beforehand. 
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4.1   Experimentation Details 

The experimentation objective is to observe the buBF behavior related to 
classification quality and response time. 

First, we test our proposed method with a real database with 24 attributes and 
35,983 instances; this database contains information of Mexican electric billing 
costumers, where we expect to obtain patterns of behavior of illicit customers.  

Specifically, one of the main Mexican electric utility functions is to distribute to 
the costumers the electrical energy produced in the different generating plants in 
Mexico. Related to distribution, this utility faces different problems that prevent it to 
recover certain amount of “lost income” from the 100% of the total energy for sale.  

At present, it loses approximately 21% of the energy for distribution. These losses 
are mainly due to two kinds of problems: a) technical, and b) administrative. The 
technical energy losses are usually in the range of 10% and a great investment in new 
technologies would be needed in the distribution equipment to be able to reduce this 
percentage.  

The other 11% of the losses are due to administrative control problems, and they 
are classified in three categories of anomalies: a) invoicing errors, b) measurement 
errors, and c) illicit energy use or fraud. The first two have a minimum percentage 
impact so the big problem is the illicit use of energy, that is to say, people who steal 
the energy and therefore they do not pay for it. 

The Mexican utility has faced this problem applying different actions (as to 
increase the frequency of measurement equipment readings of suspect customers, or 
to install equipment for automatic readings) and has managed to reduce the 
percentage due to illicit use losses, which represents a recovery of several million 
dollars.  

Since the problem has not been completely solved, it is important to attack it with 
other technologies and actions, using a knowledge discovery approach based on data 
mining to obtain patterns of behavior of the illicit customers. This alternative solution 
does not require a great deal of investment and it has been proven effective in similar 
cases, like credit card fraud detection. 

The subject information to analyze is a sample of a legacy system developed with 
the COBOL language, it contains around twenty tables with information about 
contracts, invoicing, and collection from customers across the nation.  

This system was not designed with the illicit users discovery in mind; nevertheless, 
it contains a field called debit-type in which a record is made if the debit is due to 
illicit use of energy. After joining three tables, including the one that has the debit-
type field, a “mine” was obtained with the following attributes: Permanent customer 
registry (RPU), Year, Month, debit-type, Digit, kWh, Energy, Cve-invoicing, Total, 
Status, Turn, Tariff, Name, Installed-load, Contract-load, and others. One of the 
values that the attribute debit-type can be assigned is “9”, which indicates an illicit 
use, and it is our class attribute.  

To obtain additional evidence, we experiment too using 10 synthetic dataset, each 
of them with different levels of complexity. To generate the 10 datasets we use the 
functions described in [12]. Each of the datasets has nine attributes (1.salary, 
2.commission, 3.age, 4.elevel, 5.car, 6.zipcode, 7.hvalue, 8.hyears, and 9.loan) plus 
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disposable :=  (0.67 * ( salary + commission ) – 5000 * elevel – 0.2  *  loan  –  10000) 

 
                   IF  ( disposable  >  0 ) THEN class label := Group “A” 
                       ELSE class label := Group “B” 
 

Fig. 2. A function example 

the class attribute (with class label Group “A” or “B”); each dataset has 10,000 
instances. The values of the features of each instance were generated randomly 
according to the distributions described in [12]. For each instance, a class label was 
determined according to the rules that define the functions. For example, function 9 
uses four attributes and classifies an instance following the statement and rule shown 
in Fig. 2. 

Finally, we experiment with the corrAL and corrAL-47 synthetic datasets [13], 
that has four relevant attributes (A0, A1, B0, B1), plus irrelevant ( I ) and redundant 
( R ) attributes; the class attribute is defined by the function Y = (A0 ∧A1) ∨  
(B0 ∧ B1).  

In order to compare the results obtained with buBF, we use Weka´s [14] 
implementation of ReliefF, OneR and ChiSquared feature selection algorithms. 
These implementations were run using Weka´s default values, except for ReliefF, 
where we define to 5 the number of neighborhood, for a more efficient response 
time.  

Additionally, we experiment with 7 Elvira’s [15] filter-ranking methods: Mutual 
Information, Euclidean, Matusita, Kullback-Leibler-1 and 2, Shannon and 
Bhattacharyya. To select the best ranking attributes, we use a threshold defined by the 
largest gap between two consecutive ranked attributes (e.g. a gap greater than the 
average gap among all the gaps). In the case of buBF, we set λ to 0.85 for all the 
experiments. All the experiments were executed in a personal computer with a 
Pentium 4 processor, 1.5 GHz, and 250 Mbytes in RAM.  In the following Section, 
the obtained results are shown.   

4.2   Experimental Results  

Testing over the electric billing database, we use the selected features for each 
method as input to the decision tree induction algorithm J4.8 included in the Weka 
tool (J4.8 is the last version of C4.5, which is one of the best-known induction 
algorithms used in data mining).  We notice that buBF obtains the best accuracy ties 
with Kullback-Leibler-2, but with less attributes (Table 1). On the other hand, buBF 
requires more processing time. 

We realized an additional experiment with the electric billing database, in order to 
observe how two approaches that try to mitigate the effect of many attribute values 
over entropy behave, named gain ratio [16] and symmetrical uncertainty (SU) [13]. 
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Table 1. J4.8´s accuracies (%) for 10-fold-cross validation using the features selected by each 
method (electric billing database) 

Method Total 
features 
selected 

Accuracy
(%) 

Pre-
processing 

time 
buBF 5 97.50 1. 5 mins.

Kullback-Leibler 2 9 97.50 6 secs. 

All attributes 24 97.25 0 

ChiSquared 20 97.18 9 secs. 

OneR 9 95.95 41 secs. 

ReliefF 4 93.89 14.3 mins. 

Euclidean distance 4 93.89 5 secs. 

Shannon entropy 18 93.71 4 secs. 

Bhattacharyya 3 90.21 6 secs. 

Matusita distance 3 90.21 5 secs. 

Kullback-Leibler 1 4 90.10 6 secs. 

Mutual Information 4 90.10 4 secs. 

 

Table 2. J4.8´s accuracies (%) for 10-fold-cross validation using the features selected by each 
method considering adjust for many attribute values  (electric billing database) 

Method Total 
features 
selected 

Accuracy
(%) 

Pre-
processing 

time 
buBF 5 97.50 1. 5 mins.

Gain Ratio n-way 1 90.18 1. 8 mins 

Gain Ratio Weka 1 90.18 1 sec. 

 SU 3 90.68 1 sec. 

We ran two versions of gain ratio: a) n-way fashion (we used the same essential buBF 
program, only changing the evaluation metric), and b) ranking fashion (applying 
Weka). Results are shown in Table 2. 

In this case, gain ratio n-way only selects one attribute, because it does a strong 
penalty when two or more attributes are combined (and consequently, the number of 
different attribute values increase): this results in a relatively low J4.8 accuracy. 
Processing time is similar to buBF due to the fact that we used buBF schema but with 
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gain ratio instead of nwM. Gain Ratio as a filter (Weka) selects the same attribute that 
gain ratio n-way, and it takes only one second. SU metric selects three attributes, 
resulting in a relatively low J4.8 accuracy. 

Table 3. Features selected by different methods (10 synthetic datasets) 

Method
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bu
B

F

1 3 3 3 3 3 9-7-2-
8 9-1 3 3 3 3 3

2 1-3 1 2-1 1 1-2 1 9-3-7-
1 1 3-1 1 1-2 3-1 

3 3-4 4-3 4 4-3 4-3 4-3 3-9-1 4-3 4-3 4-3 4-3 3-4 
4 1-3-4 1 2-1 1 1 1 1-9 1 1-4-2 1-2 1-2 4-3-1 

5 1-3-9 9-1 9-4 9 9 9-1 1-3 9 9-3-1 9 9 5-2-3-
9

6 1-2-3 1-3-2 2 1-3 1-3 1 3 1-3-2 3-1-2 3-1-2 1-3-2 1-2-3 
7 1-2-9 9 2-9 9 9-1-2 9 1-9 9-1 9-1-2 9 9-1-2 9-1-2 
8 1-2-4 2-1 2-4-1 2-1 2-1-4 2-1 9-3 2-1 1-2-4 - 1-2-4 4-2-1 

9 1-2-4-
9 9 2-4-9 9-1 9 9 9 9-1 9-1-2 9 9-1-2-

4-3 2-1-9 

10 1-2-4-
7-8-9 4 4 4 4 4 9-1-3 4 8 4 4-8-7-

6 6-8-4 
 

Table 4. J4.8´s accuracies (%) using the features selected by each method (10 synthetic 
datasets) 
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2 100 100 100 73 73 73 73 73 73 73 73 100

3 100 100 100 100 100 100 100 100 100 100 68 59

4 100 100 90 84 84 84 84 84 84 84 84 84

5 100 91 100 74 74 82 74 74 74 82 74 60

6 99 99 99 99 99 99 87 87 99 68 64 69

7 98 98 98 98 94 86 98 86 86 86 88 94

8 100 100 100 100 99 99 100 99 - 99 100 98

9 97 94 94 97 92 85 85 92 85 85 88 85

10 99 99 80 99 97 97 99 97 98 97 97 80

Avg. 99.3 98.1 96.1 92.4 91.2 90.5 89.8 89.2 84.9 84.1 83.6 79.6  
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Next, to verify if buBF effectively captures attribute inter-dependencies, we 
experiment with synthetic datasets. The features selected by each method are shown 
in Table 3, where “Oracle” represents a perfect feature selection method (it selects 
exactly the same features that each function uses to generate the class label). We can 
observe that, in some cases, the methods almost select the same features, but there are 
other functions in which the methods disagree. For function 8, only OneR cannot 
determine any feature subset, because ranks all attributes equally. 

Then, we used the selected features for each method as input to J4.8. We use 10-
fold cross validation in order to obtain the average test accuracy for each feature 
subset (We experiment with other metrics, like Balanced Error Rate, obtaining very 
similar results). The results are shown in Table 4. The column “Oracle/ All” means 
accuracy applying the perfect attributes and, in this case, we obtain the same results if 
we use all the dataset attributes. 

To summarize the obtained results in Table 4, we count the times when buBF win, 
loss or tie versus the other methods. This information is reported in Table 5. In  
Table 5, we can observe that buBF has a good performance, because there was only 
loss one time versus ReliefF, and one time versus ChiSquared, but it still maintained 
good accuracy. 

Table 5. buBF accuracy results summary vs. other methods (10 synthetic datasets)  

Method
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Win 0 7 2 3 7 7 5 8 9 9 8 5.9 
Loss 2 0 1 1 0 0 0 0 0 0 0 0.4 
Tie 8 3 7 6 3 3 5 2 1 1 2 3.7  

Table 6. Averaged processing time for each method (10 synthetic datasets) 

Exhaustive 
wrapper 

ReliefF OneR ChiSquared
and Elvira 

buBF 

 
1,085,049 secs. 

(12.5 days) 
 

 
573 secs. 

(9.55 mins.)

 
8 secs.

 
1 sec. 

 
71 secs. 

(1.18 mins.) 

The processing time is shown in Table 6. Although buBF is computationally more 
expensive than OneR and ChiSquared, these algorithms cannot detect some attribute 
inter-dependencies; on the other hand, buBF is faster than ReliefF, but with similar, or 
better, feature selection performance.  
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To have a better idea of the buBF performance, we can compare the results 
presented previously against the results produced by an exhaustive wrapper approach.  
In this case, we can calculate that, if the average time required to obtain a tree using 
J4.8 is 1.1 seconds, and if we multiply this by all the possible attribute combinations, 
then we will obtain that 12.5 days, theoretically, would be required to conclude such a 
process. 

In order to observe how the selected features (Table 3) respond with another 
classifier, we use these features as input to the Naïve Bayes Classifier (NBC) included 
in the Weka tool. The results are shown in Table 7. Again, buBF obtains satisfactory 
accuracy results. 

Table 7. NBC´s accuracies (%) for 10-fold-cross validation using the features selected by each 
method (10 synthetic datasets) 

Method
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1 89 89 89 89 89 89 89 89 89 67 89 67
2 69 69 69 64 69 69 64 69 64 69 69 68
3 65 65 65 65 65 65 65 65 66 65 65 58
4 76 76 76 76 76 76 70 69 70 76 70 76
5 68 68 68 68 68 68 68 68 68 68 68 60
6 71 71 72 72 71 71 71 71 59 60 71 58
7 89 89 86 89 88 86 89 89 86 86 86 88
8 99 99 98 99 98 98 99 99 99 98 50 98
9 89 88 88 85 88 85 88 88 86 85 85 85

10 98 98 98 98 98 98 97 80 98 98 98 80
Avg. 81.3 81.2 81 81 81 80.5 80 78.7 78.5 77.2 75.1 73.8  

Table 8. Features selected by different methods (corrAL and corrAL-47 datasets) 

Features selected Method 
corrAL corrAL-47 

buBF B1, B0, A1, A0 A0, A1, B0, B1 
ReliefF R, A0, A1, B0, B1 R,B11,A0,A00,B1,B10,B0,B00,B02,A1,A10 

FCBF(log) R, A0 R, A0, A1, B0, B1 
FCBF(0) R, A0, A1, B0, B1 R, A0, A1, B0, B1 
CFS A0, A1, B0, B1, R A0, A1, B0, B1, R 
Focus R A0, A1, A12, B0, B1, R 
SU R, A1, A0, B0, B1 A01, A0, A07, B01, B0, A11, A1, R 
Gain Ratio (Weka) R, A1, A0, B0, B1 A01,A0,A07,B0,B01, A1, R, A11 
OneR R, A1, A0, B0, B1 A01,A0,A07,B01,B0, A11, A1, R, A05, B13 
ChiSquared R, A1, A0, B0, B1 A01,A0,A07, B01,B0, A11, R, A1, B13 
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We tried the Weka´s Logistic Regression classifier (with default parameters), but 
the predictive accuracy was low (e.g., using Oracle attributes we obtain 77.2% 
average; with functions 7 to 10 the accuracy was perfect, but with the rest the 
accuracy was 62.2% average). We tried too with the Weka´s Multilayer Perceptron, 
but we obtain similar accuracies, with high processing times (e.g., 4.83 minutes to 
process each function). 

Finally, when we test with the corrAL and corrAL-47 datasets [13], our method 
was the only that can remove the redundant attribute (Table 8); results for FCBF, CFS 
and Focus methods were taken from [13].  

This suggest that our method, although requires more processing time, is a good 
approach to capture inter-dependencies among attributes. On the other hand, buBF 
processing time is competitive when we try to use wrapper feature selection methods. 
We point out that we do not carry out comparisons against Branch & Bound methods 
because these require a previous definition of the number of attributes to select, which 
is not necessary with buBF. 

5   Conclusions and Future Work 

We have presented a new algorithm for feature selection that tries to overcome some 
drawbacks found in Branch & Bound feature selection algorithms. The proposed 
method follows a forward attribute selection (instead of backward, like other methods 
do) finding reductions in processing time, because it is less costly to obtain the 
evaluation criterion for few attributes than for all the features.  

Additionally, we propose a new subset evaluation criterion, that considers a balanced 
n-way entropy with respect to the combined attribute values; this metric is not very 
expensive and, due to the fact that is non-monotonic, heuristically allows pruning the 
search tree, with additional processing time savings. Furthermore, the n-way entropy 
considers the inter-dependences among features, obtaining not only isolated relevant 
features, and doing unnecessary a previously definition of the tree depth. 

With the experiments that we performed, we observed that gain ratio did not work 
in a n-way schema as expected, because it penalized the evaluation strongly when 
many attribute-values appears (this happens when we combine two or more 
attributes); therefore, gain ratio as described in [16], is useless in our case. 

Discussing about buBF processing times, we point out that buBF is relatively slow, 
not due to the nwM metric, but primarily due to the search strategy that we are 
currently using (best first) and to the actual implementation (still in a beta stage). We 
believe that if we use an improved search strategy, we will obtain similar accuracy 
results but in less time. 

From the experimental results, with a real electric billing database and 12 synthetic 
datasets, the proposed method buBF represents a promising alternative, compared to 
other methods, because of its acceptable processing time and good performance in the 
feature selection task. 

Some future research issues arise with respect to buBF improvement. For example: 
experimenting with more real databases; comparing our approach against other 
similar methods (e.g. Liu´s ABB [17]); using another metric variations to eliminate 
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the data dependent parameter λ (e.g., DKM) and more efficient search methods (e.g., 
multi-restart hill climbing); characterize the λ parameter according to specific data 
(e.g., determine the best λ value given the attribute-values quantity for certain 
dataset); improving the tree pruning strategy and test the method with data sets with 
more instances and attributes.  
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