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Abstract

Industrial water systems often allow efficient water uses via water
reuse and/or recirculation. The design of the network layout connect-
ing water-using processes is a complex problem which involves several
criteria to optimize. Most of the time, this design is achieved using
Water Pinch technology, optimizing the freshwater flow rate enter-
ing the system. This paper describes an approach that considers two
criteria: (i) the minimization of freshwater consumption and (ii) the
minimization of the infrastructure cost required to build the network.
The optimization model considers water reuse between operations and
wastewater treatment as the main mechanisms to reduce freshwater
consumption. The model is solved using MDQL (Multi-objective Dis-

tributed Q-Learning), a heuristic approach based on the exploitation
of knowledge acquired during the search process. MDQL has been
previously tested on several multi-objective optimization benchmark
problems with promising results [16]. In order to compare the quality
of the results obtained with MDQL, the reduced gradient method was
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applied to solve a weighted combination of the two objective functions
used in the model. The proposed approach was tested on three cases:
(i) a single contaminant four unitary operations problem where fresh-
water consumption is reduced via water reuse, (ii) a four contaminants
real-world case with ten unitary operations, also with water reuse, and
(iii) the water distribution network operation of Cuernavaca, Mexico,
considering reduction of water leaks, operation of existing treatment
plants at their design capacity, and design and construction of new
treatment infrastructure to treat 100% of the wastewater produced.
It is shown that the proposed approach can solved highly constrained
real-world multi-objective optimization problems.

1 Introduction

Water pinch technology (WPT) evolved out of the broader concept of process
integration of materials and energy and the minimization of emissions and
wastes in chemical processes. WPT can be seen as a type of mass-exchange
integration involving water-using operations, that enables practicing engi-
neers to answer important questions when retrofitting existing facilities and
designing new water-using networks. There are three basic tasks in WPT: a)
identification of the minimum freshwater consumption and wastewater gen-
eration in water-using operations (analysis), b) water-using network design
to comply with the flow rate targets for freshwater and wastewater through
water reuse, regeneration, and recycle (synthesis), and c) modification of an
existing water-using network to maximize water reuse and minimize wastew-
ater generation through effective process changes (retrofit).

Nowadays most WPT problems are formulated as non linear highly re-
stricted programming problems [1, 13, 14]. Important efforts have aimed
to make the mathematical models more robust and applicable to real world
problems [2, 7, 10]. Other efforts have aimed to apply WPT technology to
other fields such as design and retrofit of urban distribution systems [3].

In general, WPT traditionally minimizes freshwater flow rate entering a
system, using mass balance and the concentrations of contaminants at the
inlet and outlet in all water-using operations as restrictions. Because of the
diverse types of water-using operations, treatment effectiveness and cost, and
types of contaminants, the criteria for efficient use of water is inherently non
linear, multiple and conflicting [2, 10, 13]. Some of the criteria that can easily
be identified are: equipment cost minimization, maximization of reliability
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(amount of contaminant captured at treatment plants) and minimization of
wastewater production.

This paper describes a mathematical formulation that extends WPT anal-
ysis with elements of capital cost of the required pipe work. Consequently,
the optimization is based on cost efficient networks and networks featuring
freshwater consumption. The model involves two criteria: (i) the minimiza-
tion of freshwater consumption and (ii) the minimization of infrastructure
costs. Two techniques are used to solve this problem: 1) weighted aggrega-
tion considering variation in the weight coefficients in order to construct the
Pareto set and using a reduced gradient method, and 2) MDQL, a heuristic
approach based on the exploitation of the knowledge generated during the
search process. Results obtained with both approaches are compared with
solutions reported in the literature for the solution of the single-objective
problem that minimizes the freshwater flow rate entering the system.

The proposed multi-objective optimization model was applied to three
test cases: a) Four water-using operations and single contaminant, b) ten
water-using operations and four contaminants and c) Cuernavaca’s water
distribution network operation considering two different strategies: c.1) re-
duction of leaks in the network and operation of wastewater treatment plants
at their design capacity, and c.2) reduction of leaks in the network, opera-
tion of wastewater treatment plants at their design capacity, and construction
of new treatment infrastructure to reach 100% wastewater treatment. It is
shown that the highly constrained subjective optimization real-world prob-
lems can be solved with MDQL.

Section 2 presents the mathematical formulation for the bi-objective op-
timization problem. In Section 3 the weighted aggregation method and the
MDQL heuristic approach are described. Section 4 describes the three cases
under study and discusses the main results. Section 5 gives conclusions and
future research directions.

2 Mathematical formulation

The mathematical model describing an industrial water demanding process
considers two main components: a) the available freshwater sources to sat-
isfy demands, and b) the water-using operations described by loads of con-
taminants and concentration levels. An example of two sources and two
operations is sketched in Figure 1. This figure represents with rectangles
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Figure 1: Block diagram of a water-using system with two sources and two
operations.

the two unitary operations (Oi), and with solid lines on the left side of the
operations their corresponding freshwater demands (fi). Wastewater from
operations are represented with dashed lines on the right side of operations.
The rest of the connections represent all the potential links between unitary
operations (water reuse), leaks, and treatment plants. The direction arrow
heads at the end of lines indicate the direction of flux.

The design task is to find the network configuration that minimizes the
overall demand for freshwater,

∑

fi, (and consequently reduce the wastew-
ater volume

∑

Wi) compatible with minimum investment cost. In order to
complete the design task, the optimization problem is stated in terms of low
freshwater consumption, a suitable network topology for water reuse, Xi,j,
and a low investment cost.

Unitary operations of demanded water are defined through their con-
taminant loads, required flow rates, and allowable minimal and maximal
contaminant concentrations at influxes and discharges.

The objective functions for freshwater consumption minimization and for
infrastructure minimization are represented by Equations 1 and 2.
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MinZ1 = F1 =
∑

j

cstj + TPC, (1)

MinZ2 = F2 =
∑

i

fi (2)

Where: F1 is the total cost of the distribution network considering the
connection of freshwater sources to unitary operations receiving water di-
rectly, and the connection for reusing water between unitary operations. The
total distribution network cost is composed by the sum of the partial costs,
cstj, of the pipe segments used for connecting freshwater sources to uni-
tary operations and unitary operations to unitary operations, and TPC, the
treatment plant construction cost that applies only for new treatment in-
frastructure. In F1 we are not considering maintenance and rehabilitation
costs.

F2, is the total freshwater demanded by the system, obtained by the
partial demands of freshwater from each of the unitary operations in the
system. Partial demands from unitary operations, say operation Oi, are
represented as fi. That is fi is the partial freshwater demand of operation
Oi.

2.1 Infrastructure cost

Evaluation of the first objective function, F1, depends only on the pipe seg-
ment costs in the network. These costs are represented as cstj, and depend
on three variables (see Equation 3): a) pipe length, Lj; b) cost per unit
length, PCj; which depends on the pipe diameter required to transport the
demanded flow of water, Dj; and c) a cost factor, CFj, related to pipe ma-
terials required to resist corrosive effects of contaminants. It is important to
note that the main objective of this work is to demonstrate the benefits ob-
tained by the solution of the multi-objective approach, compared with those
obtained with a single objective approach. For this reason, some considera-
tions regarding the hydraulic behavior of the network are not included.

cstj = Lj × PCj × CFj (3)

As previously mentioned, PCj depends on the minimum pipe diameter,
Dj = f(Qj), required to transport the water flow through the pipe. The
minimum diameter, Dminj

, is obtained applying Equation 4; deduced from
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Table 1: Cost per unit length for commercial diameter pipes.
Diameter (mm) PC $/m

99 4.8
150 5.0
200 8.9
250 12.9
300 17.7
350 23.6
400 25.6
450 34.1
500 40.9
610 42.6
762 45.9
838 54.6

1, 016 69.9
1, 118 83
1, 219 94
1, 372 110

the definition of flow (Q = velocity/area) considering maximum velocities
of water in pipes of 2.5m/s. Dminj

is approximated to the closest upper
commercial diameter. Table 1 shows diameters and cost per unit length
for commercial pipes considered in this work. The data in Table 1 is only
demonstrative and can be substituted with real data from local markets.

Dmin = 0.714
√

Q (4)

where: Dmin is the minimal pipe diameter in mm required to transport flow
rate Q ; Q ∈ {fi, Xi,j, Wi}∀i, j and is given in m3/s.

In a similar manner, the factor CFj is related to the capacity of the pipe
segments to resist corrosive effects due to the presence of contaminants in
water flows. Values for the CFj factor are included in Table 2, calculated
considering local prices in Mexico for non corrosive pipes.

Finally the treatment plant construction cost considered in this work is
10$/l, that is the construction cost in monetary units per liter of treatment
capacity for the plant or plants.
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Table 2: Cost factors for pipes resistant to abrasive effects of contaminants.
Contaminant concentration (mg/l) CF

0 ≤ c ≤ 50 1.25
50 < c ≤ 100 1.5
100 < c ≤ 150 2.0
150 < c ≤ 200 3.0
200 < c ≤ 500 5.0

500 < c 10.0
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W i
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C
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Xi,R
C0

fi,loss
Ci,k,out

Figure 2: General structure for mass balance.

2.2 Freshwater demand

To guarantee steady state conditions in the system, it is necessary to restrict
the objective functions by the mass balance between unitary operations, and
by the maximum and minimum allowed contaminant concentrations on the
influxes and discharges of operations [14].

The flow-rate required in each unitary operation is related to the mass
load of contaminants (∆mi,k,tot) discharged by operations. This is described
in Equation 5.

fi = maxc

∆mi,k,tot

cmax
i,k,out − cmax

i,k,in

(5)
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where fi is the freshwater flow rate for operation Oi; ∆mi,k,tot is the total mass
transfer for each contaminant, k, to the water used at operation Oi (this term
is also known as the contaminant mass charge [3] and is expressed in kg/h);
cmax
i,k,out and cmax

i,k,in are the maximum allowed concentration of contaminant k
on the discharge and influx of operation Oi, in mg/l respectively.

The optimization model depends on the mass balance between all inlets
and all outlets of water to the operation Oi. According to Figure 2, the
expression for the mass balance has the form shown in Equation 6.

fi +
∑

j 6=i

Xi,j + Xi,R − fi,loss −Wi −
∑

j 6=i

Xj,i −XR,j = 0 (6)

where, Xi,j is the reusable water flow rate from other operations, say Oj,
in operation Oi; Xi,R is the treated water from the wastewater treatment
plants that can be used in operation Oi; fi,loss is the portion considered
as water loss in the operation or water consumption by the operation; Wi

is the wastewater flow rate from operation Oi; Xj,i is the reusable water
flow rate from operation Oi in operations Oj; and XR,i is the portion of the
discharged water from operation Oi that receives treatment. All flow-rates
are represented in m3/h. TP in Figure 2 represents a treatment plant.

k different contaminants can be considered in the optimization model.
This consideration requires the definition of constraints to restrict the con-
centration of contaminants at the inlets and outlets of operations, in order to
guarantee that water influxes will not affect the operation performance, and
to avoid the violation of environmental or operation norms. The satisfaction
of these constraints will determine the quantities of fresh and reused water
to supply to operations. The contaminant concentration constraint at the
influx of the ith operation, ci,k,in is defined by Equation 7.

ci,k,in =

∑

j 6=i Xi,jcj,k,out + ck,0Xi,R − fi,lossc
max
i,k,in

∑

j 6=i Xi,j + fi + Xi,R − fi,loss

≤ cmax
i,k,in (7)

where, cj,k,out is the concentration of contaminant, k, at the discharge of
operation Oj, ck,0 is the concentration of contaminant k in the treated water,
ci,k,in is the maximum allowable concentration of contaminant k at the influx
of operation Oi. Concentrations are expressed in mg/l.

The same way, contaminant concentration constraint at the outlet of j th

operation, cj,k,out is defined by Equation 8.
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cj,k,out = ci,k,in +
∆mi,k,tot

∑

j 6=i Xi,j + fi + Xi,R − fi,loss

≤ cmax
i,k,out (8)

Finally, non negativity constraints are established according to the fol-
lowing equations.

Xi,j ≥ 0,

fi ≥ 0,

Lj × PCj × CFj ≥ 0.

3 Solution methods

For multi-objective optimization problems there is not a single solution, but
a set of non dominated solutions (Pareto-set), such that the quality of a
solution can be improved with respect to a single criterion only by becoming
worse with respect to at least one other criterion [5].

In this sense, we propose the use of two techniques especially designed
to solve optimization problems with more than one criterion. The first, uses
an aggregated function constructed with the use of weight coefficients repre-
senting the relative importance of the two objective functions. The resulting
optimization problem is solved by the reduced gradient method for five com-
binations of weights to construct the Pareto set. The second technique, called
MDQL, is a heuristic approach based on the solution of Markov decision pro-
cesses [15]. MDQL is capable of exploiting the knowledge acquired during
the solution process, and has been tested on several benchmark problems
showing good performance (e.g., [15], [16]).

3.1 Aggregated function

This approach is probably the most known and simplest way to solve this type
of problems. Some of the first references on it are [12] and [26]. The main
idea is to construct a weighted combination of the objective functions. The
weighted function is then used on a single objective optimization problem.
In general, the weight coefficients, pi, are real values such that pi ≥ 0∀i =
1, . . . , k for k objectives. It is also recommended to use normalized weight
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Table 3: Weight coefficient combinations used by the reduced gradient ap-
proach.

Combination p1 p2

1 0.10 0.90
2 0.25 0.75
3 0.50 0.50
4 0.75 0.25
5 0.90 0.10

coefficients, so
∑k

i=1 pi = 1. More precisely, the multi-objective optimization
problem is transformed to the problem stated in Equation 9, which will be
called from now on the “weighted problem”.

min
k

∑

i=1

pi · Fi (9)

where, pi ≥ 0∀i = 1. . . . , k and
∑k

i=1 pi = 1.
This approach guarantees the optimality of the Pareto set if the weighted

coefficients are positive or the solution is unique [18]. Pareto set construc-
tion is made with the variation of the weight coefficients values, solving the
weighted problem as many times as the number of variations of the weight
coefficients can be configured. This procedure can be computationally ex-
pensive and slow, although it is a simple approach to generate some Pareto
solutions.

The weighted problem of the two objective functions presented in sec-
tion 2, is shown in Equation 10.

F = p1

∑

i

fi + p2(
∑

j

cstj + TPC) (10)

Its solution is obtained through the reduced gradient method with the use
of the GAMS/MINOS program [11]. The weight coefficients combinations
used are included in Table 3.

3.2 Multiple Objective Distributed Q-Learning(MDQL)

In order to efficiently solve optimization problems with more than one ob-
jective function it is desirable to use population based approaches, that is,
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approaches with the capability to generate more than one solution concur-
rently. Moreover, it is necessary to apply the dominance optimality criterion
to evaluate the generated solutions. This is the main hypothesis of much of
the recently developed approaches designed to efficiently solve multi-objective
optimization problems based on evolutionary computation. However, evolu-
tionary approaches do not exploit the knowledge generated along the search
process [24].

Taking advantage of some of the characteristics of evolutionary approaches,
optimization problems can be solved considering the search processes of a
Markov decision problem. Similar ideas have been previously used with the
Ant Colony Optimization Meta-heuristic [8, 9].

MDQL considers a group of agents searching a terminal state, st, in an
environment formed by a set of states, S. The set of states, or environment
is constructed with the division of the parameter space into a fixed number
of parts, considering that all the decision variables can be discretized into a
finite number of divisions. Each division is considered as a state, as illustrated
in Figure 3. An environment with these characteristics allows the agents to
propose values for each one of the decision variables in the problem.

For each state, s ∈ S, a set of actions, As, is established, see Figure 3. All
state-action pairs have an associated value function, Q(s, a), indicating the
goodness of taking action a in state s, for reaching a terminal state st ∈ S
(complete a task).

The search mechanism for an agent in MDQL operates when an agent
located in a state selects an action based on its value function, Q(s, a). Most
of the times the agent selects the best evaluated action (the action with
the higher estimated value for Q(s, a)), and sometimes a random action is
selected with a probability ε ≈ 0. Action value functions are updated de-
pending on how useful an action can be for an agent to reach a terminal
state. This behavior is adjusted with the help of a reward value, r ∈ <, and
the value function for the best evaluated action in the future state reached
by the agent after the execution of the selected action, Q(s′, a′). This update
rule is expressed in Equation 11.

Q(s, a)← Q(s, a) + α
[

r + γ max
a′∈A′

s

Q(s′, a′)−Q(s, a)
]

(11)

where Q(s, a) is the value function for the action, (0 ≤ α ≤ 1) is the learning
step, r is an arbitrary reward value, r ∈ <, γ is a discount factor, s′ and a′

are the next state and the best evaluated action for s′ respectively.
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Figure 3: Variable space division for MDQL.

As an agent explores the state space, the Q(s, a) estimates improve gradu-
ally, and, eventually, each maxa′∈A′

s
Q(s′, a′) approaches: E {

∑∞
n=1 γn−1rt+n}

[23]. Here rt is the reward received at time t due the action chosen at time
t − 1. Watkins and Dayan [25] have shown that this Q-learning algorithm
converges to an optimal decision policy for a finite Markov decision process.

In MDQL there is a group of agents, instead of a single agent, interacting
with the environment described above, and since the task for the agents is the
construction of the Pareto set, the original Q-Learning [25] algorithm must
be adapted. The main adaptations considered in MDQL are listed below.

• Decision variables in the environment have a predefined order, the
agents move in the decision variables space obeying this order, so the
definition of the values for the decision variables is made in the same or-
der by all the agents. Each agent assigns a value for a decision variable
at a time.

• When all the agents finish (set values for all the decision variables),
all solutions are evaluated using the Pareto dominance criterion. En-
vironments for non dominated solutions and solutions that violate any
constraint remain in memory to be used in future episodes.

• Agents are randomly assigned to the environments in memory.
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• Action values are updated in two stages. The first is made when agents
make a transition using a ‘map’ of the environment. Maps are con-
structed making a copy of the environments in memory, and are used
by agents to show to the rest of the agents the experience acquired
during the search process [17]. This experience is represented by the
actualization of the action value functions in the ‘map’ using the Q-
learning rule of Equation 11. At the end of an episode and after the
evaluation of solutions, non dominated solutions receive a positive re-
ward and solutions violating any constraint receive a negative reward,
which is used to update the original value functions in the environment
where they were found (second stage). After the update procedure,
all ‘maps’ are destroyed and a new episode initiates. More details of
MDQL algorithm can be found in [15] and [6].

4 Test cases

The proposed mathematical model was validated and MDQL was tested on
three cases described in the following sections. The MDQL operation param-
eters used for all test cases were: α = 0.1, γ = 0.9, ε = 0.01 and r = 1 for non
dominated solutions and r = −1 for solutions violating constraints. Previous
values for the operation parameters in MDQL are in some sense typical and
were originally suggested in [24]. Some work related with the sensitivity
of the algorithm to these parameters is presented in [16] using benchmark
evaluation functions. The conclusion of the previous work indicates that the
best combination of values for the operation parameters is to consider α ≈ 0,
γ ≈ 1 and ε ≈ 0.

4.1 Four Water Using Operations

The first test case considers four water using operations (O1, O2, O3, and O4)
and a single freshwater source. Table 4 shows the allowable values for fresh-
water, fi, the maximum concentration at influxes, cmax

i,k,in, and at discharges,
cmax
i,k,out, and the total mass transfer for contaminants, ∆mi,k,tot, for the four

unitary operations. The objective is to find a network configuration connect-
ing the four unitary operations to the source, with the lowest cost and the
lowest freshwater consumption, considering reuse as the sole mechanism to
reduce freshwater demands.
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Table 4: Operation parameters for test case 1.
Operation f (m3/h) cmax

i,k,in (mg/l) cmax
i,k,out (mg/l) ∆mi,k,tot (g/h)

O1 20 0.0 100.0 2, 000
O2 100 50.0 100.0 5, 000
O3 40 50.0 800.0 30, 000
O4 10 400.0 800.0 4, 000

O1

O2

O3

O
4

100 m

100 m

100 m

100 m

100 m

20 t/h

50 t/h

37.5 t/h

5 t/h

waste water
Freshwater

source

Figure 4: Non optimized solution for the first test case.

Figure 4 shows a non optimized solution where water demands in all water
using operations are satisfied with freshwater, resulting in a flow of 112.5 t/h
and with a cost of infrastructure of $1, 875.00 monetary units.

MDQL implementation for the solution of this test case considers the
range and number of divisions for the variables shown in Table 5. These
values represent increments of 0.2 m3/h for all variables, which is the criterion
used for the parameter space partition in the three problems. For example
considering O1, with a maximum freshwater flux equal to 0 ≤ f1 ≤ 20(m3/h),
it is divided in 100 states (each state represents a variation of 0.2m3/h for
f1). The same number of divisions is considered for the rest of the variables.
Each action moves the agent to a state of the next consecutive variable,
i.e. assigns a value in the discretized space of the next consecutive variable.
Figure 5 shows two traces of two different agents. Each of the two traces
represents a solution to the optimization problem, that is a set of values for
the parameters of the problem.

Twenty agents are considered for the solution of all cases. When all agents
conclude an episode (definition of the 24 variables), the 20 solutions obtained
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are evaluated under the dominance criterion. Non dominated solutions re-
ceive a reward value, r, used to update that state-action value function par-
ticipating in its construction. The environment settings with non dominated
solutions and solutions violating constraints are stored in memory and used
in the next episode.

Results obtained by MDQL are shown in Figure 6 represented with ∗, cor-
responding to the best solutions found from 20 different algorithm runs with
the same parameters. Figure 6 also includes the five solutions obtained by
the weighted function approach, represented with ◦. As can be appreciated,
MDQL generated more solutions over the Pareto front, 13, some of them
coincide with those found by the mathematical programming approach. The
solutions found by the weighted functions approach are shown in Figure 7.
It is also important to notice that for this type of problem the Pareto set is
small because of the restrictions.

CPU time to complete the Pareto front using the aggregated function
approach and mathematical programming (solution marked with the ◦) was
around 5 seconds. This time is obtained with the sum of the CPU time
required to obtain each of the five solutions on the Pareto front, not consid-
ering the time required to change the weight coefficients. Besides, the average
CPU time required by MDQL to define the Pareto Front presented in Fig-
ure 6 was around 8 seconds. Considering that the Pareto Front obtained
by MDQL contains 13 solutions and if we extrapolate the time taken by the
mathematical approach, it will require 13 seconds for the same number of
solutions found by MDQL.

MDQL was also tested with a finer discretization ranges, the double of
states per variable, obtaining the same solutions. This behavior of MDQL
indicates that the reported Pareto set is the optimal solution for the test case
considered and for this discretization level adopted.

4.2 Real industrial problem with ten operations and

four contaminants

The second test case was reported by Alva-Argaez [2] and Alcocer [1]. This
case was constructed with real data obtained from an industrial process in the
United Kingdom, considering ten unitary operations, O = O1, O2, . . . , O10,
and four types of contaminants, U = A, B, C, D. Operation parameters are
included in Table 6.
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Figure 5: An example of a path taken by two agents in the MDQL imple-
mentation for the first test case.

Table 5: Variable space configuration for the first case.
Variable Range Number of states

f1 0− 20 100
f2 0− 100 500
f3 0− 40 200
f4 0− 10 50

X1,j ; j ∈ 1, 2, 3, 4 0− 20 100
X2,j ; j ∈ 1, 2, 3, 4 0− 100 500
X3,j ; j ∈ 1, 2, 3, 4 0− 40 200
X4,j ; j ∈ 1, 2, 3, 4 0− 10 50

W1 0− 20 100
W2 0− 100 500
W3 0− 40 200
W4 0− 10 50
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Figure 6: Pareto fronts obtained for the first test case: ◦ mathematical
programming solutions; ∗ MDQL solutions; � solution obtained for the min-
imization of freshwater consumption as a sole objective.

Table 6: Operation parameters for the second test case.
Oper. O cmax

i,j,in(mg/l) cmax
i,j,out(mg/l) f(m3/h)

(A-B-C-D) (A-B-C-D)

O1 200-500-100-1500 25000-20000-28500-230000 24.87
O2 350-3000-500-400 8000-9000-24080-3000 40.98
O3 350-450-150-500 3500-2500-1500-1500 39.20
O4 800-650-450-300 15000-5000-700-1500 4.00
O5 1300-2000-2000-4000 2000-7000-9000-10000 3.92
O6 3000-2000-100-0 12000-10000-8000-200 137.50
O7 450-0-250-560 2000-3000-1000-12000 290.96
O8 100-250-200-550 3450-4000-700-7000 23.81
O9 150-450-3000-100 1000-1000-4000-100 65.44
O10 0-0-0-0 100-100-100-100 4.00

17



5.7

39.4

45.8

3.5

5.7

20

50

24.4

1.6

14.97

O1

O3

O4

O2

5.7

39.8

45

0.9

5.7

20

50.2

21.5

0.8

18.3

O1

O3

O4

O2

5.7

39.2

46.8

4.6

5.7

20

50.2

25.7

1.9

13.4

O1

O3

O4

O2

5.7

39

46.4

7.9

5.7

20

50

26.5

2.08

12.5

O1

O3

O4

O2

5.7

39

44.5

7.9

5.7

20

50.2

26.9

0.024

12.02

O1

O3

O4

O2
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Figure 8: Solutions found by MDQL on the second test case ∗ and the solution
found with the a single objective model ◦.

This problem was also solved in [3] by mathematical programming con-
sidering the sole objective function of freshwater minimization. Reported
results for this test case indicate that the optimal value for the objective
function is 594.80m3/h, which is identical to the result reported in [2]. The
similarity of results indicates that the two models are identical and that the
results reported in this work can be compared with them.

For this second case only MDQL was applied due to the approximation of
the Pareto fronts obtained with MDQL and the mathematical programming
approach observed in the first case and other problems previously solved
[15, 16]. Figure 8 includes the solutions obtained with MDQL. The solution
reported in [3] is also plotted. As in the first test case, the solution for the
single objective function is located in the upper left corner of the graph,
the region for the lowest flow rates and highest costs. This seems logical
because the solution of the optimization problem with a single freshwater
minimization objective function is equivalent to a zero weight coefficient p2 for
the cost objective function Z2 in the mathematical programming approach.

In Figure 8 it can be appreciated that the solution obtained for the single
objective function (reported in [3]) is non dominated with respect to those
obtained by MDQL, with the best evaluation for the freshwater minimization
criterion. This situation is also presented in the solution of the first test case.
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Figure 9: Average number of solutions in the Pareto Front vs Average number
of function evaluations in MDQL.

This behavior can be attributed to the precision of float numbers, and to the
discretization levels for the parameter space. The combination of these two
factors causes a truncation of the variables, and consequently in the solutions.
Reported solutions are the best from ten executions of the algorithm with the
same operation parameters. In four of of the ten executions MDQL converge
to the same Pareto Front reported in Figure 8, in two executions only nine
of the ten solutions reported were found and in four cases only eight solutions
were found. Otherwise, the mean number of solutions in the Pareto Front
(Pareto Counting) is presented in Figure 9.

The solutions obtained for the second test case make evident the advan-
tages when more than one criteria are considered, as there is more flexibility
to take a good decision. Additionally, and considering the type of problems
exposed in this paper, the computational and analysis effort required to solve
a problem with more than one criteria is not much greater than the required
for the single objective case, but results are more valuable, from the point of
view of information content.

Average CPU time taken by MDQL to obtain the Pareto Front presented
in Figure 8 was around 20 seconds.
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4.3 Water distribution system of Cuernavaca

The Cuernavaca city water distribution system, in México, operates as illus-
trated in Figure 10. There are three different types of sources of freshwater
in the city, according to the National Water Commission (NWC): 42 water
springs supplying 1, 409 l/s, 328 deep wells with a contribution of 1, 503.58
l/s, and water wheels contributing with 751.50 l/s1.

Water users are classified into five categories according to the water works
user census. A brief description of the kind of exploitation given to water
by each category is given below, accompanied with their freshwater demand
taken from [21]. In order to be consistent with the nomenclature previously
used, every category is considered as an unitary operation.

Self service: Users that have its own source to satisfy any kind of needs
including human consumption. Water demand for this type of users is
1.36 l/s.

Industrial: Users exploiting water to operate only industrial processes in
which there are no human needs to satisfy. Water demand for this
unitary operation is 47.58 l/s.

Agriculture: Covers all the users exploiting freshwater only for irrigation.
The main crops cultivated in the region of Cuernavaca are rice, corn,
grass and rose trees. This is the second most water demanding opera-
tion in the system with 593.00 l/s.

Services: Users with high consumption rates, such as hotels, schools, restau-
rants, supermarkets, etc. Freshwater demand for this operations as-
cends to 16.19 l/s.

Urban & Public: Most of the domestic users in the city, including small
schools, stores, public offices and small workshops. This is the most
demanding operation with a demand of 3, 003 l/s.

Multiple: Users not classified in any of the previous categories with an
activity that can be classified as a service, but with less consumption
rate. This operation demands 2.24 l/s.

1It is important to note that the net extractions and run offs from the sources reported
are greater because they also supply freshwater to other other towns close to Cuernavaca.
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Table 7: Inflow and outflow limit concentration for all current operations in
the city of Cuernavaca.

BOD5 TSS
cmax
i,A,in cmax

i,A,out ∆mi,tot cmax
i,B,in cmax

i,B,out ∆mi,totOperation O
mg/l mg/l kg/h mg/l mg/l kg/h

Urban & Public 0.00 220.00 1, 767.74 0.00 220.00 1, 403.07
Services 0.00 220.00 9.53 0.00 200.00 7.56

Agriculture 50.00 350.00 449.57 50.00 300.00 449.57
Multiple 0.00 220.00 1.32 0.00 220.00 1.05
Industrial 0.00 874.00 85.57 0.00 371.00 36.32

Self Service 0.00 220.00 0.60 0.00 240.00 0.73

It is relevant to note that part of the demanded water is consumed by
the operation itself, another part cannot be registered and is considered as
a loss caused by leaks occurring along the distribution systems. The rest
is declared as wastewater and is supposedly discharged with the effluents to
the receiving water bodies. For Cuernavaca city this body is the Apatlaco
river. It is estimated that the water consumption and the flow lost in leaks
is about 43.41% of the water demanded by operations [22]. This estimation
is illustrated with the label ‘leaks & consumption’ in Figure 10 for every
operation considered.

Two contaminants indexes are considered, in connection with the con-
taminants threw by the operations to the effluents, 5 day biochemical oxygen
demand (BOD5) and total suspended solids (TSS). These indexes are used
in the general water quality index, according to the NOM-001-ECOL-1996
standard, which is the Mexican official standard for wastewater discharges.
Wastewater treatment plants treat 339.15 l/s to BOD5 and TTS mean con-
centration of 50 mg/l according to the data reported in the literature [3].

Values for both water quality indexes, cmax
i,k,out, were established using in-

formation from studies that evaluated the degree of contamination in the
Apatlaco river [20]. For both contaminants, the concentration in the fresh-
water supplied to the system is considered to be zero, see Table 7.

There are 15 wastewater treatment plants in Cuernavaca city, ten of those
plants treat municipal wastewater while five plants are used for treatment of
industrial wastewater. The total treated wastewater flow-rate is 364.15 l/s
[20]. Table 8 shows the design and current operation treatment capacity for
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Table 8: Cuernavaca city municipal and industrial wastewater treatment
plant capacity[20].

Design l/s Operation l/s

Municipal Plant 1 15.00 13.00
Municipal Plant 2 27.00 9.00
Municipal Plant 3 38.00 13.00
Municipal Plant 4 1.70 1.50
Municipal Plant 5 0.16 0.15
Municipal Plant 6 400.00 300.00
Municipal Plant 7 4.00 3.00
Municipal Plant 8 8.00 0.00
Municipal Plant 9 10.00 0.00
Municipal Plant 10 8.00 0.00

Total 511.86 339.65

Industrial Plant 1 23.00 16.00
Industrial Plant 2 0.90 0.80
Industrial Plant 3 5.00 3.50
Industrial Plant 4 4.00 3.60
Industrial Plant 5 1.40 0.60

Total 34.50 24.50

the 15 plants in the city.
As can be seen, municipal plant 6 operates at 75% of its capacity, while

the rest of the plants work at an average of 35.44% of their design capacity,
treating only 39.65l/s when they could treat 111.86l/s. Since great quanti-
ties of wastewater can be treated with the same infrastructure, without the
investment in new treatment plants, this can be seen as an opportunity area
that can help to improve the system’s performance.

Two strategies were evaluated to improve the performance of the system.
The first one considers the operation of the treatment plants at their cur-
rent operation capacity, that is 339.65l/s, and the reduction of leaks in the
distribution network from 43% to 25%. The second strategy considers the
operation of the existing treatment plants at their design capacity, 511.86
l/s, a leak reduction program to decrease the non accounted water from 43%
to 25%, and the construction of new additional water treatment plants to
increase the treatment capacity in the city to 100%. The second strategy
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was designed to improve the water quality in the receiving body according to
the NOM-001-ECOL-1996 official standard, in this case the Apatlaco river.

4.3.1 Results for the first strategy

This strategy reduces Cuernavaca city water distribution network leaks from
43% to 25%. The waste water treatment plants operation maintain their
current levels, that is, 339.65 l/s. Urban and public water demand is covered
with 3, 003 l/s from wells, springs and water wheels, but 1, 291.6 l/s, that
is, 43% of this demand is lost through domiciliary and network leaks (see
Figure 10).

Results are presented in Figure 11. The main change in the operation of
the water distribution network in Cuernavaca found by MDQL is to supply
water for agriculture from three different sources: the mayor quantity from
the wastewater treatment plants, followed by the freshwater and a minor
quantity of wastewater from the urban and public sector. This operation
guarantees acceptable levels of contaminant according to standards. The
main water savings is obtained from the freshwater that is no longer sup-
plied to agriculture. The results can be analyzed from two perspectives: a)
increment of the irrigated area since there is an increment of water availabil-
ity in the region, and b) reduction of freshwater sources exploitation with a
benefit to the environment.

Analyzing the left most solution in Figure 11, which is shown in Figure 12,
it can be seen that the total demanded freshwater flow-rate by the system
is 2, 752.6 l/s, representing a decrement of approximately 24.87 % (see Fig-
ure 10), that is, 911.57 l/s of the amount of water taken from the sources.
As previously mentioned, the main change is in agriculture, for which water
demand flow-rate could be satisfied with 339.65 l/s taken from wastewater
treatment plants, 9, 96 l/s with wastewater from the urban and public sector,
and 234.15 l/s with fresh water taken from springs in the city.

This savings in freshwater can be used to increase the irrigated surface in
about 511 ha of corn, 1, 080 ha of beans, 219 ha of sugar cane, or 859 ha of
onion, considering irrigation depths of 74, 35, 172, and 44 cm respectively.

On the other hand, freshwater savings represent approximately 28.74 mil-
lions of m3 per year that could increase water availability in the Cuernavaca
valley aquifer from eight millions of cubic meters to 36.74 millions of cubic
meters.

Finally, it can be appreciated that the solution of the bi-objective model
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navaca, Mexico.
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Figure 11: Cuernavaca city distribution system results for the first strategy.

for the case of the distribution network of Cuernavaca city with MDQL ap-
proach allows, the construction of a Pareto set with three optimal solutions.
Only the left most one was analyzed in detail since it represents the lowest
freshwater demand solution, but the same analysis can be made with the
other two.

4.3.2 Results for the second strategy

The second operation strategy considers the operation of existing wastewa-
ter treatment plants to their design capacity, that is, treatment capacity is
increased to 511.86 l/s with no investment cost. As in the previous strategy,
a leak reduction to 25% is considered.

The Pareto front obtained for this test case is shown in Figure 13. MDQL
was capable of finding four solutions. The left most solution with the lowest
freshwater demand of 2, 581.3 l/s and cost of $1, 796 is shown in Figure 15.
The construction of two new wastewater treatment plants is proposed in this
solution. The first proposed wastewater treatment plant capacity is 81.38
l/s. This proposed plant can receive 4.6 % of the discharged wastewater
from the urban and public sector, and 53 % of the discharged water by the
multiple sector.

The second proposed wastewater treatment plant capacity is 1, 130.44 l/s
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Figure 13: Cuernavaca city distribution system analysis results obtained by
the second strategy.

and could receive the rest (95.4 %) of the discarged wastewater by the urban
and public sector.

Similarly to the results found for the first strategy, demanded water by
agriculture is satisfied with the total of the municipal treated water, and
with 81.38 l/s coming from the new plant proposed in the design. Industrial
water is treated independently in the existing industrial treatment plants.

Water savings arise since a considerable flow of freshwater is not longer
supplied to the agriculture sector. This reduction represents an increase of
the irrigated surface in the Cuernavaca valley of approximately 642 ha for
corn, 1, 357 ha for beans, 276 ha for sugar cane, or 1, 080 ha for onion,
with water depths of 74, 35, 172 and 44 cm, respectively. There are 34.15
millions of cubic meters per year of freshwater savings that could increment
the freshwater availability of the aquifer from eight to 44.13 millions of cubic
meters per year.

As can be seen from Figure 13, the left most solution is the lowest fresh-
water flow-rate demand solution of both strategies. It is also the highest cost
solution, but at the same time all the discharged water by the Cuernavaca city
water distribution system is treated so it represents the lowest contamination
levels (see Figure 15 and Figure 12 wastewater discharges to the Apatlaco
river). Qualitative, efficiency is measured in terms of the remaining contam-
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Figure 14: Comparison of the Pareto fronts obtained for the two strategies
used for the Cuernavaca city water distribution system.

inant concentration in discharged wastewater to the reception bodies. This
parameter is not included in the optimization model, but according to the
environmental standards (included in the model) solutions for both strategies
are feasible and do not violate them.

Figure 14 shows the Pareto fronts obtained with the two strategies and
facilitates the analysis and decision making. It is desirable to construct
graphs with Pareto fronts obtained from different strategies to appreciate
potential benefits. In this case it is possible to evaluate that the solutions
with the mayor benefit in terms of freshwater savings is obtained with the
second strategy with a high cost (left most second strategy solution). As
previously mentioned, solutions for the two strategies are in accordance with
environmental standards, so, if cost is considered as the main criterion for
decision making, a desirable solution could be the left most solution of the
first strategy.

5 Conclusions

In this work we presented a multi-objective optimization problem for water
distribution systems using water pinch technology criteria, we evaluated the
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multi-objective optimization model, and we verified the capability of MDQL
to solve complex real problems with highly restricted non convex spaces.

The water pinch optimization model considers more than one criteria.
The model considers the reuse of wastewater from operations, wastewater
treatment, consumption flow-rates and leaks in the system. With the re-
duction of freshwater demands it is possible to guarantee that the quality of
the water served to the different users do not violate ecological and sanitary
norms. The bi-objective optimization model operates considering mass bal-
ances between operations, freshwater sources, wastewater treatment plants,
and wastewater disposal effluents. Contaminants loads from operations to
water flows are restricted by environmental and operational constraints, re-
sulting in a highly non linear model.

The proposed model was tested on three cases: (i) a four unitary oper-
ations and one contaminant; (ii) a real industrial process in the UK with
ten unitary operations and four contaminants, and (iii) the Cuernavaca city
water distribution operation system. A heuristic approach based on the so-
lution of Markov decision processes, MDQL, was used to solve these cases.
Although MDQL performance was previously measured on several bench-
mark problems [15, 16, 17] with very promising results, we wanted to verify
its performance in the solution of highly restricted real problems. A weighted
aggregated function was also used as a mean of comparison, selected on the
basis of previous results and convergence properties reported in the literature
[18].

The application of MDQL to the solution of water pinch problems with
highly restricted non linear spaces makes evident that the algorithm is rel-
atively robust. MDQL does not depend on complex codings or operators
and its reinforcement learning approach allows it to improve its performance
during the search process. We have already tested some of MDQL’s charac-
teristics on a previous work [17]. Our results in a highly restricted real world
application reinforces our hypothesis that learning during the search process
is relevant to find good solutions for optimization problems.

Solutions to water pinch problems, represent important technical chal-
lenges that are only partially solved by the industry. The results presented
here represent an example of how real applications can be solved with the
participation of multidisciplinary teams involving researches from different
communities, as in this case.

As future work we are considering implementing constraints to select more
efficiently different processes. For example, if wastewater treatment technol-
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ogy is selected in terms of the type of contaminants, the mass remotion could
be made more effective and the system more efficient if the proper process
is selected and optimized in terms of cost and efficiency. Another important
aspect to implement is the cost function, which needs to be extended in order
to quantify operation costs, reuse costs, and other economic factors affecting
the operation of a system with these characteristics.

5.1 Future Research Work

In relation with the future work related with the optimization model pre-
sented in this paper, an extension of the model is being prepared. This
extension considers the analysis in detail of the mass exchange in unitary op-
erations opening the possibility to make dynamic analysis of the phenomenon.
With the use of this extension it could be possible to make finer optimization
of the process and to construct operation manuals to make the operation of
systems optimal.
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