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Abstract— Artificial Intelligence (AI) techniques are becoming
an active area of research for real applications. Power industry
is one of the best examples of this. Different problems have
been solved with these techniques, for example monitoring,
alarm management, diagnosis, and network planning. This paper
presents an On-line diagnosis system for gas turbines in power
plants. Since this application deals with unexpected behavior,
probabilistic reasoning and specifically Bayesian networks, offer
a natural mechanism for diagnosis. However, the use of Bayesian
networks in real applications presents two challenges. First, the
acquisition of representative models of the process with and with-
out faults. Second, dealing with continuous variables makes very
expensive the computation for inferences. This project utilizes
automatic learning algorithms, together with expert advice to
determine the models of the most common faults in gas turbines.
Also, a quantification of the behavior is used to minimize the
cost of the probability propagation in Bayesian networks. These
produces an original probabilistic and qualitative diagnosis of
gas turbines. Experiments were carried out utilizing real data in
a simulator. The results are presented and discussed.

I. INTRODUCTION

Power generation is considered a complex and expensive

process. In these days, the power generation industry has

faced important problems that require the modernization of

current installations, principally in both the instrumentation

and control systems. The current trend consists in increasing

the performance, availability and reliability of the actual

installations. The performance refers to the amount of mega

watts that can be generated per unit of fuel. The availability

refers to the hours that the central stops generating electricity,

and the reliability refers to the probability of counting with

all the equipment of the plant running. Additionally, modern

power plants are following two clear tendencies. First, they are

working very close to their security limits in order to obtain

the maximum efficiency and hence, the best performance.

Second, they are highly automated and instrumented, leaving

the operator with very few decisions. However, the classic

control systems are programmed to stop the turbine under the

presence of abnormal behavior, even if the fault may be weak.

Control systems are unable to make decisions in some cases.

However, at the supervisory level it is possible to reason

about the abnormal behavior, the probable causes and the

consequences. This is the role of a diagnostic system.

Diagnosis is the technique utilized in several fields, devoted

to find faults that explain abnormal behavior in a system.

Several approaches have been proposed and they can be

classified in three kinds [1]:

• data–driven: based on large amount of data provided by

modern control and instrumentation systems, from which

meaningful statistics can be computed.

• analytical: based on mathematical models, often con-

structed from physical first principles.

• knowledge–based: based on causal analysis or expert

knowledge, where conclusions and inferences are made

given information of the process. They can be found in

several kinds of models and inference methods [2].

The selection of the best approach for a given problem depends

on the quality and type of available models, and on the quality

and quantity of data available.

This research team, at the Electrical Research Institute or

IIE, has been working in the design of on–line intelligent

diagnosis systems for gas turbines of power plants [3], [4],

[5]. This kind of projects include two special problems.

First, the management of uncertainty given the thermodynamic

conditions of the gas turbine and the difficulty of constructing

accurate analytical models of the process. Second, the contin-

uous acquisition of the turbine parameters for their analysis.

Solving these problems will allow the early detection of small

deviations of the expected behavior.

This paper presents a qualitative and probabilistic diagnosis

system for gas turbines. Three special challenges are solved

in this project. First, the definition of the most common

faults in the different stages of the operation of the turbine,

namely starting up, normal generation of power, and special

maneuvers. Second, the acquisition of probabilistic models of

the gas turbine, given real data from the plant and special

advice from the experts. Third, since most of the signals that

conform the models are continuous value variables, then a

practical treatment is required. Then, the main contribution

of this work can be established as follows: It presents a

complete methodology for the construction of real applica-

tions of Bayesian networks. This methodology consists in the

discretization of variables to their qualitative tendencies, the

model induction, and their integration in an architecture for

on-line diagnosis.



This paper is organized as follows. First, section II intro-

duces the probabilistic model of the dynamic behavior of the

turbine, as well as the techniques utilized to obtain those

models. Section III describes the application domain, and

explains the characteristics of the faults considered in this

work. Next, section IV presents the experiments carried out

and the experimental results obtained in the laboratory. Finally,

section V concludes the paper and addresses the future work

in this area.

II. PROBABILISTIC DIAGNOSIS MODEL

This paper presents the utilization of Bayesian networks in

the diagnosis of gas turbines, i.e., the early detection of a

deviation of the normal behavior given the evidence obtained

in real time.

Bayesian networks are directed acyclic graphs representing

probabilistic dependence and independence relationships be-

tween the variables in a domain. Nodes represent the variables

and the arcs represent the probabilistic dependence of the

variable at the end of the arc, from the variable at the beginning

of the arc. Evidence is entered when the value of some nodes

exists. Thus, different algorithms allow the propagation of

probabilities in order to obtain the posterior probability of a

variable, given the evidence [6].

A typical approach would include a structure like the one

shown in Fig. 1. In the upper level, external factors are       Fault Symtom1 Symtom2 Symtomm 
External factor 1 External factor 2 External factor n 

Fig. 1. Typical approach in the construction of diagnosis systems using
Bayesian networks

included representing events that can produce a fault. For

example in medicine, contact with sick people can cause the

contagion. In the lower level, foundings or symptoms are

included. For example, presence of fiber or headache. Given

evidence of one or all of these factors allows to propagate the

probabilities and infer certain fault or sickness.

However, a strong disadvantage of this approach is the

difficulty to obtain accurate models with accurate parameters.

Thus, this project explored the utilization of automatic learning

algorithms that provide the probabilistic models, given data

obtained from a real plant or using a gas turbine simulator.

Figure 2 shows the basic software architecture developed in

this project. Data from the gas turbine simulator are utilized

to create data files that are used by the learning process. In

this research, the K2 induction algorithm for Bayesian network

is used. K2 [7] is a score-based greedy search algorithm for

learning Bayesian networks from data. It was published by

Cooper and Herskovits in 1992. K2 uses a Bayesian score,

P (Bs, D), to rank different structures and it uses a greedy

search algorithm to maximize P (Bs, D). Inputs to K2 include:

a set of nodes, an ordering on the nodes, an upper bound u

on the number of parents a node may have, and a database

D containing m cases of training data. For each node, K2

returns its most probable parents given the training data D.

This is carried out off–line.        
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Fig. 2. Proposed software architecture for multiple faults diagnosis of gas
turbines.

Different models are obtained for different faults. This

schema assumes that all the faults are independent and

assumes that multiple simultaneous faults can be detected

independently, i.e., they do not cancel one another.

The inference module is formed by independent threads that

receive evidence from the data acquisition module. This is

carried out on–line, i.e., data are refreshed every 250 ms. Thus,

the calculation of the probability of the different faults are

calculated also on–line and reported to the operator.

Given the dynamic operation of the turbines, two stages are

considered independently. In the first phase, the starting up of

the plant. In the second phase, the generation of power at full

load. In the first, the heating and the increment of speed of

the turbine are the main operations. The second stage is the

normal generation of power at different charges. In both stages,

different faults can be detected. The next section explains the

gas turbines and their possible faults in more detail.

III. APPLICATION DOMAIN: GAS TURBINES

The gas turbine is one of the most important equipment in

a combined cycle power plant. Figure 3 shows a simplified

schema of the gas turbines at Dos Bocas and Gomez Palacio

power plants in Mexico.

A gas turbine consists fundamentally of four main parts: the

compressor, the combustion chamber, the turbine itself and

the generator. The compressor feeds air to the combustion

chamber, where the gas is also fed. Here, the combustion



Fig. 3. Simplified schema of a gas turbine.

produces high pressure gases at high temperature. The ex-

pansion of these gases in the turbine produces the turbine

rotation with a torque that is transmitted to the generator in

order to produce electric power output. The air is regulated

by means of the inlet guide vanes (IGV) of the compressor,

and a control valve does the same for the gas fuel in the

combustion chamber. The control valve is commanded by

the control system or by the operator in manual operation

mode, and its aperture can be read by a position sensor.

The temperature at the blade path, which is the most critical

variable, is taken along the circumference of the turbine. Other

important variables, measured directly through sensors are the

mega watts generated and the turbine speed in revolutions per

minute (rpm).

The initial experiments carried out in this project include

the following faults:

• Low fuel supply pressure: The fuel provider presents low

pressure in the supply. The control calculates the aperture

of the gas valve based on a certain supply pressure, so

incorrect aperture is commanded and the fault occurs.

• Fault in the compressor bleed valves: theses valves stabi-

lize the pressure of the turbine in the start up phase. The

pressure may increase or decrease to dangerous levels if

the valve is stuck at incorrect values.

• Permanent stuck of the fuel valve: the fuel valve gets

stuck and has no response to the control commands.

The fuel valve malfunction has three main sources. First, ex-

cess of friction in the actuator of the valve causes an increment

in the difference between the real position and the commanded

position. Second, the position of the valve remains stuck in

some value. Third, the valve may unstuck unexpectedly and

cause a large amount of flow of fuel. This may cause an

increment of temperature that the control algorithm will try

to compensate, with the final result in a dangerous unbalance

of the process and an oscillation of temperature. More detail

with other faults can be consulted in [8].

IV. EXPERIMENTS

Data for the experiments were obtained utilizing a gas

turbine simulator at the IIE laboratory. Table I shows the set

of variables utilized and their identifier.

TABLE I

VARIABLES PARTICIPATING IN THE EXPERIMENTS.

IDentifier Description

Vtg turbine speed
RVtg turbine speed reference
MW generated power

RMW demand of power generation
XVc valve of gas position

RXVc reference of valve of gas position
EXVc error in the valve of gas position
Pcc combustion chamber pressure
Piqg gas pressure in the burners
scag IGV position signal

Rscag demand of IGV position signal
XVs compressor bleed valve position
Ipp main switch position

Marr starter engine state

During operation, data are collected every 250 ms. with the

value of the variables before the simulated fault, and some

samples of data after the simulated fault. This data is given

to the automatic learning module and different models for

different faults are obtained. One experiment corresponds to

the start up phase of the turbine, in which the speed goes from

0 to 5100 rpm without load Other experiment corresponds

to the power generation phase. The simulation includes the

command of full load, going from 2 MW to the maximum

load of 24 MW, and then returning to 2 MW.

Practically all the signals in table I are continuous vari-

ables. Using a representation based on traditional Bayesian

networks, a discretization process is required. However, if a

large number of intervals is chosen, then a great amount of

memory and computer time is required to obtain the posterior

probabilities. An additional problem when using a large num-



ber of intervals is that many configurations are not represented

in the database, and so the corresponding probabilities cannot

be estimated, thus reducing the accuracy of the model. If a

short number of intervals is chosen, then lack of expressivity

is obtained. In this work, a qualification of the variables is

proposed, similar to the human reasoning performed in the

control rooms, i.e., operators observe if a signal increases,

decreases or remains unchanged. For example, the operator

knows that at the start up phase, if the temperature increases,

then the speed must also increase. Thus, the nodes of the

network can have one of three states, according to the relation

shown in table II.

TABLE II

DESCRIPTION OF THE QUANTIFICATION PROCESS.

Condition Variable state

if vt − vt−1 > δ sup

if vt − vt−1 < δ sdown

if vt − vt−1 = ±δ srem

where vt represents the value of a variable at current time,

vt−1 represents the previous value, and δ represents a small

threshold dependant on a percentage according to the noise in

the signal.

Using this qualification process, data obtained in the sim-

ulator are transformed and applied to the automatic learning

process.

Figure 4 shows the resultant Bayesian network obtained

with the K2 algorithm of the Elvira package [9] for the fuel

valve fault.        FAtoValvula MW RMW Pcc Piqg XVc RXVc EXVc 
Fig. 4. Network obtained automatically by applying the K2 algorithm for
fuel valve fault.

Similar models were obtained for different faults as de-

scribed in Fig. 2. Table III shows the initial results. The rows

indicate the case study applied to the prototype. The columns

describe the results obtained for the different fault models

given the same evidence.

For example, in the first row, experiments with the simulator

in the start up phase without simulated fault, produces only

a probability of 15 % of fault in the compressor bleed valve.

This percentage is considered very low, indicating no fault. In

the last 4 rows, a specific fault was simulated and reported.

TABLE III

PRELIMINAR RESULTS OF THE EXPERIMENTS.

Case Fault 1 Fault 2 Fault 3

start up, no fault No detected 15 % No detected
generating, no fault No detected No detected No detected
simulating fault 1 100 % No detected No detected
simulating fault 2 No detected 98 % No detected
simulating fault 3 No detected No detected 95 %

Additional tests are being developed in the laboratory, includ-

ing variations for the other faults.

Figure 5 shows the photo of the prototype user interface.

At the right side, the state of the process and the presence

of faults are indicated. The gas turbine may be in the start

up (arranque), stop (paro), synchronization (sincronizacion)

or generating (generación). Also, the probability of fault is

shown in colors: green for no fault (low or null probability),

yellow for medium probability (warning) and red for high

probability of fault. At the bottom, windows displays the

probability of faults with numerical value, and the exact time

when the fault occurred.

V. CONCLUSIONS AND FUTURE WORK

This paper has presented the design and testing of an

intelligent diagnosis system for gas turbines. The system

uses the models of the abnormal behavior of the turbine,

given certain fault. The models are represented by Bayesian

networks considering a binary node representing the presence

of the fault. The Bayesian networks were induced through the

K2 Bayesian network learning algorithm, using data obtained

from a simulator. In the networks, all the nodes are continuous

variables. This paper proposes the quantification of the signals

in three values: signal going up, down or stable.

Four faults were included in the experiments, from two

stages of the operation of the turbine. The preliminary results

are promising but further experiments are needed, utilizing the

gas turbine simulator in the laboratory. Future work include

experiments in a real power plant, considering real data.

Qualitative probabilistic diagnosis has demonstrated to be

an appropriate mechanism for the on–line diagnosis of real

processes.
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for on–line diagnosis of gas turbines,” in Advances in Artificial Intelli-

gence - IBERAMIA 2002, LNAI 2527, M. T. F.J. Garijo, J.C. Riquelme,
Ed. Sevilla, Spain: Springer, 2002, pp. 795–804.
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