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ABSTRACT

Skilled improvisers are able to shape in real time a mu-
sic discourse by continuously modulating pitch, rhythm,
tempo and loudness to communicate high level informa-
tion such as musical structures and emotion. Interaction

between musicians, correspond to their cultural background,

subjective reaction around the generated material and their
capabilities to resolve in their own terms the aesthetics of
the resultant pieces. In this paper we introduce GRI an en-
vironment, which incorporates music and movement ges-
tures from an improviser to adquire precise data and react
in a similar way as an improviser. GRI takes music sam-
ples from a particular improviser and learns a classifiers
to identify different improvision styles. It then learns for
each style a probabilistic transition automaton that consid-
ers gestures to predict the most probable next state of the
musician. The current musical note, the predicted next
state, and gesture information are used to produce ade-
quate responses in real-time. The system is demonstrated
with a flutist, with accelerometers and gyros to detect ges-
tures with very promising results.

1. INTRODUCTION

Skilled and experienced improvisers shape a music dis-

course in real time by continuously modulating pitch, rhythm,

tempo and loudness to communicate high level informa-
tion such as musical structures and emotion. Interaction
between two or more musicians, correspond to their cul-
tural background, subjective reaction around the gener-
ated material and their capabilities to resolve in their own
terms the aesthetics of the resultant pieces.

During an improvisation musicians are alert, tolerant
and communicative. Body expressions also motivate each
other to assume different moods and in most of the cases
create dramatic contrasts in the development and phrase
definition of the material . The almost endless musical
structures and diversity in expression that can emerge in
a group of musicians from one set and another, is rarely
achieved in interactive computer system.

Real-time interactive environments are typically con-
structed with a limited set of procedures, leaving very lit-
tle room for any kind evolution during a performance. By
set of procedures we mean any data type format, random
processes and/or algorithmic method within a predictive
output. This constrains human improvisers to gaming the
interactive system to generate musically cogent output,

Eduardo F. Morales
I TESM - Cuernavaca
Computer Science

David Wessel

a distraction from their own musical potential. We have
adopted two strategies to break from these limitations: the
integration of gesture and interpreted musical data; and
the use of an on-line learning system, GRI, which pre-
dicts the next most probable state of the musician from
which an adequate audio response is produced in real-
time. The system’s predictions of the next state are con-
tinuously updated during performance considering the ac-
tual state transitions of the musician, allowing a gradual
adaptation to the current piece as its surface form and
“style” evolves. This approach avoids the well known dif-
ficulty of previous systems with embed knowledge musi-
cal phrases, styles and even recognize different soloist in-
terpretations for specific music passages. Unfortunately,
their inefficiency starts when the material is not in their
database and/or algorithmic domain. That is, when any
performer/improviser defines certain collections of discrete
events as musical phrases which might contradict the sys-
tem.

In the particular application of the GRI system we will
describe, we use accelerometers to capture attacks and/or
tension in the fingers of the musician, and gyros to detect
angular displacements of the flute, for instance to signal
the start of a musical event or emphasize some particular
notes.

Section 2 describes the proposed approach called GRI.
Our approach is contrasted with related work in Section 3.
Finally Section 4 gives conclusiones and future research
directions.

2. GRI

The idea is to learn a predictive model of what a musi-
cian will do in real time. We argue that the information
provided from sensors can help to produce more accurate
models. In order to produce a companion improviser, GRI
follows three main stages. In the first state, information
from audio and gestures produced by a musician is used
to create a classifier of improvisation styles. In the second
stage, a probabilistic transition automaton is learned for
each style. The third stage is used during performance,
where the current audio and gesture information produced
by a musician is used to predict the next most probable
state using the previously build classifier and automata.
The audio and gesture information with the predicted next
state are used to produce adequate output. In the following
sections each stage is described in more detail.

In this work we are using music information produced
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by a flutist. Two gyros and one accelerometer are attached
to the end of the flute. The accelerometer is very effective
in detecting tension or attacks in the fingers of the flutist.
Fast and strong finger movements are clearly shown by
the accelerometer. This is used to distinguished states and
help the classifier and the automata to make better predic-
tions. The gyros are used to capture movements with the
flute which normally occur (with our flutist) just before
starting a new musical phrase or to signal particular notes
which are considered relevant by the musician. The gyros
are placed orthogonal to each other to capture left-rigth
and up-down movements regardless of the orientation of
the musician. We plan to include another one in the fu-
ture to capture twists of the flute. This information is used
to produce more adequate audio outputs from a predicted
state.

2.1. Learning musical models

As previously mentioned, GRI first recognizes a partic-
ular improvisation style of a musician and then predicts
the next possible state for each style. This initial classi-
fication considerably reduces the state-space and allows
faster response times. The musician can still jump be-
tween styles during the same musical piece, although GRI
will predict a state and produce audio from the previous
style. Once GRI recognizes that the musician has change
styles it will produced audio according to the new style.
This is normally what happens during improvisation per-
formance when one musician decides to change styles, so
splitting the system into different styles can be reasonably
justified and considerably helps in the performance of the
system.

Given a set of music examples and gesture information
from sensors of different improvisations styles of a musi-
cian, GRI learns a classifier to quickly identify a particu-
lar style. In this paper we only considered three different
styles: (i) long (with considers long notes), (ii) short (con-
siders mainly short notes) and (iii) erratic (which consid-
ers a more “chaotic” style).

The musical and gesture information is used to charac-
terize each state. We tried different classifiers from Weka
[11] with continuous and discretized data and considering
different attributes. The best results (considering accuracy
and simplicity) were obtained using as attributes the cur-
rent trend of the notes (if the current note is increasing,
decreasing or steady with respect to the previous note), a
discretized range of the dynamics, a discretized range of
the rhythm and a discretized range for the accelerometer.
We used an entropy-based discretization which uses MDL
as stopping criterion [2] to discretize these values. This
representation produces a small number of abstract states
from which a very simple classifier can be constructed.
We used Weka to construct a classifier from 575 sam-
ples with 90% of accuracy using 10-fold stratified cross-
validation, which was then directly coded into GRI.

Table 1. Construction of the transition probability au-
tomata.

Let Auto be the current automata for a particular style
Given a state transition A — B
If A or B are new states, add them to Auto.
If A — B isanew transition
Thenset P(A — B) =1/1
if there are no other transitions from state A in Auto
else
set P(A— B)=1/(a+1)
given that a transitions have been previously
observed from A in Auto
set P(A—C)=c/(a+1)
for all states C' #£ B which have c transitions
from A in Auto
Else
set P(A— B)=(b+1)/(a+1)
set P(A—C)=c/(a+1)
for all states C' # B in Auto

2.2. Learning probabilistic automata

The attributes used for the classifiers were the same used
to describe the states in the construction of the probabilis-
tic transition automata. A different automaton is learned
for each musical style. The same data used to construct
the classifier was used to initially construct the automata.

The transition probabilities between states are updated
with each observed transition between states. In this pa-
per, P(A — B) = b/a is used to denote the transition
probability from state A to state B, where b in the num-
ber of times that the transition from state A to state B has
been observed and « is the number of times that there has
been a transition from state A. A simple mechanism is
used to update the transition probabilities:

PA—-B)=0b+1)/(a+1)
if the current transition is from state A to state B, and
P(A—C)=c¢/(a+1)

for all the other outgoing states C' which are different from
state B. New transitions are initialized to 1/1 if there are
no previous transitions from state A or to 1/(a + 1) if
there has been previously a transitions from state A. This
process is more clearly described in Table 1.

2.3. Producing audio

Once the classifier has been induced and the automata
have been constructed, GRI receives musical and sensor
information to produce adequate audio responses in real-
time. The input information is first discretized and trans-
formed into one valid state. GRI uses the classifier to
identify the current style and the automaton to use. The
automaton is used to predict the most probable next state.



Table 2. A general overview of GRI
Given a set of music and gestures samples labeled
with a particular style:
o Transform the sample set into abstract samples
o Learn a classifier to distinguish between styles
e Learn an automaton for each style according to
Table 1

Given music and gesture information during performance

o Transform the information into an abstract state

o Update the observed probabilistic transition from
the previous state to the current state (or do nothing
if first time)

o Predict the style using the classifier

e Predict the most probable state using an automaton

e Produce audio considering the predicted state,
the current note and gesture information

The predicted state, the current note and the informa-
tion from the gyros are used to produce audio. Once the
next state is obtained from the musician, it is compared
with the predicted state. The transition probabilities of the
used automaton are updated with the real transition ac-
cording to Table 1. The continuous update of the automata
during performance can help to adapt the system to the
current improvisation mood of the musician. Similarly,
the status of the automata after different performances can
be stored and used in future performances. Table 2 has an
overview description of GRI.

To produce adequate audio, Max has information of the
current note, rythm, dynamics and gyros and receives in-
formation from the preditcted state, that is, the predicted
trend in note (i.e., if the next note is predicted to be of
higher/lower pitch) and the predicted ranges of rythm, dy-
namics and accelerometer. This information is used to
produce adequate audio. GRI has information about in-
tervals, rythms and other musical relations to produce its
output. When the flute is not moving, within a certain
threshold in the values of the gyros, GRI stops producing
audio.

It should be noted that due to its classification process,
simple automata structures and representation of states,
GRI is able to respond in real-time. In addition, its con-
tinual update of the automata during performance allows
GRI to adapt its transition probabilities and include states
that were not previopsuly considered, making it a very
flexible system.

The classifier, the abstraction process and the learning
automata are coded in Prolog. Max sends to Prolog the
new observed audio and sensor variables. Prolog trans-
forms and classifies the input, predicts the next state and
updates the transition probabilities according to the actual
observed transition of the musician. Prolog sends to Max
a new prediction with the current note. Max takes this in-
formation and the information from the gyros to produce
adequate audio. Figure 1 illustrates this process.

2.4. Experiments

The classifier was learned with 575 samples which were
also used to construct the initial automata. The erratic
style had 16 states and 36 transitions, large had 12 states
and 24 transitions, while short had 19 states with 84 tran-
sitions. GRI is able to update the automata during perfor-
mance, producing more accurate models over time.

With these initial automata several test were performed.
In our experience, after two or three interactions, GRI is
able to follow in a very aceptable way a musiciacian.

3. RELATED WORK

Several researchers have also considered having computer
music companions during performance. Most of them rely
of the user to progam the system and customize the system
until it is able to produce interesting musical results (e.g.,
[8, 7]. Other more recent systems, like Dannenberg’s in-
teractive performance system [1] music generation is ei-
ther hand-coded or trained using supervised learning but
it is done to follow the composer’s goal instead of the per-
former’s goals. David Wessel’s assisting performance set-
ting [10] offer more open-ended improvisations possibili-
ties, however they are still primary focus in uman authored
aesthetics. The idea is to organize and control the access
of musical material so that a performer can author mean-
ingful musical expperiences on-the-fly. In a more recent
wotk, Belinda Thom describes a sistem that is able to cus-
tomize itself during live performances [9] which is more
closely related in spirit to our work. She uses clustering
mechanisms to identify different playing modes which is
similar to our initial classificatin process, and directional
Markov chains to generate music. One of the main differ-
ences with our work, is that we are also incorporating in-
formation about gestures from the sensors which allows to
capture movements and tension in the musician that helps
to produce better responses.

4. CONCLUSIONSAND FUTURE WORK

We have presented a system called GRI which combines
audio and gesture information to produce audio responses
in real-time. GRI learns a classifier and probabilistic au-
tomata to predict the next most probable state of a mu-
sician. The classifier and the abstraction in the represen-
tation of states simplifies the task while maintaining rich
musical and gesture information, which allows adequate
real-time responses.

The use of sensors enrich the representation of states to
capture additional features not present in the audio. Ac-
celerometers are adequate to identify tension and strength
in the execution of a flutist, while the gyros are good to
identify gesture movements with the flute associated with
particular music events.

GRI is continuously updating its probabilistic automata
during performance which allows to capture, to a certain
extend, changes in the mood of the musician.
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Figure 1. Information flow in GRI.

As future work, we would like to consider richer prob-
abilistic transition models like Hidden Markov Models,
Dynamic Bayesian Networks, and probabilistic logic mod-
els (e.g., Bayesian logic programs [5] or probabilistic re-
lational models [3]). We would also like to enrich our
models with more gesture information.
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