State Abstractions, Behavioural Cloning and
Reinforcement Learning

Eduardo F. Morales
ITESM-Campus Cuernavaca, Temixco, Morelos, 62589, México

1 Extended abstract

The main idea behind this research is to represent states as sets of relational
properties that can be used to characterize a particular state and which may
be common to other states. This representation allows us to:

e Create powerful abstractions, as states are characterized by a set of
properties rather than physical positions. This makes it useful for
large search spaces and applicable to relational domains. In chess, for
instance, the state space can be represented by boolean combinations
of relational properties between pieces and their positions in the board
(e.g., in_check, fork, pin, etc.).

e Learn policies which are, in general, independent of the exact position
of the agent and the goal. This allows us to transfer policies to different
problems where the same relations apply without any further learning.
For instance, in chess the policy that is learned to check mate can be
directly applied without any further learning to chess boards of different
sizes and to many instances of the goal (i.e., to check mate the opponent
in different places starting from different board configurations).

We define an r-state as a conjunction of properties represented as first-
order relations. The extension of an r-state is the set of states which are
covered by its description. Each state is an instance of one and only one
r-state. An r-state can cover a large number of states (i.e., all the states
where the relations described in the r-state hold). For example, an r-state in
the chess domain could be kings_in_opposition and rook_divides_kings, which



covers all the chess positions where these two relations hold (more than 3,000
states). This representation of states effectively creates an abstraction over
which the reinforcement learning process is performed.

The set of actions also use a first-order relational representation, similar
to STRIPs operators. Rather than trying to apply all the available actions
per state, we want to apply only relevant actions, i.e., those which apply when
particular relations in the state description hold and which, possibly, enforce
other relations to hold. An r-action is defined by a set of pre-conditions, a
generalized action, and possibly a set of post-conditions. The pre-conditions
are conjunctions of relations that need to hold for the r-action to be ap-
plicable, and the post-conditions are conjunctions of relations that need to
hold after a particular primitive action is performed. The generalized action
represents all the instantiations of primitive actions which satisfy the condi-
tions. When several primitive actions satisfy the conditions of an r-action,
one of them is chosen randomly. An r-action can be applied to many states,
and as expected, not all the r-actions apply to all the r-states.

We have already applied this abstracted representation based on rela-
tional properties on grid problems, the Taxi domain, blocks world problems
and a simple chess endgame. In this paper we will first show the main ad-
vantages of the approach, particularly in its capability of re-using previously
learned policies on similar problems.

The approach assumes that the relations and r-actions are pre-defined
by the user. In this paper we will show how these relations can be learned
using an ILP system and we will illustrated this with examples on chess.

Also, given a set of properties, the r-actions can be learned using a be-
havioural cloning approach. This has the advantage that it defines only a
subset of relevant actions per state which substantially simplifies the rein-
forcement learning process. We have already applied this approach (state
abstraction based on relational properties - behavioural cloning - reinforce-
ment learning) to learn how to fly an aircraft (which will be presented at
ICML-04). In the paper we will illustrate the advantages of this approach
for solving challenging domains with a large number of contiguous variables
and noise.

Finally, we will present initial ideas of how to learn both the relations and
r-actions at the same time and how can this be used within a reinforcement
learning framework.



