
NSC: A New Progressive Sampling Algorithm

Alfonso Estrada1 and Eduardo F. Morales2

1 Computer Science Department
ITESM - Campus Ciudad de México

alestrad@exatec.itesm.mx

2 Computer Science Department
ITESM - Campus Cuernavaca,

Temixco, Morelos, 62589, México
eduardo.morales@itesm.mx

Abstract. As the size of the databases increases, machine learning al-
gorithms face more demanding requirements for efficiency and accuracy.
Rather than analyzing all the data, an alternative approach is to use only
a small subset trying to achieve competitive results with less resources.
Progressive sampling follows this approach, starting with a small sam-
ple of data and increasing the size progressively until the accuracy (or
other performance measure) cannot be improved. Progressive sampling
aims for equivalent accuracies obtained with all the data but with signif-
icantly less resources. This paper introduces a new progressive sampling
algorithm called NSC which: (i) defines an initial data set with a simple
to evaluate measure and close to the sample size where the accuracy no
longer improves, (ii) proposes a sampling schedule which is more aggres-
sive than arithmetic sampling but more conservative than the standard
geometric sampling with a geometric factor of 2, and (iii) introduces a
termination criterion based on an adaptive local linear regression algo-
rithm and on the complexity of the machine learning algorithm used to
generate models. It is shown experimentally that NSC consistently out-
performs both arithmetic and geometric sampling on several databases.

1 Introduction

The last decades have seen an accelerated increase in the size of the databases and
it is expected for this trend to continue. It is relatively common to find nowadays
databases of several gigabytes and there are starting to emerge databases with
several terabytes (see for instance [1] for a survey of techniques to deal with
very large data bases). Machine learning algorithms have been used to try to
extract useful knowledge from databases. As the size of the databases increases,
machine learning faces more demanding requirements for efficiency and accuracy.
Accurate models require in general more data to uncover useful and possibly
complex patterns. However, efficiency requires less data since most inductive
algorithms grow at least linearly with the size of the training set. With the
increasing size of the databases, it is becoming impractical to consider all the
data.

Progressive sampling has been relatively recently proposed as an alternative
approach to achieve competitive results while considering only a small subset of
data. The general idea is to start with a small sample of data and increase the
size progressively until the accuracy (or other performance measure) cannot be
longer improved.

Figure 1 depicts a prototypical learning curve with increasing training sets.
In general, these learning curves have a steep slope early in the curve, follow by a
more gentle slope in the middle and a plateau in the last section. The size of the
training set where the plateau starts (marked with a vertical line in Figure 1),
which we will refer to as Nmin, represents the size of the smallest training set
after which it is not possible to improve the accuracy considering additional
data. Models built with smaller training sets than Nmin are less accurate, while
models with larger sets have the same accuracy.

Fig. 1. A prototype learning curve with increasing training set size.

The idea of progressive sampling is to detect convergence in the learning curve
(Nmin) after a few samples to efficiently produce models with high accuracy.
Progressive sampling requires the definition of at least three main components:
(i) the sampling schedule, (ii) the initial data sample, and (iii) the termination
criterion.

The two most common approaches for progressive sampling, arithmetic and
geometric sampling, have focused mainly on the definition of the sampling sched-
ule S = {n0, n1, . . . , nk}, where the nis represents the size of the sample used
by the induction algorithm.

Arithmetic sampling has the following schedule: Sarith = n0 + (i · nδ), where
n0 is a starting data set and nδ is a fixed increment in the size of the data
to consider [2]. For instance: {100, 200, 300, 400, . . .}. Its obvious drawback is
that databases with a large Nmin require a large number of samples, that can
eventually produce longer training times than analyzing the whole data set in
the first place.

Geometric sampling was proposed as an improved sampling mechanism. It
uses the following schedule: Sgeom = ai ·n0 = {n0, a ·n0, a

2 ·n0, a
3 ·n0, . . .} where

a and n0 are constants [3]. For instance: {100, 200, 400, 800, . . .}. Although a,
which we will call it the geometric factor, can be any constant, by default it
has been taken to be equal to 2. Its main drawback is that it is too aggressive

and can easily surpass by a large amount of data Nmin, and consequently build
models with more data of what it is really needed.

In this paper a new progressive sampling algorithm, called NSC, is described.
NSC uses geometric sampling but with a less aggressive geometric factor of 1.1
instead of 2. This makes NSC not as conservative as arithmetic sampling, nor as
aggressive as geometric sampling. NSC proposes a new and simple to evaluate
initial training sample size that is, in general, close to Nmin. Finally, in NSC two
termination criteria are introduced, one is based on the detection of convergence
with an adaptive mechanism of points used for a local linear regression algorithm,
and the other one is based on the complexity of the induction algorithm used to
generate the models.

Section 2 describes NSC in more detail. In section 3 experimental results
on several databases are presented. Finally, section 4 provides conclusions and
future research directions.

2 Progressive Sampling with NSC

NSC follows a general progressive sampling algorithm as described in Table 1.
It first defines a sampling schedule based on a small geometric factor and on the
complexity of the inductive algorithm (see Table 2). NSC continues taking sam-
ples according to the sampling schedule until it detects convergence (described
in Section 2.3) or when there are no more elements in the sampling schedule.

Table 1. The NSC algorithm.

Let:
N ← data size
M ← number of attributes
CML← time complexity of the machine learning algorithm

with N and M

S = {n0, n1, . . . , nk} = NSC schedule(N, CML)
i← 0
while not NSC detect convergence or i ≤ k

ni ← element i from S

M ← model induced with ni instances
i← i + 1

end while

return M

To generate the sampling schedule, NSC defines: (i) an initial data set, (ii) a
new geometric factor for the sampling schedule, and (iii) the size of the sampling
schedule. These will be described in the following sections.

2.1 Selection of Nmin

Although previous progressive sampling algorithms have paid little attention to a
proper definition of the initial training set, this is relevant for the efficiency of the
algorithm. The closer the initial size to Nmin the more efficient the progressive
sampling algorithm will be.

Trying to determine an estimate for Nmin is not an easy task, as it depends
on the particular database and on the learning algorithm. There have been some
previous approaches with little success. For instance, in [2] arithmetic sampling is
compared against, what they called a static sampling. Static sampling computes
N̂min based on a subsample’s statistical similarity with the entire set using Kull-
back information measure. They show that arithmetic sampling produces more
accurate models than static sampling. The main problem is that once N̂min is
determined no further sampling is performed. Other approaches have tried to
estimate Nmin from all the data (e.g., [4]), this is however, computationally too
expensive and not as effective as expected, having to use a progressive sampling
approach after a proposed N̂min. NSC also continues with a progressive sam-
pling approach after proposing an initial sample size, however its estimate only
depends on the size of the database. It is a very easy to evaluate estimate that
has given good results on the databases where it has been tested. The idea is
to guide the size of the sample to consider from a database with N instances,
by the size of the sample require to estimate, with certain confidence level, the
mean of a population of size N . The size of this sample depends on a confidence
level. From statistics (e.g., [5]), the size of a sample to estimate the mean of a
population with a certain confidence level, is given by:

Nmin =
N ∗ σ2

(N − 1) ∗ D + σ2

where D is (N∗C)2

4 and C is the confidence level of this estimate. We need to
estimate σ2, which in the absence of any information it is approximated in NSC
by σ ≈ N

4 . Since N − 1 ≈ N for large N , and after some simple manipulation:

Nmin =
N

4 · N · C2 + 1

One option is to fix a confidence level (C) and apply it to all the databases.
One problem with this approach is that a good confidence level, and conse-
quently the estimate of Nmin will depend, in general, on the particular database
under study. Trying to diminish this, the Nmin’s of 11 diverse databases, mostly
taken from the UCI repository of machine learning databases [7]3, were ob-
tained using a conservative and expensive arithmetic progressive sampling ap-
proach. These values were used to adjust a curve for the confidence level that
could produce good approximations for the Nmin’s on these databases (see Fig-
ure 2). An exponential function fitted best these values with the following form:

3 The UCI databases were: Autohorse, Autoprice, Breast, Iris, Kropt, SE, Sonar, Soy-
bean, Spambase and Ticdata categ.

C = 41.468 ∗ N−0.479 + 0.05. It basically decreases exponentially the size of C,
and consequently of Nmin with respecto to the size of the database.

Fig. 2. Confidence value curve for good estimates of Nmin with several databases.

To summarize, we used an estimate of the size of a sample of a population
of size N to estimate its mean as a good estimate for Nmin and adjust the
confidence level considering several databases. Although this is a very rough
approximation it has produced very good results and it is very easy to evaluate.

2.2 The sampling schedule

The sampling schedule follows a geometric sampling approach with a geometric
factor of 1.1. That is: SNSC = 1.1i · n0 = {n0, 1.1 · n0, 1.12 · n0, 1.13 · n0, . . .}
(see Table 2). This is more aggressive than arithmetic sampling but more con-
servative than a geometric sampling with a geometric factor of 2. The geometric
factor was obtained after performing several tests on 11 databases. Although
the geometric factor in NSC has been fixed to 1.1, as future work we will like to
adjust this number dynamically. One of the main ideas behind this research is
that a combination of a good estimate for Nmin with a geometric factor which
is greater than 1 but much less than 2 can produce a more effective and efficient
progressive sampling approach.

With this sampling schedule, we can estimate the number of samples where
NSC is as expensive as generating a model with all the data. This of course
depends on the complexity of the learning algorithm and determines the size of
the sampling set. NSC stops considering bigger training sets when its accumu-
lated computational cost is equivalent to the computational cost of generating
a model with all the data. We can obtain the size of the sampling set as follows:

Table 2. The NSC scheduling algorithm.

NSC schedule(N, CML)
Estimate Nmin considering N

Evaluate MaxIt (maximum number of samples) considering
CML and N

Let geo factor = 1.1
i← 0
ni ← Nmin

while i < MaxIt

i← i + 1
ni ← ni−1 ∗ geo factor

CML(N) = CML(Nmin) + 1.1 ∗ CML(Nmin) + 1.12 ∗ CML(Nmin) + . . .

= CML(Nmin)(1.10 + 1.11 + 1.12 + . . .)

= CML(Nmin)

x∑

i=0

1.1i

= CML(Nmin) ∗
1.1x+1 − 1

0.1

where CML(N) and CML(Nmin) are the computational costs of the machine
learning algorithm used to generate a model with all the data and with Nmin

respectively. Then the size of the sample set is:

x =
log(0.1 ∗ CML(N)

CML(Nmin) + 1)

log(1.1)
− 1

Depending on the complexity of the machine learning algorithm used to
generate the models, we can take the floor of the above expression and limit the
total number of samples to this value.

For instance, for an algorithm whose complexity is linear with the number
of instances:

x = b
log(0.1 ∗ N

Nmin

+ 1)

log(1.1)
− 1c

For an algorithm like C4.5, its complexity is O(A∗Nlog(N))+O(N(log(N))2)
[6], where A is the number of attributes. In practice, it has been shown to be
roughly between O(N1.2) and O(N1.4). Considering O(N1.3), the number of
samples is:

x = b
log(0.1 ∗ (N

Nmin

)1.3 + 1)

log(1.1)
− 1c

Similar measures can be obtained with for different progressive sampling
schedules with other geometric factors and other machine learning algorithms.

2.3 Detecting convergence

The final part that needs to be defined is how can convergence be detected ef-
fectively and efficiently. This is still an open problem for progressive sampling.
Statistical estimation may require a complex functional form to estimate ac-
curacy. The curve shown in Figure 1 has three regions of behavior which are
difficult to capture with simple functional forms. Provost et al. [3] suggest using
linear regression with local sampling (LRLS). In their proposal they take the
last sample size ni and sample l additional points in the local neighborhood of
ni. Although they report effective convergence detection (with l = 10), it is far
from been efficient due to the additional sampling and executions of the machine
learning algorithm.

In NSC the last points used in the sampling schedule are fed to a local re-
gression algorithm. The number of points vary with respect to the behavior of
the accuracy curve. Starting with two points, the number of points remains con-
stant while the slope is increasing steeply (> 0.025), it increases one point when
it shows a more gently positive slope (0.01 < slope ≤ 0.025) in the middle
region, and it increases two points with a negative slope (< 0.0), trying to cover
oscillating behaviors. The different threshold values were obtained experimen-
tally after several tests on 11 diverse databases. One important aspect of this
strategy is that it captures the shape of the learning curve followed by machine
learning algorithms and dynamically adjustes the number of points to consider
in the local linear regression algorithm.

3 Experiments

We compared NSC against several schedules: SN , a single sample with all the
data, S0 = {Nmin}, the optimal sample size determined by experimentation,
arithmetic sampling (Sarith), and geometric sampling (Sgeom) with a geometric

factor of 2. The experiments are reported on 8 databases and averaged over ten
runs.

First, we evaluated our estimated N̂min against the real Nmin obtained after
a long experimentation process. Table 3 shows these results along with the size
of the databases (N) and their number of attributes (Atts). These databases
were taken from UCI machine learning repository [7], except for the first and
the last one. The first database is from the Mexican dependency in charge of
the main toll roads in Mexico (CAPUFE), and covers road accidents from 1995
([8]). The last database are records from an insurance company. It has 5,100,611
instances, but we only took a little more than 250 thousand in our tests due
to limitations in the computational resources. This is a clear example where
progressive sampling is needed.

Table 3. Comparison of our estimated N̂min and Nmin.

DataBase N Atts. N̂min Value of C Nmin Percentage

CAPUFE 3,209 28 1,800 0.917 1,543 86
CH 3,196 37 2,400 0.919 1,536 64
HY 3,163 26 1,900 0.923 1,522 80

Kropt 28,956 7 21,700 0.357 11,544 53
MU 8,124 28 5,500 0.606 3,703 67
SE 3,163 26 2,500 0.923 1,522 61

Ticdata Categ 5,822 86 4,500 0.702 2,710 60
Transactional 265,691 8 91,000 0.155 74,773 82

As it can be seen from Table 3, N̂min is, at least on these databases, a rea-
sonable estimate of Nmin. Our estimate is, however, only a rough approximation
of Nmin and can clearly overestimate in some cases. It can be easily shown that
if we duplicate several times the instances in the databases, our N̂min will be
much higher than Nmin. Nevertheless it has given very promising results on the
databases where it has been tested.

NSC was evaluated in terms of accuracy and execution time. Both arithmetic
and geometric sampling started with 100 initial samples as suggested in [3]. The
same local regression algorithm introduced by NSC was used to detect conver-
gence for the arithmetic, geometric and NSC sampling. This avoided sampling
10 new points in the case of geometric sampling which could artificially increase
its execution times. In terms of the size of the sampling schedule, arithmetic
sampling was stopped if it did not reach the plateau within 60% of the data
(after which the accumulated computational costs were in general much higher
than generating a model with all the data), geometric sampling was stopped if it
did not reach the plateau after analyzing 50% of the data (since the next sample
considers all the data), and NSC was stopped with the scheme described in the
last section which depends on the machine learning algorithm used. The results
are averaged over 10 runs and shown in Tables 4 and 5.

From 4 it can be seen that the accumulated times used by SNSC are compet-
itive with Sgeom and consistently smaller than Sarith. Although geometric sam-
pling performs much larger leaps than NSC, NSC starts with an initial training
set which is much closer to Nmin.

From Table 5 it can be seen that NSC has consistently higher accuracy than
arithmetic and geometric sampling.

4 Conclusions and future work

This work introduced a new progressive sampling algorithm called NSC. It was
shown experimentally to be superior to arithmetic and geometric sampling in
terms of accuracy and competitive to geometric sampling in terms of execution

Table 4. Execution times for N, Nmin, Sarith, Sgeom, SNSC .

DataBase N Nmin Sarith Sgeom SNSC

CAPUFE 22.1 11.07 25.05 27.36 12.01

CH 10.08 6.04 13.15 7.59 5.78

HY 12.07 5.33 13.6 4.24 4.85
Kropt 31.05 21.92 85.07 55.17 31.85

MU 6.52 4.56 11.63 7.87 1.51

SE 23.91 18.05 25.97 8.64 9.19
Ticdata Categ 45.89 34.98 93.98 33.26 40.23
Transactional 542.25 90.27 1,751.74 47.78 83.16

Table 5. Accuracy for N, Nmin, Sarith, Sgeom, SNSC .

DataBase N Nmin Sarith Sgeom SNSC

CAPUFE 0.97 0.97 0.96 0.95 0.97

CH 1.00 1.00 0.99 0.98 0.99

HY 0.99 0.99 0.95 0.99 0.99

Kropt 0.57 0.53 0.28 0.38 0.47

MU 1.00 1.00 1.00 1.00 1.00

SE 0.98 0.97 0.96 0.97 0.97

Ticdata Categ 0.90 0.90 0.83 0.88 0.90

Transactional 0.68 0.66 0.54 0.61 0.66

time. In NSC: (i) an initial training set is introduced, with a simple to eval-
uate measure that is reasonably close to Nmin, (ii) the sampling schedule is
more aggressive than arithmetic sampling but more conservative than geometric
sampling with a geometric factor of 1.1, (iii) a new convergence criterion which
considers the three regions of the accuracy curve and which changes dynamically
the number of points to consider in a local regression algorithm is introduced,
and (iv) the size of the sampling schedule is limited by the accumulated exe-
cution time which is determined by the inductive algorithm used to generate
models.

There are several research areas for future work. We would like to perform
more experiments on different and much larger databases. We believe that our
estimate for Nmin could be improved if we consider additional information be-
sides the size of the database. Finally, the geometric factor in NSC is fixed to
1.1. As future work, we would like to adjust it dynamically depending on the
behavior of the learning curve.

References

1. Provost, F., Kolluri, V.: A survey of methods for scaling up inductive algoithms.
Data Mining and Knowledge Discovery 2 (1999) 131–169

2. John, G., Langley, P.: Static versus dynamic sampling for data mining. In: Pro-
ceedings of the Second International Conference on Knowledge Discovery and Data
Mining, AAAI Press (1996) 367–370

3. Provost, F.J., Jensen, D., Oates, T.: Efficient progressive sampling. In: Knowledge
Discovery and Data Mining. (1999) 23–32

4. Gu, B., Liu, B., Hu, F., Liu, H.: Efficiently determining the starting sample size for
progressive sampling. In de Raedt, L., Flach, P., eds.: Proceedings of the 12th Euro-
pean Conference on Machine Learning (ECML-01), Springer-Verlag (2001) 192–202

5. Scheaffer, R., Mendenhall, W., Ott, L.: Elementary Survey Sampling. PWS Pub-
lishers (1986)

6. Witten, I., Frank, E.: Data Mining: practical machine learning tools and techniques
with Java implementations. Morgan Kaufmann, San Francisco, CA (2000)

7. Blake, C., Merz, C.: UCI repository of machine learning databases. (1998)
8. Morales, E., Heredia, D., Rodŕıguez, A.: Mining road accidents. In: Mexican Inter-

national Conference on Artificial Intelligence (MICAI-2002), LNAI 2313, Springer-
Verlag (2002) 516–525

