Learning to Fly by Combining Reinforcement Learning with
Behavioural Cloning

Eduardo F. Morales

EDUARDO.MORALESQITESM.MX

Departemento de Computacién, Tec de Monterrey - Campus Cuernavaca, Temixco, Morelos 62589, México

Claude Sammut

CLAUDEQCSE.UNSW.EDU.AU

ARC Centre of Excellence for Autonomous Systems, University of New South Wales, Sydney NSW 2052, Aus-

tralia

Abstract

Reinforcement learning deals with learning
optimal or near optimal policies while inter-
acting with the environment. Application
domains with many continuous variables are
difficult to solve with existing reinforcement
learning methods due to the large search
space. In this paper, we use a relational rep-
resentation to define powerful abstractions
that allow us to incorporate domain knowl-
edge and re-use previously learned policies in
other similar problems. We also describe how
to learn useful actions from human traces us-
ing a behavioural cloning approach combined
with an exploration phase. Since several con-
flicting actions may be induced for the same
abstract state, reinforcement learning is used
to learn an optimal policy over this reduced
space. It is shown experimentally how a com-
bination of behavioural cloning and reinforce-
ment learning using a relational representa-
tion is powerful enough to learn how to fly an
aircraft through different points in space and
different turbulence conditions.

1. Introduction

Suppose that we want to learn how to control an air-
craft in a high-fidelity simulator. This task can be
easily formulated as a reinforcement learning problem,
where we want to learn which action to perform in any
particular state to maximize the total expected reward
reflecting a successful flight. However, this problem,
whether the aircraft is real or simulated, typically has

Appearing in Proceedings of the 21°" International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
2004 by the first author.

20 to 30 variables, most of them continuous, describ-
ing an aircraft moving in a potentially “infinite” three
dimensional space, hampering the applicability of re-
inforcement learning.

Several approaches have been suggested to deal with
large search spaces, such as state abstraction, func-
tion approximation, and hierarchical decomposition.
In this paper, states are abstracted using a relational
representation (see (Morales, 2003)). This has several
advantages: it is easy to represent powerful abstrac-
tions, simplifying the learning process; domain knowl-
edge can be easily incorporated into the learning task;
and once a policy has been learned, it can be re-used,
without any further learning in another similar do-
main. Our state abstraction requires the definition of
an adequate set of relations and a set of actions that
operate on these relations. We call these sets of ac-
tions r-actions. In this paper, it is shown how r-actions
can be automatically induced from traces of flights us-
ing behavioural cloning. Since turbulence is added to
flights, the pilot is not always consistent in his/her ac-
tions and due to the characteristics of our particular
behavioural cloning algorithm, a single state can have
several applicable r-actions. Our behavioural cloning
approach, however, induces only a small subset of pos-
sible r-actions per state, from which reinforcement
learning obtains an optimal policy in a small number
of episodes. The policy learned to fly the aircraft is
tested under different turbulence conditions and it is
shown that it can be used to fly a completely differ-
ent mission including new manoeuvres not presented
in the original traces without any further learning.

Section 2 describes the characteristics of the flight sim-
ulator. Section 3 reviews reinforcement learning us-
ing a relational representation. Section 4 describes
the behavioural cloning approach used in the exper-
iments. Section 5 provides experimental results with

the flight simulator. Section 6 reviews some relevant
related work. Finally, in section 7, conclusions and
future research directions are given.

2. The flight simulator

A flight simulator based on a high fidelity model of
a high performance aircraft (a Pilatus PC-9 acrobatic
air plane) was used in our experiments. The PC-9
is an extremely fast and manoeuvrable aircraft used
for pilot training. The model, provided by the Aus-
tralian Defense Science and Technology Organization
(DSTO), is based on wind tunnel and in-flight perfor-
mance data.

The aircraft can be controlled with the ailerons, el-
evators, throttle, flaps and gear levers. The ailerons
control the roll and yaw of the aircraft. The elevators
control the pitch, the throttle controls the thrust of the
plane, the flaps are used during landing and takeoff to
increase lift and the gear is retracted during the flight.
Since the flight simulator is of an aerobatic aircraft,
small changes in control can result in large deviations
in the aircraft position and orientation. This paper
only deals with controlling the ailerons and elevators,
which are the two most difficult tasks to learn. In all
the experiments, it was assumed that the aircraft was
already in the air with a constant throttle, flat flaps
and retracted gear. Turbulence was added during the
learning process (both behavioural cloning and rein-
forcement learning) as a random offset to the velocity
components of the aircraft, with a maximum displace-
ment of 10ft/s in the vertical direction and 5ft/s in
the horizontal direction.?

The flight simulator produces a symbolic output given
as Prolog facts. It includes information about the po-
sition of the aircraft, its velocity and orientation, roll,
pitch and yaw rates, and the position of objects, such
as buildings, that appear in the visual field. A flight
is specified by a sequence of ways points. The aircraft
is required to fly through each way point with a tol-
erance of 100ft vertically and horizontally. Thus the
aircraft must fly through a “window” centred at the
way point.

3. Reinforcement Learning with
relational abstractions

Trying to directly learn in the search space produced
by the output information of the flight simulator is

! Although this is not a strictly accurate model of tur-
bulence, it is a reasonable approximation for these experi-
ments.

challenging for any reinforcement learning approach.
Even with a very gross discretization of the space it is
easy to produce millions of state-action pairs?. Also,
once a policy has been learned to achieve a particu-
lar goal or sets of goal, a new policy has to be learned
again if the goal changes its location. What we want to
learn is a single policy that can be used to fly from any
initial state to any achievable goal position in space un-
der different turbulence conditions. In this research we
use a relational representation to achieve this, where
it is easy to encode the relative position of an agent
with respect to a goal or to other objects in the en-
vironment. The main idea is to represent states as
sets of properties that can be used to characterize a
particular state and which may be common to other
states.

An r-state is a conjunction of first-order predicates.
The extension of an r-state is the set of states that are
covered by its description. Each state is an instance
of one and only one r-state. In the flight simulator,
these properties could represent the relative distance
to the target, the relative orientation of the aircraft
to the target, the current plane roll, etc. For exam-
ple, an r-state, such as distance_target(State, close)
and orientation_target(State,left), covers all the states
where the current target is close to and to the left of
the aircraft. In this paper it is assumed that the rele-
vant relations to characterize the space are previously
defined by the user.

When learning a policy by reinforcement learning, we
would like to only try those actions that are relevant
to the current state. An r-action is defined by a set
of pre-conditions and a generalized action. The pre-
conditions consist of a conjunction of predicates that
must hold for the r-action to be applicable. The gener-
alized action represents all the instantiations of prim-
itive actions that satisfy the conditions. When several
primitive actions satisfy the conditions of an r-action,
one of them is chosen randomly. An r-action can be
applied to many states, and not all the r-actions apply
to all the r-states.

For example, the following 7-action with id number
23 (first argument), for controlling the aileron (second
argument) says, if the aircraft is near its goal, the goal
is to the left, the aircraft is rolled to the right and the
roll rate is increasing, then move the stick to the far
left.

2For instance, consider a small space of 10 km? with
250m. of height. A gross discretization of 500 x 500 x 50
m. with 5 possible values for yaw, pitch and roll, and 5
possible actions per state, gives us 1,250,000 state-action
pairs.

Table 1. The rQ-learning algorithm.

Initialize Q(S, A) arbitrarily
(where S is an r-state and A is an r-action)
Repeat (for each episode):
Initialize s
S «— rels(s) % set of relations on state s
Repeat (for each step of episode):
Choose A from S using a persistently exciting
policy (e.g., e-greedy)
Randomly choose action a applicable in A
Take action a, observe r, s’
S’ «— rels(s’)
QS, 4) — Q(S, A)+
alr +ymazaQ(S', A') — Q(S, A))
S5

until s is terminal

r-action(23,aileron,State,move stick(farleft)) «—
distance_goal(State, close) A
orientation_goal(State, left) A
plane_rol(State, right) A
plane_rol_trend(State, inc) A
move_stick(farleft).

A policy consistent with our representation, which we
will refer to as an r-space policy (7g), is a scheme for
deciding which r-action to select when entering an r-
state. An r-space optimal policy (7},) is a policy that
achieves the highest cumulative reward among all -
space policies.

In the experiments reported below, we use Q-learning
in r-space. However, other reinforcement learning al-
gorithms may also be used. It is also easy to incor-
porate eligibility traces and function approximation
into our approach. Table 1 gives the pseudo-code for
the rQ-learning algorithm. This is very similar to the
Q-learning algorithm, except that the states and ac-
tions are characterized by relations. The algorithm
still takes primitive actions (a’s) and moves over prim-
itive states (s’s), but learns over r-state-r-action pairs.
This process is, in general, non Markovian, neverthe-
less, it can be shown to converge to an optimal r-space
policy, using Singh’s results (Singh et al., 1996) (see
(Morales, 2003) for a more complete description).

The aircraft is controlled by performing left-right and
forward-backward movements on the stick. We de-
cided to divide the task into two independent rein-
forcement learning tasks: (i) forward-backward move-
ments to control the elevation of the aircraft and (ii)
left-right movements to control the roll and heading of
the aircraft. We assume that in normal flight, the air-

craft is approximately level so that the elevators have
their greatest effect on elevation and the ailerons on
roll.

To characterize the states for elevation control the fol-
lowing predicates and discretized values were defined:

e distance_goal: relative distance between the plane
and the current goal. Possible values: close (less
than 100 ft), near (between 100 and 1,000 ft), and
far (more than 1,000 ft).

e clevation_goal: difference between current eleva-
tion of the aircraft and the goal elevation, con-
sidering the plane’s current inclination. Possible
values: far_up (more than 30°), up (between 5°
and 30°), in_front (between 5° and -5°), down
(between -5° and -10°), and far_down (less than
-30°).

For aileron control, in addition to distance_goal, the
following predicates and discretized values were also
defined:

e orientation_goal: relative difference between cur-
rent yaw of the aircraft and goal yaw, consider-
ing the current orientation of the plane. Possible
values: far_left (less than -30°), left (between -
5° and -30°), in_front (between -5° and 5°), right
(between 5° and 30°), and far_right (more than
30°).

e plane_rol: current inclination of the plane. Possi-
ble values: far_left (less than -30°), left (between
-5° and -30°), horizontal (between -5° and 5°),
right (between 5° and 30°), and far_right (more
than 30°).

e plane_rol_trend: current trend in the inclination of
the plane. Possible values: inc (more than +1),
std (between +1 and —1), dec (less than—1).

The ranges of the discretized values were chosen arbi-
trarily at the beginning of the experiments and defined
consistently across different variables with no further
tuning. The exact values appear not to be too rele-
vant, but further tests are needed.

The above definitions discretize our state space. In
simple domains, a suitable set of r-actions to perform
on each r-state is relatively easy to define by hand.
However, in more complex domains this is much more
difficult and it is desirable to learn the r-actions. In
this paper the r-actions were learned from traces of
human pilots using behavioural cloning.

4. Behavioural Cloning

Behavioural cloning induces control rules from traces
of skilled operators, e.g., (Sammut et al., 1992). The
general idea is that if the human is capable of perform-
ing a task, rather than asking him/her to explain how
it is performed, he/she is asked to perform it. Machine
learning is then used to produce a symbolic description
of the skill.

Flying an aircraft has been a benchmark problem in
behavioural cloning. One of the main limitations of the
original behavioural cloning approaches was that the
clones produced were not robust to variations (Bratko
et al., 1998). Several improvements have been made
in recent years to produce more robust clones, by
adopting a hierarchical decomposition of the learning
problem and adopting different machine learning tech-
niques. Some of the differences between our research
and previous work are that we learn under high turbu-
lence conditions in a sophisticated flight model (as in
(Isaac & Sammut, 2003)). Our behavioural cloning ap-
proach is incremental with an easy to interpret repre-
sentation language and we use an exploration phase to
provide robustness to the system. Furthermore, in this
research, behavioural cloning is not used as a means to
learn how to perform a control task, but as guidance
for reinforcement learning by inducing a small subset
of relevant actions per state.

A very simple behavioural cloning approach is used
to gather relevant r-actions. From a log of a human
flight, for each state description, the algorithm evalu-
ates a set of predefined predicates, such as those given
in the previous section, and observes the control ac-
tion. It the control action is an instance of an already
defined r-action that r-action is used. Otherwise a
new r-action is created with the conjunction of the
predefined predicates using the format described be-
low. This scheme can also be used in an incremental
way, where new traces can be incorporated at any time
(possibly) increasing the current r-action set (see also
(Morales, 1997) for a similar approach used in chess
end-games).

The actions were discretized as follows. The X com-
ponent of the stick can have the following values: far-
left (if stick X component value is less than -0.1), left
(if it is between -0.1 and -0.03), nil (between -0.03
and 0.03), right (between 0.03 and 0.1), and farright
(greater than 0.1). For the Y component of the stick
movements the following discretization was used: far-
down (above 0.4), down (between 0.3 and 0.4), nil (be-
tween 0.2 and 0.3), up (between 0.1 and 0.2), and farup
(below 0.1). These discretizations were based on the
actions performed by human pilots.

Elevation r-actions have the following format:

r_action(Num,el,State,move_stick(StickMove)) «
distance_goal(State,DistGoal) A
elevation_goal(State,ElevGoal) A
move_stick(StickMove).

where Num is an identification number, StickMove is
one of the possible values for stick on the Y coordi-
nate, DistGoal is one of the possible values for dis-
tance_goal, and ElevGoal is one of the possible values
for elevation_goal. For elevation there can be 75 pos-
sible r-actions (3 possible values for DistGoal, 5 for
ElevGoal, and 5 for StickMovement).

Similarly, the format for the aileron r-actions is as
follows:

r_action(Num,al,State,move_stick(StickMove)) «
distance_goal(State,DistGoal) A
orientation_goal(State,Orient_Goal) A
plane_rol(State,PlaneRol) A
plane_rol_trend(State,RolTrend) A
move_stick(StickMove).

where there can be 1,125 possible aileron r-actions.

A total of 222 r-actions (180 for aileron and 42 for
elevation) were learned after 5 consecutive mission logs
over the flight plan shown in figure 1.

4.1. Exploration Mode

The trace logs were produced with high turbulence.
Since the pilot does not always behave consistently,
several conflicting actions may be produced for the
same state description. As we are learning only from
seen cases, there may be some states descriptions not
covered by the r-actions but which may occur in other
flight manoeuvres. To compensate for this, the learned
r-actions were used to fly the aircraft to try to reach
previously unseen situations. In cases where there
were several applicable r-actions, one was chosen ran-
domly. Whenever the aircraft reached a new state
description (where there was no applicable r-action),
the system prompted the user for a suitable action,
from which a new r-action was induced. Also the user
was able to perform a different action in any state if
he/she wished, even if there were some applicable r-
actions. Exploration mode continued until almost no
new r-actions were learned, which was after 20 consec-
utive exploratory flights. In total, 407 r-actions were
learned, 359 for aileron (out of 1,125 which is ~ 32%)
and 48 for elevation (out of 75, which is = 64%). So
although, we are still learning a substantial number
of r-actions behavioural cloning helps us to learn only

Figure 1. Human trace and the trace using the learned pol-
icy with reinforcement learning and behavioural cloning on
the 8-goal mission with the maximum level of turbulence.

a subset of the possible r-actions (only one third) fo-
cusing the search space and simplifying the subsequent
reinforcement learning task (an average of 1.6 r-actions
per aileron state and 3.2 per elevation state).

The actual value of the stick position was assigned as
the mid point of the intervals, except for the extreme
ranges, as follows. For the X coordinate: farleft=
—0.15, left= —0.05, nil= —0.01, right= 0.05, and far-
right= 0.15. For the Y coordinate: fardown= 0.45,
down= 0.35, nil= 0.25, up= 0.15, and farup= 0.05.
We have left for future work the use of continuous ac-
tions

Once the state has been abstracted and the r-actions
induced, rQ-learning is used to learn a suitable policy
to fly the aircraft.

5. Experiments

In all the experiments, the QQ values were initialized to -
1,e=0.1,vy=0.9,a=0.1, and A = 0.9 (since we used
eligibility traces). The experiments were performed on
the 8 goals mission shown in figure 1. If the aircraft
increases its distance to the current goal, after 20 time
steps have elapsed from the previous goal, it is assumed
that it has passed the goal and it changes to the next
goal.

The following experiments were performed:

1. Positive reinforcement (+20) was given only when
crossing a goal within 100 ft. with negative re-
wards otherwise (-1). In case the aircraft crashed
or got into a state with no applicable r-action,
a negative reward was given (-10). The experi-
ments were performed with the maximum level of
turbulence.

2. Same as (1) without turbulence.

3. Same as (1) but only with the r-actions learned

1400

T
BC+RL —+—

No turbulence ---x---

Init.r-actions ------

FaN All r-actions
\ x_ Al r-actions+guidance —-#-—

x

ok

1200 |
1000 | X 4

800 E

Success rate

600 |- [/ |

W Bk

.
) 1000 2000 3000 4000 5000 6000 7000
Episodes

Figure 2. Learning curve for aileron for the different exper-
imental set-ups while training.

2500

T
BC+RL —+—

No turbulence ---x---

Init. r-actions ------

ra All r-actions
N X Allr-actions+guidance -

x

ok

2000

1500

Success rate

1000

.
) 1000 2000 3000 4000 5000 6000 7000
Episodes

Figure 3. Learning curve for elevation for the different ex-
perimental set-ups while training.

from the original traces, i.e., without the explo-
ration stage (222 r-actions in total).

4. Same as (1) but we automatically generate all the
possible r-actions per state (5 with our discretiza-
tion scheme) with 1200 r-actions in total.

5. Same as (4) but we use the original traces to
“seed” Q-values, providing initial guidance.

Figures 2 and 3 show the learning curves of the above
experiments for aileron and elevation respectively. In
particular, how many times the aircraft crosses suc-
cessfully the eight goals with maximum turbulence (ev-
ery 500 flights) for aileron and elevation control. We
continued the experiments for 20,000 episodes without
any clear improvements in any of the experiments after
the first 3,000 episodes.

As can be seen from the figures, without focusing the
search with behavioural cloning, reinforcement learn-
ing is unable to learn an adequate strategy in a reason-
able time. In complex environments, spurious actions

Table 2. Performance of the learned policy of experiment
1 after 1,500 episodes with different levels of turbulence on
the eigth goals mission.

Turbulence (m/s)/Tolerance

Stage 0/ 0/ 5/ 5/ 10/ 10/

100 200 100 200 100 200
Goall 0 100 31 75 49 89
Goal2 100 100 16 41 26 46
Goal3 0 100 53 62 51 70
Goal4 0 0 23 35 27 46
Goald 0 100 57 91 59 95
Goal6 0 0 16 33 24 47
Goal7 100 100 47 74 33 66
Goal8 0 100 35 o8 45 61
Aver. 25 75.0 34.75 58.625 39.25 65.0

can very easily lead an agent to miss the goal. In this
particular domain, going away from the current goal
at some intermediate state can lead the agent into a
situation where it is impossible to recover and reach
the goal without first going away from the goal. The
exploratory phase, where new r-actions were learned
using random exploration, also proved to be useful as
the initial traces substantially biased the learning pro-
cess and limited its applicability.

The policy learned in experiment 1 after 1,500 flights
was able to fly the whole mission successfully. Its ro-
bustness was tested under different turbulence condi-
tions. Figure 1 shows a human trace of the mission
and the trace followed by the learned policy. Table 2
shows the results, averaged over 100 trials, of flying
the learned policy on the mission with different lev-
els of turbulence. Two columns are shown per turbu-
lence level, one with percentages passing the way point
within 100 ft. (which was used in the reward scheme)
and one with a 200 ft. The important point to note
is that the aircraft can recover even if it misses one or
more goals, and although it occasionally misses some
of the goals, it gets quite close to them, as can be seen
from figure 1.

Table 3 shows the average performance of the learned
policies with and without turbulence (experiment 1
after 1500 episodes and experiment 2 after 3,000
episodes) using the r-actions learned with our be-
havioural cloning approach. It also compares the per-
formance of a random selection of the r-actions learned
with behavioural cloning and a random selection of all
the possible r-actions.

The learned policies were then tested on a completely

Table 3. Average performance of the learned policies
with/without turbulence and performance of a random se-
lection of the learned r-actions and of all the possible r-
actions.

Turb./ Policy Policy Rand. Rand. all
Toler. w/turb. no/turb. r-actions r-actions
5/100 34.75 30.25 16.25 1.125
5/200 58.625 56.00 38.00 1.875
10/100 39.25 26.75 16.50 0.625
10/200 65.00 50.50 38.875 2.00

,,,,,,
Co———EE NS Og T

0 -3000

1000
20003000 4000 o5 6006 %

Figure 4. Flight path trace for a human and for the learned
policy on a new mission with 4 goals.

different mission, consisting of four way points. The
intention was to try manoeuvres not previously seen
before. The new mission included: a right turn®, a
sharper left climb turn of what it has previously seen
before, another quick right turn, and a sharp descend-
ing right turn.

Figure 4 shows a human trace and the trace using the
previously learned policy (experiment 1) on the new
mission with the maximum level of turbulence. The
learned policy of the previous mission is clearly able
to fly the aircraft on a completely new mission. Ta-
ble 4 shows the performance of the policy on this new
mission with different turbulence levels averaged over
100 trials. Table 5 shows the average performance of
the learned policies with and without turbulence us-
ing the r-actions learned with our behavioural cloning
approach on the new mission. It also compares the per-
formance of a random selection of the r-actions learned
with behavioural cloning and a random selection of all
the possible r-actions.

6. Related Work

State aggregation clusters “similar” states together
and assigns them the same value, effectively reducing

3The training mission involved only left turns.

Table 4. Performance of the learned policy on a different
mission with different levels of turbulence.

Turbulence (m/s)/Tolerance

Stage 0/ 0/ 5/ 5/ 10/ 10/
100 200 100 200 100 200

Goall 0 100 66 99 74 100
Goal2 100 100 17 39 29 4
Goal3 100 100 38 70 46 70
Goald 0 100 51 739 58
Aver. 50 100 43 T71.25 47 68

Table 5. Average performance of the learned policies
with/without turbulence and performance of a random se-
lection of the learned r-actions and of all the possible r-
actions.

Turb./ Policy Policy Rand. Rand. all
Toler. w/turb. no/turb. r-actions r-actions
5/100 43.00 9.25 17.25 1.75
5/200 71.25 29.75 44.75 5.25
10/100 47.00 12.75 18.00 0.75
10/200 68.00 21.25 46.75 3.75

the state space. Work on tile-coding, Kanerva cod-
ing, and soft-state aggregation are some of the repre-
sentatives of this approach. We also do state aggre-
gation, but we use a relational representation, where
it is easy to define powerful abstractions, to incorpo-
rate domain knowledge, and the learned policies can
be directly used to other similar domains without any
further learning.

Relational Reinforcement Learning (RRL) (Dzeroski
et al., 2001) also uses a relational representation for
states and actions, however the main focus has been
on approximating value functions with a relational rep-
resentation. We are not trying to approximate a value
function with a relational representation but rather,
use a relational representation to structure and ab-
stract the search space and then approximate a value
function over this abstracted space. This makes our
learning task much simpler and allows us to re-use
previously learned policies more effectively. Also, our
combination with behavioural cloning simplifies the re-
inforcement learning task as it provides a bias towards
useful actions.

Traces from humans or possibly some available poli-
cies have been used by other researchers to provide
initial guidance to reinforcement learning (e.g., (Ryan,
1998; Smart & Kaelbling, 2000; Driessens & DzZeroski,

2002)). Our traces are used to learn a subset of ac-
tions per state. We also tried seeding initial Q values
with all the possible r-actions using the original human
traces, but we did not observe any clear improvements.

In (Ryan, 1998; Ryan, 2002), the user manually en-
codes a set of teleo-reactive operators (or TOPs), de-
scribed using a relational representation. These are
used by a planning system to produce sequences of
subgoals at a high abstraction level. In our case, we
only provide a set of relations, and learn the r-actions
from logs of human traces. When applied to the flight
simulator, they reported very poor results: less than
30% of successful flights with a large proportion of
crashes (46%) in their best performances.

In (Ng et al., 2004) a reinforcement learning approach
is decribed that learns how to fly an autonomous heli-
copter. Data from human pilots is used to fit a model
of the helicopter’s dynamics using locally weigthed re-
gression and a reinforcement learning algorithm based
on a Monte Carlo approach which pre-samples all the
random numbers used in the stochastic simulation to
find a good policy estimate. A careful selection of
state variables and potential-based shaping rewards
were used to learn how to hover and perform partic-
ular maneuvers. Maneuvers need to be specified by
a set of contiguous points to follow. The human per-
formance is used quite differently in this work com-
pared with ours. Ng and Bagnell use data from hu-
man flights to constrict a model of the plant whereas,
we use the data to constrain reinforcement learning.
Our symbolic state abstraction approach in conjunc-
tion with behavioural cloning gives us a much simpler
state-action space, although our actions are discrete.
Also our maneuvers are specified just with positions of
way points in space.

In (Isaac & Sammut, 2003) a robust behavioural
cloning approach is described to learn how to fly. It
is, to our knowledge, the only other work that uses a
high fidelity flight model with different turbulence lev-
els. The approach assumes that a flight should have a
constant climb rate and turn rate to achieve a goal and
divides the task into two parts: (i) given a goal position
learn the value of the turn and climb rates for the air-
craft to achieve the goal, and (ii) given a turn/climb-
rate learn which actions to perform to achieve that
particular turn/climb-rate. Both parts are learned us-
ing model trees, and in particular, the second part
induces PID controllers at the leaves. Similar to our
approach, once their system learns to perform particu-
lar manoeuvres, it can be used to fly different missions.
Besides the obvious differences in the machine learn-
ing approaches, one of their advantages is that they

can produce smoother flights as they use regression
models, whether our behaviour is more “jumpy” due
to the discretization used in the actions of the stick.
However, to produce an adequate clone, they require
an expensive wrapper to set up adequate parameters
for the learning algorithms. Our research shows that
reinforcement learning can be used in a complex con-
trol task and achieve comparable performance to the
state-of-the-art behavioural cloning approach.

7. Conclusions and Future Work

In this paper we have shown how reinforcement learn-
ing can be used to solve a complex control problem.
The strategy used is to define relations to abstract the
search space, use logs of human traces to learn a subset
of relevant actions, and use reinforcement learning over
this abstracted and reduced search space to learn an
optimal policy. The learned policy is shown to perform
reasonably well under different turbulence conditions
and on different missions.

There are two key elements that contributed to the
success of this research: (i) a relational representa-
tion to produce powerful abstractions and descriptions
including the relative position of the agent and (ii)
the use of a behavioural cloning approach with an ex-
ploration phase to learn a subset of the possible ac-
tions per state, substantially reducing the reinforce-
ment learning task.

There are several future research directions that can
be followed. An obvious initial step is perform a
more careful selection of the discretization ranges for
the state variables. Another possibility is to incorpo-
rate regression models into the r-actions to produce
“smoother” flights. We would like to explore how to
learn new relations using an ILP algorithm.

Acknowledgments

The authors would like to thank Andrew Isaac for his
help and feedback during the development of this work.
This work was developed while the first author was on
sabbatical leave at UNSW and supported by a grant
from Conacyt (Mexico) and the ARC Centre of Excel-
lence for Autonomous Systems (CAS).

References

Bratko, I., Urbancic, T., & Sammut, C. (1998). Be-
havioural cloning: phenomena, results and prob-
lems. automated systems based on human skill.
IFAC Symposium. Berlin.

Driessens, K., & Dzeroski, S. (2002). Integrating ex-
perimentation and guidance in relational reinforce-
ment learning. Proc. of the nineteenth international
conference on machine learning (pp. 115-122). Mor-
gan Kaufmann.

Dzeroski, S., Raedt, L. D., & Driessens, K. (2001). Re-
lational reinforcement learning. Machine Learning,
43(2), 5-52.

Isaac, A., & Sammut, C. (2003). Goal-directed learn-
ing to fly. Proc. of the Twentieth International Con-
ference on Machine Learning (pp. 258-265). AAAI
Press.

Morales, E. (1997). On learning how to play. In
van den H. Herik and J. Uiterwijk (Eds.), Advances
in computer chess 8, 235-250. The Netherlands:
Universiteit Maastricht.

Morales, E. (2003). Scaling up reinforcement learn-
ing with a relational representation. Proc. of the
Workshop on Adaptability in Multi-agent Systems
(AORC-2003) (pp. 15-26).

Ng, A. Y., Kim, H. J., Jordan, M. 1., & Sastry, S.
(2004). Autonomous helicopter flight via reinforce-
ment learning. Advances in Neural Information Pro-
cessing Systems 16. Cambridge, MA: MIT Press.

Ryan, M. (1998). Rl-tops: An architecture for modu-
larity and re-use in reinforcement learning. Proc. of
the Fifteenth International Conference on Machine
Learning (pp. 481-487). San Francisco: Morgan
Kaufmann.

Ryan, M. (2002). Using abstract models of behaviours
to automatically generate reinforcement learning hi-
erarchies. Proc. of the Nineteenth International
Conference on Machine Learning (pp. 522-529). San
Francisco: Morgan Kaufmann.

Sammut, C., Hurst, S., Kedzier, D., & Michie, D.
(1992). Learning to fly. Proc. of the Ninth Inter-
national Conference on Machine Learning (pp. 385—
393). Morgan Kaufmann.

Singh, S., Jaakkola, T., & Jordan, M. (1996). Rein-
forcement learning with soft state aggregation. Neu-
ral Information Processing Systems 7. Cambridge,
MA: MIT Press.

Smart, W., & Kaelbling, L. (2000). Practical rein-
forcement learning in continuous spaces. Proc. of
the International Conference on Machine Learning
(pp. 903-910). Morgan Kaufmann.

