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Abstract. We explore the impact of including hue in a feature con-
struction algorithm for colour target detection. Hue has a long standing
record as a good attribute in colour segmentation, so it is expected to
strengthen features generated by only RGB. Moreover, it may open the
door to infer compact feature maps for skin detection. However, contrary
to our expectations, those new features where hue participates tend to
produce poor features in terms of recall or precision. This result shows
that (i) better features can be constructed without the costly hue, and
(ii) unfortunately a good feature map for skin detection is still evasive.

1 Introduction

It is well-known that pixel based skin detection plays an important step in several
vision tasks, such as gesture recognition, hand tracking, video indexing, face
detection, and computer graphics, see e.g. [3, 4, 9, 14, 23, 25]. Although colours
may vary due to ambient light, brightness, shadows or daylight, skin detection
is computationally tractable. Practitioners had traditionally used just existing
off-the-shelf colour models, like HSV, YUV, raw RGB or normalised RGB, which
however often yields poor precision3 to upper layers in their vision systems.

We know there is no single colour model suitable for skin detection [6], and
that traditional models are not so useful [1, 21] for this task. Fortunately, machine
learning community had developed the concept of attribute construction, which
in this context means to override all existing attributes and infer new ones for
the task at hand. However, which attributes should be used to infer a good model

for skin detection?

We present a computational study where R, G, B and hue participate within
an attribute construction approach. Guided by existing literature, we expect a
clear improvement over features generated with only R, G, and B. Hereafter, we
shall refer to “attribute” as raw input variables, and “feature” to any combina-
tion of attributes.

3 Precision = TP
TP+FP

× 100%, where TP = true positives; and FP = false positives,
where the prediction is incorrectly set as skin
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This report will review, in section 2, the crossroads of colour detection and
machine learning. Then, in section 3, the main premise and expectations are
presented. Two influential tools from machine learning, attribute construction
and attribute selection, are described in sections 4 and 5, respectively. Experi-
mental settings and findings appear in section 6, while conclusions to this work
are found in section 7.

2 Improving colour detection

Although eliminating the illumination components has been a popular practice
for skin detection, it has not really improved our vision systems. What is even
worst, it has been reported that this practice actually decreases the separability
in some models [21]. The other way around, adding components in a stepwise
procedure have the same problems. For instance, what you gain with Cr or hue
is lost by adding its second element, Cb and Saturation, respectively. In this
direction there are some bad news, see e.g. [1, 21], that many practitioners have
sadly noticed, no matter which existing colour model we use, the separability of
skin and non-skin points is independent of the colour model employed.

Of course, we may argue that a long term solution would be to look at
different wavelengths. But, for the time being, red-green-blue response prevails
as the standard input value. Thus, if existing general colour models do not
help for target detection one may be tempted to create synthetic ones. Say,
these may not be reversible, not useful for other tasks, nor adding anything new
to Colour Science. Of course, those synthetic models have not to be created
by guessing combinations in unsound way but with a systematic procedure. In
general, any feature space tuned for this purpose will hereafter be cited as “skin
colour model”.

2.1 Learning and colour

Since our raw attributes are not very helpful for skin and non-skin discrimination,
we may therefore transform RGB into a nonlinear mapping. Projecting RGB
into higher spaces may result in easier decision boundaries. A line in these new
spaces is in fact a non-linear one in the original space. It is known from Statistical
Learning Theory that a hypothetical polynomial of sufficiently high degree do
approximate any arbitrary decision boundary, no matter of how complex it is.
Nevertheless, for our purposes two practical questions arise, (1) how do you
create such a non-linear features in a constructive manner, and (2) how do you
get only few of them to describes a good decision boundary.

Two recent steps have been done to bring machine learning approaches to
help colour detection [5, 29]. While in both cases colour targets were fed into a
decision tree induction system (c4.5 [19]), the main difference is the attribute
construction step. In [29] the RGB stimulus was directly transformed into hue,
saturation, and average values of R, G, and B. Resulting decision trees use those
attributes, e.g. moment of inertia, to classify colour targets.
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Since their work uses pre-existing models, it is more in the sense of the
Michalski’s view of pattern discovery in computer vision [15]. However, under this
idea, we assume that the current description language is good enough to describe
our colour targets. A different path was adopted in [5], and no pre-existing
models were assumed. Then, as their induction systems progress, new and more
specific features are constructed. In each cycle, current features are passed to
an attribute selection step, and only those which exhibit good performance are
allowed to continue in the process. Although both approaches are bit costly
in terms of computing time (e.g. attribute selection and tree induction), it is
worthwhile to explore machine learning ideas to automate colour detection.

3 Why not hue?

As mentioned before, authors in [5] did use RGB to create new features. However,
we may criticise why they did not include hue in their initial set. Hue has a long
standing record of good colour attribute. Moreover, it has been recently assessed
as one of the most influential attributes in a survey [6]. Thus, it seems quite
normal to include hue and propose two questions:

1. does Hue contribute to infer better colour spaces for skin detection?
2. whether or not is possible to infer a 2D skin space.

The intuition behind adding hue is far clear. Hue may be used as a short-
cut to get more compact features. It is an obvious candidate for any induction
system. Many other colour attributes are easily derived as a linear combination
of RGB, meanwhile Hue is quite more complex to infer. By allowing hue to
participate in the attribute construction, one may expect powerful features with
better recall, precision and success measures 4. Further, as a by-product, one may
therefore expect to find out a good 2D model. Many current approaches to skin
detection use three components (e.g. [5, 6, 14]), or a 2D where the illumination
one has been just removed.

4 Attribute construction

Most constructive induction systems use boolean combinations of existing at-
tributes to create new ones, e.g. [18, 20, 27, 28]. Say, their constructive operators
can form conjunctions and/or disjunctions of attributes (e.g. [11, 12, 18, 20]) or
even use more sophisticated operators such as M-of-N [16] and X-of-N [27]. M-
of-N answers whether at least M of the conditions in the set are true. X-of-N
answers how many conditions in this set are true. Although a large number
of studies have been devoted to boolean combinations of attributes (e.g. [28]),
there are very few systems that use arithmetic combinations of real-value ones,

4 Recall = TP
TP+FN

× 100%, where TP = true positives.

Success rate = TP+TN
TP+FP+TN+FN

, where FN = false negatives.
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which normally occur in vision. Most notably is the Bacon system [13] which
searches for empirical laws relating dependent and independent variables. Bacon
finds increasing and decreasing monotonic relations between pairs of variables
that take on numeric values and calculates the slope by relating both terms to
create a new attribute. Once a functional relation between variables is found,
it is taken as a new dependent variable. This process continues until a complex
combination is found relating all the primitive attributes.

In this paper we start with hue and the three basic color components RGB in
a normalised form, and a simple set of arithmetic operators to produce a suitable
model for pixel based colour detection. Once a new set of attributes is produced,
a restricted covering algorithm (RCA, [5]), is used to construct single rules of no
more than a small number of easy to evaluate terms with a minimum accuracy.
We are interested in inducing simple models as they are relevant to applications
which require fast response times, such as, semi-automatic calibration of colour
targets, gesture recognition, face and human tracking, etc.

The general approach followed in this paper for constructive induction is
shown in Table 1. The idea, is to start with some primitive attributes and a set
of constructive operators, create a new representation space, run an inductive
learning algorithm, and select the best attributes of this new space. This process
continues until a predefined stopping criterion.

CurrentAttrib = original attributes, i.e. { r
r+g+b

,
g

r+g+b
, b

r+g+b
, Hue}

Operators = set of constructive operators, i.e. {+,-,*,/}
UNTIL termination criterion

• NewAttrib = CurrentAttrib ∪ new attributes
constructed with Operators on CurrentAttrib

• Run a machine learning algorithm on NewAttrib
• CurrentAttrib = Select the best attributes

from NewAttrib

Table 1. General constructive induction idea. (i) the machine learning algorithm, (ii)
the constructive induction module, and (iii) an evaluation component.

The constructive induction algorithm starts with hue, r
r+g+b

, g
r+g+b

, and
b

r+g+b
. All of them were used to create new attributes by seven constructive

operators: A + B, A ∗B, A−B, B −A, A/B, B/A, and A2, where A and B can
be any pair of distinct attributes.

5 Attribute selection

While it is relatively easy to create new features, their evaluation is a very time
consuming step. It is the internal loop in these induction systems, say, every new
hypothesis or features have to be assessed in their goodness to discriminate the
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target classes. There are basically two main approaches in attribute selection:
filters and wrappers. Filters rank variables independently of their later usage.
Conversely, wrappers guide their attribute selection process specifically for the
machine learning algorithm employed. Generally speaking, filters are faster than
wrappers. However, it is commonly assumed that wrappers do offer better pre-
dicting performance, i.e. the selected subset is tightly tuned for the machine
learning algorithm and thus for the predictor too. Additional information on
attribute selection can be found in one recent survey [8], and a special issue on
Variable and Feature Selection in [10].

In this paper we adopt a wrapper approach using an information gain heuris-
tics. The resulting representation is a tree-like structure, generated by RCA,
which is chosen because of two main advantages: (i) simplicity in both represen-
tation and computing requirements, and (ii) able to produce a range of models
for the target class. The algorithm is briefly described within the next paragraphs.

5.1 RCA

The general strategy of RCA is to favour attributes which cover a large number
of true positives and attributes with small number of false positives. We are
interested in single rules, so we shall talk about the total number of true positives
(TTP ) which will be used to increase the measure of recall and the total number
of false positives (TFP ) which will be used to increase precision.

Since we are dealing with real-value attributes, RCA creates binary splits
using an information gain heuristics (as C4.5 does, [19]). RCA considers two
possible attributes in parallel when constructing rules. On its first cycle, RCA
constructs two rules which have as LHS the attribute with larger TTP in one
rule and the attribute with larger TTP −TFP 2 in the other rule. The following
cycle produces two rules out of each original rule (4 in total) following the same
criterion, again adding to the LHS of each rule one attribute with large coverage
and one which is heavily penalized by the number of misclassifications. This pro-
cess continues until the rules produced have a certain number of predetermined
terms. The upper bound of rules to be produced is 2n, where n is the number of
terms on each rule. RCA builds 2n rules in parallel aiming for a large coverage
with small errors on the same example set. This idea handles two objectives,
thus it produces a range of alternatives, potentially from high recall-poor preci-

sion to high precision-poor recall, and balanced intermediate states, of course.
An overall description of RCA is given in table 2.

5.2 Connection to other methods

The idea of improving features on-the-fly is not new. To our best knowledge, it
appeared in the MOLFEA project, an inductive database system, e.g. [11, 12].
However, they use a boolean conjunction of predefined attributes to generate new
ones. We share the aim to generate features not in advance but “on demand”,
by detecting the need for a representation change, but nevertheless we do use
arithmetic instead of boolean combinations.
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For each class C

Let E = training examples
Let N = maximum number of terms per rule
Create a rule R(0) with empty LHS and class C

Let depth D = 1
Until D = N do

For each attribute A create a split (SpA)
with greater information gain

For each existing rule R(D − 1)
create two new rules (R1(D) and R2(D)) by
adding to its LHS, a Spi with larger TTP

(R1(D)) and a Spj with larger TTP − TFP 2

(R2)
Let D → D + 1
For each Ri(D) continue with its own

covered examples from E

Output all Ri(D)

Table 2. Overall description of RCA. Two intermixed criteria to induce rules with
complementary attributes.

Other works [17, 22] did use genetic programming as a preprocessing step.
They construct new features from the initial dataset, generating “potentially”
useful features in advance. A genetic algorithm is then used to control the at-
tribute selection step. Here, a binary chromosome represents attributes, say, the
0/1 or (false/true) slot means whether the corresponding attribute does par-
ticipate in the wrapper process. This idea does not introduce any bias in the
feature construction in a class-depending or goal-driven fashion, as previously
mentioned.

Although an open avenue would be to use other (e.g. evolutive) ideas for
attribute construction and selection, which may suits well in this context, we
feel that our proposed technique is rather straightforward (see table 2) and avoid
unnecessary costly operations.

6 Experimental settings and results

We create ten subsets with skin and non-skin elements. The dataset is described
in [6], which is based on real skin images, from different input sources, illumi-
nation conditions and races, with no photographic manipulation. For each data
set, we selected 33000 skin and 67000 non-skin elements uniformly at random.
We perform 10-fold cross validation in the attribute selection step, the inner
loop. The covering algorithm, RCA, wraps c4.5 for attribute selection, which
ran with the usual pruning and confidence thresholds. In addition, we request a
minimum number (500) of elements per leaf to force fewer leaves. Final results
of each induced model were calculated on large and balanced unseen data: 12.2
million points for each skin and non-skin targets.
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Table 3 shows the best bi-dimensional models found by RCA. RCA is de-
signed in such a way that one feature can appear twice in the same branch.
Hence, it introduces a double threshold. Only two leaves were generated with
this concept. To our surprise, the best precision on both 2D and 3D models is
the first model in table 3. Normally, what is expected is a high recall, but in this
case gb

(r+g+b)2 and hue contributed to achieve 92.6% of precision.

colour models (two components) recall precision success rate
(%) (%) (%)

gb

(r+g+b)2
h 80 92.6 86.3

gb

(r+g+b)2
h∗(r+g+b)

b
97 74.8 82.7

Table 3. Only two models had two variables, yet one of them has the higher precision
among all experiments.

The same features in table 3 were selected in other branches, as shown in
first two lines of table 4. Interestingly, better models were found by removing
these double thresholds and selecting a new variable instead. Thus, the overall
effect does eliminate a threshold on gb

(r+g+b)2 and increases the recall. We should

be critic with the second row in table 4, in which recall is rather high. It is not
a surprise since even a plain ratio like r

g
can achieve more than 95% in recall,

but at expenses of poor precision, as in this case. Interesting point should have a
balance in both recall and precision, which in turn will lead a good success rate.

We should compare tables 3 and 4 to state of the art models, shown as table 5.
An attribute construction and selection approach appears in [5], and its finding
is listed in table 5-top. The second row (from [6]) shows a model found by a
stepwise forward selection method, and consists of hue, GY and Wr , which are
defined as:

GY = −0.30 ∗ r + 0.41 ∗ g − 0.11 ∗ b

Wr = (
r

r + g + b
−

1

3
)2 + (

g

r + g + b
−

1

3
)2

Unfortunately, features like Wr are very difficult to infer with the existing
attribute construction scheme. Third row in table 5 shows a pragmatic and well-
known approach, so called Skin Probability Map (SPM), working on raw RGB
values. The SPM has a threshold variable which is tuned for this comparison.
The learning procedure used all ten subsets, instead of only one. This is somehow
an unfair comparison, but that is why SPMs work, see [6, 14], e.g. skin in RGB
has a very sparse distribution. As a common practice in SPMs, we used the God
given parameter [14] of 32 equally sized histogram bins, i.e. 323.
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color model (three components) recall precision success rate
(%) (%) (%)

gb

(r+g+b)2
h r

b
95.6 88.6 91.7

gb

(r+g+b)2
h∗(r+g+b)

b
r
g

98.2 77.9 85.2

h∗(r+g+b)
b

r
g

h 98.1 82.9 88.9

h gb

(r+g+b)2
rg

(r+g+b)2
98 78.8 85.3

h gb

(r+g+b)2
b−r

(r+g+b)
98 64.1 72

h gb

(r+g+b)2
h∗(r+g+b)

g
98.1 65.3 73.4

h r
b

r−b
(r+g+b)

94 90.5 92.4

Table 4. Best features generated by the attribute selection procedure. Only the last
row exhibits a well-balanced performance.

other models (three components) recall precision success rate
(%) (%) (%)

r
g

rb
(r+g+b)2

rg

(r+g+b)2
93 91.5 92.2

h GY Wr 93.2 92.1 92.6

SPM on raw RGB 95.8 77.3 91

Table 5. State of the art models: (top) Automatic feature construction from RGB,
(middle) Step-wise forward selection on several colour components. (bottom) Skin
Probability Map, which is extremely fast.

6.1 Discussion

With those results on hand we may come back to the original questions. How
does the hue contribute to new colour features? Essentially, there is no real
impact of including hue in new features.

Although some good features have been found, we expected better results,
say, by consistently exceeding a mark of 90% in both recall and precision. Two
existing models, shown in table 5 do achieve this mark, and one of them does
not use hue at all. Only one model in table 4 (last one, top to bottom), exhibit
competitive results. And, at best, it is comparable to table 5-top, which does not
use hue and thus faster to compute. Moreover, some doubts may arise with the
inclusion of r

b
, a noisy feature, which nevertheless was selected in two models.

Although promising features appear in table 3, a good enough 2D skin space
is unfortunately still evasive. The success of this study relies in creating strong
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features, which were not produced using hue. In fact, the attribute selection

shows a strong bias to h∗(r+g+b)
g

and h∗(r+g+b)
b

. Nonetheless, their associated
models show regular to poor performance.

7 Conclusions

We report an attribute construction experience with the aim of finding good
colour features for pixel based skin detection by including hue in the initial
subset. Unfortunately, with our methodology, we found that hue has a minor
contribution in novel features. Moreover, only one model is at best comparable
to the existing literature in this field, which does not use hue. Thus, it indicates
that (i) better features may be constructed without the costly hue, and (ii)
unfortunately a 2D skin colour model is still evasive.

Skin colour processing is an active field. We encourage other people to verify
and extend this line by including different features (e.g. texture) in the attribute
construction scheme or, perhaps, developing novel attribute selection methods
that overcome the initial bias to terms with hue.
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