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Abstract. Reinforcement learning has been repeatedly suggested as
good candidate for learning in robotics. However, the large search spaces
normally occurring robotics and expensive training experiences required
by reinforcement learning algorithms has hampered its applicability. This
paper introduces a new approach for reinforcement learning based on
a relational representation which: (i) can be applied over large search
spaces, (ii) can incorporate domain knowledge, and (iii) can use pre-
viously learned policies on different, although similar, problems. In the
proposed framework states are represented as sets of first order relations,
actions in terms of those relations, and policies are learned over such gen-

eralized representation. It is shown how this representation can capture
large search spaces with a relatively small set of actions and states, and
that policies learned over this generalized representation can be directly
apply to other problems which can be characterized by the same set of
relations.

1 Introduction

Robots are becoming part of our every day life. Their full incorporation requires
an increased flexibility to learn and adapt from their interaction with their envi-
ronment. One of the most active research areas in artificial intelligence devoted
to learning through interaction with the environment is reinforcement learning
[4, 11]. Reinforcement learning (RL) is about learning how to map situations
to actions so as to maximize a numerical reward. The learner is not told what
actions to take and must discover, by trial and error, the actions that produce
the greatest reward.

Despite recent advances, there are still not completely satisfactory solutions
for dealing with large search spaces, easily incorporating domain knowledge,
and transferring previously learned policies to other related problems. This is
particularly relevant to robotics where large search spaces and expensive training
experiences are normally needed.

In this paper, it is argued that a richer and more general representation can
advance in the solutions of these problems and is indeed needed to tackle more
challenging problems as those encountered in robotics.
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Fig. 1. Passing a ball forward.

Suppose we want to learn a policy to play soccer with robots. If the space
is discretized into 10 × 10 cm., even for a field of 5 × 10 mt. and two player
a side, there are roughly 6.25 × 1010 possible states (assuming each robot can
occupy only a single square). On top of that, we need to consider all the possible
actions for each robot, thus learning directly is this representation is just too
slow. In this domain, however, there are many states which are essentially the
same, in the sense that they all share the same set of relations. For a robot, it
is not so much important its exact location but the relations that hold between
the robot and its environment. For instance, whenever an opponent robot is in
front of the robot with the ball, a robot of the same team is slightly forward
to one side, and there are no other robots around, a good action is to pass the
ball to a position in front of that robot (see figure 1). Assuming this action
can be accurately perform, it is applicable to all positions where the previously
mentioned relations hold between the robots regardless of their exact location. In
fact, it is applicable to fields of different sizes. It should be clear that a relational
representation can produce useful state abstractions. In this paper it is shown
how it can be used to produce useful policies when several possible actions are
applicable to a particular state, and that the learned policies can be directly
transfer to other, although similar, problems where the same relations apply.

This paper is organized as follows. Section 2 describes in more detail the pro-
posed relational representation. Section 3 describes how to perform reinforcement
learning over this representation. Section 4 provides experimental results, while
section 5 analyses the perspectives of the approach for robotics. Finally, section
6 concludes and suggests future research directions.

2 Relational Representation

The main idea behind this research is to represent states as sets of properties
that can be used to characterize a particular state and which may be common
to other states. An r-state is a state described by a set of first-order relations.
Each state is an instance of one and only one r-state. With robots these relations
could be goal in front, team robot to the left, opponent robot with ball, etc. An r-

state can cover a large number of states (i.e., all the states where the relations
described in the r-state hold). In this paper it is assumed that the relations are



previously defined by the user (other approaches to learn such relations can be
seen in [6, 7]).

Once a set of relations has been defined, the search space in the relational
space is completely defined. Considering that relations can also occur in their
negated form, for N relations there are potentially 2N r-states. Fortunately, not
all the combinations of the relations are possible, and in general huge reductions
in the number of states and actions can be achieved.

The set of actions also use a first-order relational representation. Rather than
trying to apply all the available actions, we want to apply only relevant actions,
i.e., those which apply when particular relations in the state description hold
and which, possibly, enforce other relations to hold. An r-action is defined by a

set of pre-conditions, a generalized action, and possibly a set of post-conditions.

The pre-conditions are conjunctions of relations that need to hold for the
r-action to be applicable, and the post-conditions are conjunctions of relations
that need to hold after a particular primitive action. The generalized action
represents all the instantiations of primitive actions which satisfy the conditions.
When several primitive actions satisfy the conditions of an r-action, one of them
is chosen randomly. An r-action can be applied to many states, and as expected,
not all the r-actions apply to all the r-states.

For an r-action to be properly defined, it must satisfied the following con-
dition: If an r-action is applicable to a particular instance of an r-state, then it

should be applicable to all the instances of that r-state.

3 Reinforcement Learning on R-Space

For any Markov decision process, the objective it to find the optimal policy, i.e.,
one which achieves the highest cumulative reward among all policies. The main
purpose to learn in an r-space is to reduce the size of the search space, and take
all the advantages of a richer representation language. However, in the r-space

there is no guarantee that the defined r-actions are adequate to find an optimal
sequence of primitive actions and sub-optimal policies can be produced. We can
however, defined optimality in terms of an r-space.

A policy consistent with our representation, which we will refer to as an r-

space policy (πR), is a scheme for deciding which r-action to select when entering
an r-state. An r-space optimal policy (π∗

R
) is a policy that achieves the highest

cumulative reward among all r-space policies.

The expected reward, in this case, is the expected average reward over all
the instances of the r-state. When several r-actions are applicable to a particular
r-state, the best policy will prefer the r-actions which lead to an r-state with
the best expected average reward. This process is in general non Markovian, as
the same r-action in the same r-state may take the agent to different r-states.
Nevertheless, we can show convergence to an optimal r-space policy.



3.1 The rQ-learning Algorithm

This paper focuses on applying Q-learning [12] in r-space, although a similar
argument can be applied to other reinforcement learning algorithms. Table 1
gives the pseudo-code for the rQ-learning algorithm. This is very similar to the
Q-learning algorithm, but the states and actions are characterized by relations.
The algorithm still takes primitive actions (a’s) and moves over primitive states
(s’s), but learns over r-state-r-action pairs.

Table 1. The rQ-learning algorithm.

Initialize Q(S,A) arbitrarily
(where S is an r-state and A is an r-action)
Repeat (for each episode):

Initialize s

S ← rels(s) % evaluates the set of relations over state s

Repeat (for each step of episode):
Choose A from S using a persistently exciting policy (e.g., ε-greedy)
Randomly choose action a applicable in A

Take action a, observe r, s′

S′
← rels(s′)

Q(S, A)← Q(S,A) + α(r + γmaxA′Q(S′, A′)−Q(S,A))
S ← S′

until s is terminal

It can be shown, following [10], that rQ-learning converges to an optimal r-

state policy. In order to guarantee convergence to the r-space policy, we need the
agent to follow a stationary stochastic policy that assigns to each state a non-
zero probability of executing every action in every state. This can be achieved
with a persistently exciting policy, for instance, ε-greedy, and if the r-actions are
defined in such a way that every possible primitive action can be considered in
each state (this can easily be achieved by adding, if necessary, an r-action with
no conditions which can perform any primitive action). We also need to satisfy

limT→∞

∑
T

t=1
αt = ∞ and limT→∞

∑
T

t=1
α2

t
< ∞.

It will be shown that obtaining an optimal r-space policy is good enough
to solve complex problems and that in many cases, it also corresponds to the
optimal policy. Also, since we are learning over generalized actions and states,
the same policy is applicable to other problems where the same set of relations
hold, as long as the r-actions continue to apply to all the instances of the r-states

where they are applicable and the problem can be characterized by the same set
of relations.

The most closely related work is what has been called Relational Reinforce-
ment Learning [3]. They also use a relational representation for states and ac-
tions, however their main focus has been on approximating value functions with



a relational representation. This extends previous work on incremental regres-
sion trees to a relational representation. There are two main differences with our
approach: (i) we are not trying to approximate a value function with a relational
representation, we believe that there are alternative methods better suited for
that, and (ii) our representation of states is at a higher abstraction level (in
terms of properties of states rather than atoms describing states). This means
that we have less number of states, and state-action pairs, it is easier to learn a
value function, and it is easier to re-use previously learned policies. On the other
hand, it is more difficult for the user to adequately represent states and actions.

4 Experiments

In all the experiments, the Q values were initialized to zero, ε = 0.1, λ = 0.9,

and α = 0.1. Let us start with a simple grid problem, where the idea is to go
from a starting point to a particular destination. In this simple domain, we can
think of two general types of movements, where the agent either moves closer to
or further away from the goal. Knowing the current position of the agent and its
intended destination, we can evaluate the Manhattan distance between these two
points and construct two r-actions that will decrease or increase, respectively,
this distance. The Manhattan distance can be part of the state description or
can be a property obtained from the state description. A clear advantage of
using a richer representation formalism is that it is easy to express and include
spatial and temporal relations into the states and actions. It is always possible
to decrease the Manhattan distance to the goal, unless the agent has already
reached it, and to increase the distance to the goal, unless the agent is in a corner
and the goal is not in the same row or column. We can then characterize this
problem with two relations: (1) the agent is in its goal position (in goal position)
and (2) the agent is in one corner and the goal is not in the same row or column
(in corner), and define the following two r-actions using Prolog notation:

r action(1,State1,Move,State2) :-
not in goal position(State1),
distance to goal(State1,Dist1),
move(State1,Move,State2),
distance to goal(State2,Dist2),
Dist1 > Dist2.

r action(2,State1,Move,State2) :-
not in corner(State1),
distance to goal(State1,Dist1),
move(State1,Move,State2),
distance to goal(State2,Dist2),
Dist1 < Dist2.

In this case, rather than the usual four primitive actions (north, south, east,
west), we have two generalized actions, which can get instantiated, for instance,
to north–east and south–west, respectively, when the goal is in the upper right



side of the agent (see figure 2). They however, may be instantiated to different
primitive actions depending on the current position of the agent and the goal.

With 2 relations, there are 4 possible r-states, however, the goal position
is an absorbing state, so we will considered only 2 possible r-states : (i) not

in goal position and not in corner (where both r-actions are applicable) and (ii)
not in goal position and in corner (where only the first r-action is applicable).
In this simple case, we have only 3 r-state–r-action pairs, and the only thing for
the rQ-learning algorithm to decide is whether to prefer r-action 1 or 2 in one
r-state, which is achieved after a very small set of interactions (see figure 3).

r−acc2

Goal
r−acc1

Fig. 2. R-actions in a Grid-World.
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Fig. 3. Average number of steps (primitive actions) per trial for a simple 5 × 5 grid
problem (over 35 trials).

Since the r-states and r-actions are expressed in terms of first order relations,
on each trial the starting and goal position were randomly chosen, so rather than
learning 25 policies for a 5 × 5 grid, we only need to learn one. Furthermore,



the learned policy can be directly applied to any rectangular shape grid problem
(without internal walls) and from any starting and goal positions. So a policy
learned on a 5 × 5 grid and can be used to navigate between any pair of points
on any size grid problem. Figure 4 shows six paths followed on a 25 × 20 grid
from randomly chosen starting and ending position using the learned 5× 5 grid
policy. In this simple case, the r-space policy is also an optimal policy.

Fig. 4. Paths followed on a 25 × 20 grid using the policy learned on a 5× 5 grid

4.1 The Taxi Domain

rQ-learning was tried in the taxi problem [2], where a taxi, starting at a random
location navigates in a 5 × 5 grid world to pick up and put down a passenger
(see figure 5). There are four possible source and destination locations called taxi
ranks (R, Y, G, and B). The objective is to pick up a passenger in one taxi rank
and put down the passenger at the destination rank. The source and destination
ranks are chosen at random on each new trial.

We define 8 relations to characterize this domain, that express, whether the
taxi is in a pick-up position, in a delivery position, with a passenger, next to a
border, in a corner, in front of a goal, inside an area blocked by a border, and
in the border of that area. We also defined 14 r-actions for staying in or moving
out of blocking areas and for moving closer or further away from a particular
goal rank, for picking-up and dropping a passenger, etc.

There are, however, only 32 r-states and only 80 r-state-r-action pairs (as
opposed to 3,000 in the original formulation). They were used to learn an r-state

optimal policy for the Taxi domain. Figure 6 shows the average number of steps
per episode over 50 trials.

We tried to used the learned policy on a different Taxi problem, however,
not all the possible r-state-action pairs were visited, since there are no blocking
borders of height greater than 2, which was used on a particular r-action. To
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Fig. 5. The Taxi Domain.
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Fig. 6. Average number of steps (primitive actions) per trial (over 50 trials).
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Fig. 7. Augmented Taxi Domain.



fix this, we add an extra row at the top of the taxi domain, and learn over
this domain (see figure 7). After 500 episodes, we used this learned policy over
a modified Taxi problem shown in figure 8, where vertical barriers were also
introduced along with an extra taxi rank. As in the previous case, no extra
learning is needed as this new problem is characterized by the same r-states

and r-actions. Figure 8 shows the learned policy from figure 7 applied over two
random instances of this new domain.

Y B

R

G

W

Fig. 8. Two paths followed on two instances of a different Taxi domain.

4.2 King-Rook vs. King

Now lets turn our attention to a more challenging problem where a relational
representation is fundamental to efficiently learn a good policy. In the KRK
domain, the goal is to check mate the opponent king from any legal starting
position. First, we decided to manually construct a playing strategy for this
endgame. To simplify things, the opponent king moves were randomly selected
from its available legal moves. Our manually designed strategy, involves 27 r-

actions, and triggers the first applicable r-action. This required a careful ordering
of the r-actions in order to produce reasonable results. The average number of
the winning-side moves of this strategy repeated three times over 100 random
initial positions was 14.646. It plays reasonably well and in all our tests was
always able to check-mate the opponent, however, it is not optimal and can get
trapped into loops against a human player.

Upon examination, the 27 r-actions use 26 relations in their definition, and
we decided to try them in our framework aiming for a better strategy. Although
we have 26 relations and 27 r-actions there are only 1,318 r-states and only



2.67 r-actions on average per r-state (as opposed to ≈ 150,000 states and ≈ 22
primitive actions per state).

rQ-learning was given the same r-actions to try to find a better policy. Af-
ter 5,000 games, the average number of the winning-side moves of the learned
strategy over the same 100 random initial positions, repeating it three times was
12.07, which represents an improvement of over 2.5 moves in average.

Figure 9 shows the average number of winning-side moves per game over three
runs. Points are plotted every 500 games and show the minimum, maximum and
average number of winning-side moves per game.
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Fig. 9. Number of games vs. average number of moves per game.

5 Perspectives for Robotics

There are at least three reasons why the above formalism may be useful to
robotics: (i) policies learned by one robot can, in principle, be transfered to
another robot and/or to a similar domain, (ii) in many cases it is not so much
important the exact position of the robot, but its relative position with respect
to its environment and possibly other robots, and (iii) an abstraction based on
relations can substantially reduce the training time.

There are, however, several research issues that need to be addressed. In
particular: (i) handling noisy information, (ii) dealing with a continuous domain,
and (iii) defining an adequate set of relations and r-actions.

The continuous space is not much of an issue, in general, as an action can
be executed repeatedly as long as a relation holds. In the grid problems this was
illustrated by moving always the agent closer to the goal (many discrete states
were considered as the same r-state).



The main problem comes with noisy information and recognising when a
particular relation is not longer valid. For instance, a relation may be used
to define when an object is in front of the robot. This requires the definition
of a particular threshold to specify what it means to be in front (e.g., facing
towards the object plus/minus 5o). This branches into two problems: (i) how to
define adequate thresholds, and (ii) how to avoid switching continuously between
actions when the robot is around a threshold value. Unfortunately, there are no
easy solutions here, and most of the time it is handled by trial-and-error.

The other issue that needs to be addressed is the definition of adequate
relations. Although some may be intuitive it is not necessarily an easy task.

The definition of adequate r-action can be done either by the user or by a be-
havioural cloning approach (e.g., [9]), where a human performs desirable actions
from which r-actions are learned. This could be achieved by constructing rules
considering the relations that hold before and after each action and generalizing
constants consistently (e.g., see [6]).

There are other issues that also need to be addressed when multiple agents
are involved. We will consider only two main approaches: one based on zero-
sum games, where two agents have diametrically opposed goals, and the reward
function is inverted. Under this setting, there is in effect a single reward function
and a single Q value function Q1 = −Q2, which one agent tries to minimize,
while the other tries to maximize [5]. The other approach is when we have n

agents all searching for their maximum possible payoff. What is best for one
agent is also best for the others, this is also called coordination equilibrium. In
this case, we can define teams of agents with precisely the same goal. All agents
have the same reward function which all agents try to maximize together. They
are also called cooperative games [1]. Acting together, every reward received by
one agent in a team is received by all agents, Q1 = Q2 = . . . = Qn, therefore
only one Q-function needs to be learned.

Zero-sum strategies are useful in games where two agents have opposite goals,
while team strategies are useful where a set of agents is seeking the same goal.
In a domain like RoboCup we faced both situations. We believe that a relational
representation allows to transfer more effectively policies.

6 Conclusions and future work

This work introduces a relational representation for reinforcement learning. It is
based on properties of states, which allows to perform state aggregation. On the
negative side, the resulting process is no longer Markovian and can produce sub-
optimal policies. On the bright side, it is easy to incorporate domain knowledge,
can be used in large application domains, and can re-use previously learn policies
on other related problems which can be described with the same set of relations.
In robotics, it is not always necessary to know an exact location of a robot but
rather its relative position with other objects in the environment. This can be
easily expressed with a relational representation.



As part of our future work, we would like to learn r-actions and relations from
samples or traces (e.g., see [8]). We would also like to know whether a particular
relational representation is well suited for the task or needs to be corrected, either
when learning in a particular domain or when re-using previously learned policies
in a related domain. Finally, we would like to apply our relational approach to
robotics.
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