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Abstract

A new method for exploring and navigating au-
tonomously in indoor environments is described. This
method merges a local strategy, similar to wall follow-
ing to keep the robot close to obstacles, within a global
search frame, based on a dynamic programming algo-
rithm. We introduce the concept of travel space as a
way to map costs to grid cells based on distances to ob-
stacles. This hybrid approach takes advantages of local
strategies that consider perceptual limitations of sen-
sors without losing the completeness of a global search.
This exploration and navigation method is tested us-
ing a simulated and o real mobile robot with promising
results.

1 Introduction

This paper introduces an exploration and naviga-
tion approach for an indoor mobile robot. The ap-
proach considers information from its sensors, to learn
and use a Probabilistic Grid-based Map (PGM) [1] of
an environment. A PGM is a two dimensional map
where the environment is divided in square regions or
cells of the same size that have occupancy probabili-
ties associated to them.

The two principal components for building a PGM
are exploration and position estimation. Research on
exploration strategies has developed two general ap-
proaches: reactive and model based. By far the most
widely—used exploration strategy in reactive robotics
is wall following. Model based strategies vary with
the type of model being used, but they are based on
the same underlying idea: go to the least—explored re-
gion [4]. There are also several successful localization
methods that can estimate the robot’s position using
its sensors [2]. However, most localization methods
fail when the sensors of the robot are beyond its per-
ceptual capability [7] (i.e. the robot is too far from

obstacles). In [7], a coastal navigation method simi-
lar to our navigation approach is described, once the
PGM has been built. Each cell in the map contains a
notion of information content available at this point in
the map, which corresponds to the ability of the robot
to localize itself. The information content is based on
the concept of entropy and some assumptions are con-
sidered to reduce the complexity of the method. Our
approach generates a similar form of coastal naviga-
tion with a simpler and more efficient method. The
incremental algorithm developed in this paper also fits
the time requirements for the exploration task. In an-
other related work [8], the probability of occupancy
of the cell is used as a cost associated to the cells.
The motion policy, given by a dynamic programming
technique called value iteration, needs to be postpro-
cessed in order to keep the robot near to the center
of narrow passages (but they do not describe how to
do that). In our approach there is no need to modify
the policy given by the value iteration algorithm. The
local guides, in the form of costs, are inside the value
iteration algorithm, so the policy is optimal given the
costs associated to cells and the cost to move to an
adjacent cell.

This paper introduces a novel approach to explore
a static indoor environment. The idea is to reach the
nearest unexplored grid cell minimizing the travel cost.
The travel cost takes into account the perceptual lim-
itations of the sensors and tries to maintain a fixed
distance to obstacles while the robot is moving (wall
following). The concept of travel space is introduced
to assign costs to grid cells. The motion policy of the
robot is computed using a dynamic programing algo-
rithm that includes the costs associated to the travel
space. This approach merges local or reactive strate-
gies with a global or model based strategy. The travel
space is used to obtain an efficient navigation algo-
rithm based on the same dynamic programming al-
gorithm. The idea is to reduce the number of free



cells to be processed. A roadmap [3] is built upon the
travel space, where only the cells of the roadmap are
included in the dynamic programming algorithm for
navigation.

The remainder of the paper is organized as fol-
lows. Section 2 describes the proposed exploration
approach. Section 3 describes the navigation method,
once the map has been built. Section 4 presents ex-
perimental results using a mobile robot simulator and
a real mobile robot. The experiments are performed
using a system build upon the ideas for sensor data fu-
sion and position tracking given in [6]. Finally, section
5 is devoted to the conclusions and future work.

2 Exploration

The PGM building process does the following gen-
eral steps:

1. Process the readings taken by all the sensors and
update the probability of occupancy of the cells
in the PGM (Sensor Fusion Step).

2. Update the travel space accordingly with the
changes in the PGM (see Section 2.1).

3. Choose the next movement using value iteration
(see Section 2.2). If the movement is not valid
then the map is complete.

4. Execute the movement.

5. Get readings from the sensors and correct odo-
metric error (Position Tracking Step).

6. Go to the first step.

The general idea for exploration is to move the
robot on a minimum-—cost path to the nearest unex-
plored grid cell [8]. The minimum-—cost path is com-
puted using wvalue iteration, a popular dynamic pro-
gramming algorithm. In [8] the cost for traversing a
grid cell is determined by its occupancy value, while
in [5] the cost is determined by the distance between
cells (see chapter 8 in [4]). This paper proposes an
approach that combines local search strategies within
a modified version of value iteration described in [5].
When the robot starts to build a map, all the cells have
the same probability of occupancy P(O) = 0.5. A cell
is considered unezplored when its occupancy probabil-
ity is in the interval (close to 0.5) defined by two con-
stants [Pemin, Pemaz] (Pemin < 0.5 < Pepqz) and
explored otherwise. In an alternative approach [8], a
cell is considered explored when it has been updated

at least once. That approach, however, does not work
well when there are specular surfaces (i.e., using ultra-
sonic range sensors) in the environment, since multiple
measurements are normally required to get reliable es-
timates for the probability of occupancy of a cell.

Cells are defined as free or occupied. A cell is consid-
ered occupied when its P(O) reaches a threshold value
Popq; and continues to be occupied while its P(O)
does not fall below a threshold value Po,,;, (where
Popin < POpmaz). It is considered free in other case.
This mechanism prevents changes in the state of oc-
cupancy of a cell by small probability changes. We
assume that Pe,qr < Pomin, S0 an unexplored cell is
also a free cell. In this way, the PGM becomes a bi-
nary map when cells are classified as occupied or free.
This binary map will be called occupied—free map.

In this work, a cylindrical (circular base) robot was
used, so the configuration space (c—space) [3] can be
computed by growing the occupied cells by the radius
of the robot. In fact, the c-space is extended to form
a travel space. The idea behind the travel space is
to define a way to control the exploration by a kind
of wall following strategy. Wall following is a local
method that has been used to navigate robots in in-
door environments, but unfortunately it can easily get
trapped in loops [4]. The travel space together with a
dynamic programming technique has the advantages
of both, local and global strategies: robustness and
completeness.

2.1 Travel Space

Consider the travel space due to a single real occu-
pied cell in the occupied—{ree map (see Figure 1). The
travel space splits the cells of the occupied—{ree map
in four categories:

1. Occupied cells. These cells are inside the circle
given by the radius of the robot (as in the c—
space) with center in the real occupied cell. After
this expansion, the robot is considered as a single
cell.

2. Warning cells. Cells close to an occupied cell. Let
D,, be the maximum distance between a cell of
this type and its closest real occupied cell. These
cells are called warning cells because their pur-
pose is to warn the robot about its closeness to
an obstacle. The value of D,, takes into account
the perceptual limitations of the sensors.

3. Travel cells. Cells close to a warning cell. Let D,
be the maximum distance between a cell of this
type and its closest real occupied cell. These cells
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Figure 1: Travel space due to a single occupied cell

are called travel cells because their purpose is to
suggest to the robot a path to follow.

4. Far cells. Any free cell (in the occupied—free
space) that is not a warning or a travel cell.

In order to assign a higher cost to warning cells
closer to obstacles, each warning cell must record, be-
sides its type, the distance to the nearest occupied cell
dmin- In this work, a linear function is used to get the
cost of a warning cell depending on the distance to
the nearest occupied cell. For travel and far cells it is
enough to record the cell’s type.

The travel space can be computed incrementally
after each change of state of a cell in the occupied—
free map while the robot is exploring the environment.
Here is the algorithm:

1. Initialization. Let all free cells in the travel space
be of type far.

2. If there is a change from free to occupied cell, do:

e Grow the occupied cell by a radius of the
robot. Assign the type occupied to the cells
in the circle.

e Using a larger circle, compute the warning
cells (see Figure 1). For each of these cells,
let d be the distance from the cell to the
center of the circle, and t,,; be the type
of cell previously assigned to the cell. If
(tota € {travel, far}) or ((toa = warning)
and (d < dpin)) then assign the type warn-
ing and distance d to the cell.

e Using a larger circle, compute the travel cells
(see Figure 1). For each of these cells, let t,14
be the type of cell previously assigned to the
cell. If t,;4 = far then assign the type travel
to the cell.

3. If there is a change from occupied to free cell, do:

Figure 2: A travel space due to multiple occupied cells.
From darker to lighter: occupied cells (black), warning
cells (dark gray), travel cells (light gray), and far cells
(white)

e Using a circle of radius D, equal to the outer
circle used to compute the travel cells, assign
the type far to all the cells under the circle.
In other words, it cleans the effect of the
previous occupied cell.

e Consider a circle of radius 2D;. For each oc-
cupied cell inside this circle in the occupied—
free map, repeat step 2. This step redoes
the effect of the occupied cells in its neigh-
borhood.

4. Repeat steps 2 or 3 until the map building process
ends.

Notice that the process to update a transition from
an occupied to a free cell is much more expensive than
the change from free to occupied. Fortunately, most
changes are from free to occupied during map building,.
An example of a travel space due to multiple occupied
cells is shown in Figure 2.

2.2 Global Search

A policy to move to the unexplored cells follow-
ing minimum-—cost paths is computed using the travel
space and a modified version of value iteration. The
algorithm uses two variables, V' and M, associated to
each cell. V(z,y) denotes the travel cost from cell
(x,y) to the nearest unexplored cell. M/(x,y) repre-
sents the optimal movement to choose, given that the
robot is in that cell. We consider 8 possible move-
ments of the robot, one per cell in its vicinity. If
M(z,y) = (dz, dy), where dz is the change in z and dy
is the change in y, the set of valid movements is M, =
{(L O)a(]-: 1)7(17 0))(_17 1)a(_1: O)a(_la _1)5(0: _1)a
(1,-1)}. The idea is to associate costs to cells de-
pending on its type. If warning cells and far cells have
costs higher than travel cells, then a wall following
strategy for exploration is taken into account.

For simplicity, cells of type warning, travel or far,
will be call free cells in the travel space. Using the
variables M and V, the algorithm has two steps:



1. Initialization. Unexplored cells (z,y) that are free
in the travel space, are initialized with V (z,y) =
0, while explored cells that are free in the travel
space are initialized with V(z,y) = oco. All the
free cells in the travel space are initialized with
an undefined value to M.

2. Update. Let (z,,y,) be the position before the
last movement of the robot. For all the explored
free cells (z,y) # (x,y,) in c—space do:

Viz,y) «  mingg,ayyem, V(2 + dz,y + dy) +
Cost((x,y), (dz,dy)}

M(z,y) « arg-mingg ay)yem, {V(z + dz,y +
dy) + Cost((z,y), (dz,dy)}

where Cost((x,y), (dz,dy)) measures the cost of mov-
ing from the cell (z,y) to the cell (x+dzx,y+dy). This
function punishes changes in direction and takes the
value C(z+dz,y+dy) + Dist((z,y), (x+dz,y+dy)) +
Kp.. Where Dist(p1,p2) is the distance between cells
p1 and ps (1 or v/2), and Kp, represents the cost of the
rotation of the robot to reach the next cell. C(z,y)
represents the cost associated with cell (z,y) in the
travel space, based on its type. This assignment that
punishes direction changes of the robot makes sense if
we consider that rotation changes are a major source
of uncertainty for the position of the robot.

The update rule is iterated, and when the values
(V(z,y), M(x,y)) converge, the robot executes the
movement indicated by M.

Exploration ends when V' = oo for the cell where
the robot is placed, which means that there is no way
to reach an unexplored cell. Each time the value itera-
tion algorithm is called, only the V' values around the
robot are initialized, in a similar way to the bounding
box described in [8].

3 Navigation

Once the map is complete, the same algorithm used
for exploration can be used for navigation. In this
case, the goal cell takes the place of the unique unex-
plored cell (a zero value for variable V). In contrast
to the exploration phase, during navigation there is no
update of the PGM or the travel space.

A significant reduction in the number of free cells
to be updated in the value iteration algorithm can be
achieved using the travel space associated to the map
built. The key idea is to consider travel cells as a kind
of roadmap (as defined in [3]), a net of roads that the
robot will use most of the time to go from one place

Figure 3: Building a roadmap. From left to right: (a)
Travel space. (b) Partial roadmap. (¢) Full roadmap

to another. Some issues must be solved in order to
build the roadmap and use it for navigation. First,
how to find the cells of the roadmap where there are
no travel cells in the travel space. In narrow passages
there are only warning cells and the environment can
have isolated sets of connected travel cells (see Fig.
3(a)). Second, how to consider the uncertainty in the
position of the robot during navigation. Finally, how
to handle cases where the initial and goal position are
not within the roadmap.

The following method solves the first problem.
Given the distance D, (the distance between a travel
cell and its closest occupied cell) and a cell G of the
roadmap (i.e. a travel cell), we can apply the value
iteration algorithm to get a policy of movements to
reach cell G. Using this policy, from each warning
and travel cell there is a path of cells to the cell G.
All the cells of these paths except the first cells (con-
sidering the length D;) form the roadmap. Figure 3
(b) shows the roadmap for the travel space of Fig. 3
(a) using this method. This is a partial roadmap be-
cause there are cells missing for each loop of the full
roadmap. Considering as the goal cell G each of the
end cells of the partial roadmap a full roadmap can be
built with an OR operation of the partial roadmaps
(see Fig. 3 (c)).

The second problem can be solved if the cells in the
roadmap grow in a similar form to the occupied cells
in the travel space. In this case, the robot radius is
the maximum uncertainty of the robot position.

The last problem can be handled if for each free
cell that is not in the roadmap, it is computed the
distance din to the nearest cell in the roadmap (this
can be estimated using again the value iteration algo-
rithm without costs for direction changes and type of
cells, considering the cells in the roadmap as the un-
explored cells). For a given cell, the cells in a circle of
radious d,,,;;, connect the given cell to the roadmap.
This approach solves efficiently the case of very close
initial and final positions.



4 Experimental Results

This section presents the results obtained using a
mobile robot simulator and a real mobile robot. The
mobile robots have odometer, ultrasonic and laser
range sensors (implemented with laser pointers and
a camera). The implemented system, used to test the
exploration and navigation approach, follows the ideas
described in [6] for sensor data fusion and position
tracking.

Figure 4 (a) shows the PGM built by the simulated
robot without using the travel space (i.e. assigning
null costs to warning and travel cells). The grid cells
are 10x10cm? and the map is 10x10m2. The simulator
introduces an uniform random error on displacements
of £10% and a uniform random orientation error of
about +7 degrees, per movement. The lighter trace
on the map is given by the odometer and it shows the
path followed by the robot. Note that sometimes the
robot gets very close to obstacles. Figure 4 (b) shows
the map built using the travel space and Fig. 4 (c)
shows the map built using a Super Scout Mobile Robot
within an office environment with desks, chairs, book-
shelfs, etc. (note the effect of a glass door in the lower
right corner). In these cases, warning cells have costs
in the interval [13,1] (a linear function was used to
estimate costs depending on the distance from the cell
to the nearest occupied cell), travel cells have a cost of
0.001 and far cells have a cost of 6. The warning cells
form a layer of 100 cm. and the travel cells form a layer
of 20 cm. These cost values implement the wall fol-
lowing strategy to explore the environment, as can be
observed in the map. Also the robot does not get too
close to obstacles even in narrow passages. Instead, in
narrow passages (where there are only warning cells)
the robot tends to maximize the clearance between
the robot and the obstacles. The map of the Fig. 4
(b) is also more accurate than the map built without
using the travel space (Fig. 4(a)). This is because
the travel space approach tends to move the robot to
positions where the sensor readings are more reliable
and hence the position tracking algorithm gives better
estimations.

Some experiments were performed to evaluate the
changes due to Kp., the cost of making orientation
changes in the robot movements, during the explo-
ration phase using the simulator. In these experiments
we assign a cost of Kp. for rotation of 45 degrees,
2Kp. for 90 degrees, and so on. Table 1 shows the
results, considering the length d (in cm.) of the path
followed by the robot, the total number of movements
made by the robot (n), the amount () of orientation
changes (in 45 degrees units) made by the robot, and

Figure 4: PGMs. White areas represent cells with
occupancy probabilities near to 0. From left to right:
(a) Using the simulator without the travel space. (b)
Using the simulator and the travel space. (c¢) Using
the real mobile robot and the travel space
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Figure 5: Roadmap in the simulated case. From left
to right: (a) Travel space associated to map of Figure
4 (b). (b) Free cells extracted from (a). (¢) Roadmap
build upon the travel space shown in (a)

the ratio (6/n). These results suggest that higher Kp,
values tend to decrease the number of movements that
change the orientation of the robot. The effect of Kp,
is analog to the effect of inertial mass: it tends to keep
the orientation of the robot unchanged.

Kp. | d n 0 6/n

0 3352 | 284 | 162 | 0.5704
1 3640 | 310 | 163 | 0.5258
2 3596 | 304 | 155 | 0.5098
3 3536 | 306 | 145 | 0.4738

Table 1: Some experimental results for different costs
of orientation changes ( Kp.)

The travel space associated to the map of Figure 4
(b) is shown in Figure 5(a). Figure 5 (b) shows the
free cells where the robot can move for the map shown
in Fig. 4 (b), and Figure 5 (¢) shows the roadmap ex-
tracted from the travel space, using the ideas described
before. In this roadmap there is a significant reduc-
tion from 6386 cells in the free cells set, to 371 cells.
Figure 6 shows the travel space and the roadmap for
the map built using the real mobile robot (Fig. 4 (c)).

Figure 7 shows three steps of the navigation



Figure 6: Roadmaps in the real case using a warning
layer width of 50 cm. From left to right: (a) Travel
space associated to map of Fig. 4(c). (b) Roadmap
built upon the travel space shown in (a)
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Figure 7: Using the roadmap for navigation. From
left to right: (a) Roadmap with an uncertainty of 20
cm. in the position of the robot. (b) The cells of
the roadmap and the cells that connect the initial and
final cells. (¢) Values of V' given by the value iteration
algorithm (dark pixels denote high values)

method. Figure 7(a) shows the roadmap (simulated
case) built with an uncertainty on the robot position
of 20 cm. Figure 7 (b) shows the circles that con-
nect the initial and goal cells to the roadmap (left and
right circles respectively) and Figure 7 (c) shows mo-
tion policy to reach the goal cell given by the value
iteration algorithm. Darker pixels denote higher val-
ues of V' that represent higher accumulated costs to
reach the goal cell. Note that the goal cell has a null
cost and it is represented by a white pixel.

5 Conclusions

A new approach for a mobile robot to explore and
navigate in an indoor environment that combines local
control (via cost associated to cells in the travel space)
with a global exploration strategy (using a dynamic
programming technique) has been described.

As the experimental results confirm, the explo-
ration follows a kind of wall following technique to
reduce uncertainty in terms of localization, as well as
to guide the robot through narrow passages, maxi-
mizing the distance between the robot and the ob-
stacles. This combination of local and global strate-

gies takes the advantages of both: robustness of local
strategies and completeness of global strategies. In
addition, a heuristic to minimize the number of ori-
entation changes, trying to minimize the accumulated
odometric error, is also introduced.

A preprocessing of the travel space that results in
a roadmap is used for navigation purposes. This step
reduces the number of cells to be updated in the value
iteration algorithm, and significantly reduces the time
to compute the motion policy for the robot.

In the future, we plan to consider different uncer-
tainties for different positions of the robot (bigger un-
certainties for positions farther from obstacles) and to
extend the navigation approach to dynamic environ-
ments.
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