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Abstract. In reinforcement learning an autonomous agent learns an
optimal policy while interacting with the environment. In particular, in
one-step Q-learning, with each action an agent updates its QQ values con-
sidering immediate rewards. In this paper a new strategy for updating
Q values is proposed. The strategy, implemented in an algorithm called
DQL, uses a set of agents all searching the same goal in the same space
to obtain the same optimal policy. Each agent leaves traces over a copy
of the environment (copies of Q-values), while searching for a goal. These
copies are used by the agents to decide which actions to take. Once all
the agents reach a goal, the original Q-values of the best solution found
by all the agents are updated using Watkins’ Q-learning formula. DQL
has some similarities with Gambardella’s Ant-Q algorithm [4], however it
does not require the definition of a domain dependent heuristic and con-
sequently the tuning of additional parameters. DQL also does not update
the original Q-values with zero reward while the agents are searching, as
Ant-Q does. It is shown how DQL’s guided exploration of several agents
with selected exploitation (updating only the best solution) produces
faster convergence times than Q-learning and Ant-Q on several testbed
problems under similar conditions.

1 Introduction

Reinforcement learning is an on-line technique that approximates dynamic pro-
gramming. The external environment is modeled as a discrete-time, finite state,
Markov decision process. Each action is associated with a reward. The task of
reinforcement learning is to maximize the long-term discounted reward per ac-
tion.

Reinforcement learning has been recently applied to multi agent settings.
The main purpose is to coordinate agents to complete a task. In coordination
problems, each agent is responsible for a portion of the problem, and most of
the time, decisions of an agent affect other agents’ performance or solution. Ex-
amples include the solution of network routing problems in [6] and coordination



games such as soccer [7]. Multi agent reinforcement learning have also been used
in pursuit games, where a "hunter’ tries to capture a ’prey’. In these problems,
agents share sensations of the location of the ’prey’, communicate its location to
its partners and update their relative location in order reach the 'prey’ [13]. Price
and Boutilier [10] proposed a method called implicit imitation. In this approach
apprentice agents learn from the experience of mentor agents about its own ca-
pabilities in unvisited parts of the space. Imitation is performed extracting a
model from the experienced agent behavior. This approach was proved in the
solution of mazes using model based reinforcement learning algorithms, speed-
ing learning dramatically. Other interesting problems, solved using multi agent
reinforcement learning, are those known as n-player cooperative repeated games.
In these problems agents interact in a limited resource environment selecting ac-
tions that maximize reward. The chosen actions constitute a joint action. Each
joint action is associated with a reward function; the decision problem is coop-
erative since there is a single reward function reflecting the utility assessment
of all the agents. Agents must cooperate in order to select those actions repre-
senting the maximal individual and team benefit. Some approaches to establish
cooperative behavior between agents for these kind of problems include [1,2, 5].

In most of these approaches, single agent reinforcement learning methods
are applied without much modification. In this paper, we propose an alternative
strategy for updating value functions. The main motivation behind this research
is to improve the convergence times of Q-learning with a distributed reinforce-
ment learning setting, where a set of “agents” have the same goal, and together
“cooperate” by leaving traces to find an optimal policy for the same problem.
The hypothesis is that using more exploration with a set of agents and a con-
trolled exploitation, by leaving traces between agents and reinforcing only the
best solution proposed by the agents, produces faster convergence times.

DQL performance was compared against Q-learning [14] and Gambardella
and Dorigo’s Ant-Q algorithm [4], which is a distributed reinforcement learning
algorithm used in the solution of the traveling salesman problem. The three
algorithms were tested on several problems over the whole range of the a and
~ parameters used in the Q-learning formula. It is shown that DQL has faster
convergence times than one-step Q-learning and Ant-Q under similar conditions.

The paper is organized as follows. Section 2 gives a brief overview of Q-
learning and Ant-Q. Section 3 describes DQL. Section 4, presents the four test
problems used to measure the algorithms’ performance and discusses the main
results. Finally, Section 5 concludes and gives future research directions.

2 Q-Learning

In this study, each reinforcement learning agent uses the one-step @Q-learning
algorithm [14]. Its learned decision policy is determined by the state-action pair
value function, Q(s,a), which estimates long-term discounted rewards for each
state-action pair. Given a current state s € S and available actions a; € As, a
QQ-learning agent selects most of the time an action a with the highest estimated



Q(s,a) and with a small probability e & 0, selects an alternative action. The
agent then executes the action, receives an immediate reward r, and moves to
the next state s'.

In each step, the agent updates Q(s,a) by recursively discounting future
utilities and weighting them by a positive learning rate a:

Q(Saa) <~ Q(Sva) +oa|r +’yarlnea_:¢)l(’ Q(Slaa/) - Q(Saa) (1)

where (0 < v < 1) is a discount parameter.

As an agent explores the state space, its estimate () improves gradually, and,
eventually, each maxq e Q(s',a’) approaches: E{> > 7" 'ryy, }. Here ry is
the reward received at time ¢ due the action chosen at time ¢t — 1. Watkins and
Dayan [15] have shown that this Q-learning algorithm converges to an optimal
decision policy for a finite Markov decision process.

2.1 Ant-Q

An interesting distributed reinforcement algorithm, originally proposed by Gam-
bardella and Dorigo [4], is Ant-Q. Ant-Q was used to solve traveling salesman
problems and can be seen as an improvement over a previous system called ant
systems [3]. The general idea of Ant-Q is to use a set of agents searching for the
same best policy. Following an analogy with ant colonies, each agent updates its
Q values, as in Q-learning, but without considering any reward (r = 0 in Eq. 1),
after executing each action. This updating represent traces that can be followed
by other agents. Once all the agents reach a goal (an episode), state-action pair
evaluation functions of the best solution are updated using a delayed reward
(r # 0) as expressed in Eq. 1. This means that some Q values will be updated
several times on each episode, first without rewards by all the agents that fol-
lowed the same state-action pair, and once more with rewards if the state-action
pair is part of the best path. This repeated updating is not clearly justified and
is difficult to prove if the convergence properties of Q-learning still hold.

Ant-Q introduced several additional mechanisms to the Q-learning frame-
work. In particular, the selection policy is defined as a combination of a domain
dependent heuristic function (HE(s,a)) and the best Q-values. This combina-
tion introduces two new parameters (0 and () that estimate the relevance of
HE(s,a) with respect to Q(s, a) values and that need to be tuned for each par-
ticular application domain. In general an e-greedy strategy is used and HE is
combined with @ values as follows: argmaz,{AQ(s,a)’ x HE(s,a)’}.

3 DQL

DQL follows similar ideas of Ant-Q but without loosing the main properties of Q-
leaning nor introducing extra parameters or heuristics. The general ideas, and
main differences with Ant-Q, are that it does not use any domain dependent



heuristic (and consequently no additional parameters) and it updates the Q-
values only once (for the best solution found by all the agents).

DQL allows more exploration, as several agents are searching at the same
time, and promotes better exploitation, since the updates on the Q-values are
performed only over the best solutions!.

All the agents have access to a temporary copy of the state-action pair eval-
uation functions (Q¢(s,a)). Each time an agent has to select an action, it looks
at this copy and decides, based on its information, which action to take. Once
the agent performs the selected action, it updates the copy of the state-action
value pair using Eq. 2, where Q¢ (s, a) represents a copy of the original Q(s, a)
pairs.

Qc(s,a) + Qc(s,a) +a 7 max Qc(s',ad") — Qe(s, a) (2)

This is similar to what Ant-QQ does, however in this case the updates are
performed over copies of the original Q values and the original Q-values are
consequently not affected at this stage. All the agents are moved one step at a
time, updating and sharing their common Q¢ values until reaching a stopping
criterion. The agents use the copies of the Q values to decide which actions to
take following an e—greedy policy. When all the agents have found a solution the
Q value copies are discarded and the state-action pairs considered in the best
solution receive a reward which reinforce their values according to Eq. 1. This
updates the original Q-values from which a new copy is created for the next
cycle. The whole process is repeated until reaching a termination criterion (see
Table 1).

Table 1. DQL algorithm.

Initialize Q(s,a) arbitrarily
Repeat (for n episodes)
Initialize s, copy Q(s,a) to Qc(s,a)
Repeat (for each step of episode)
Repeat (for m agents)
Take action a, observe r, s’
QC(S7 a) <~ QC(S7 a) +a ['7 maXg/ QC(5/7 al) - QC(S: a)]
5+ s';
Until s is terminal
Evaluate the m proposed solutions
Assign rewards to the best solution found and
update the Q values:

Q(s,a) « Q(s,a) + a[r +ymaxy Q(s',a') — Q(s,a)]

! In the tested problems, the best solution of one episode is the shortest path found
by one agent in that episode.



All the agents act on the same environment and have access to the same @
and Q¢ values. The copies of the Q values are used as guidances to the agents
of what seems to be promising states. However, only the best solution found by
all the agents receives an actual reward. There are two main differences with
respect to Ant-Q:

— Partial updates are performed over copies of the Q-values avoiding multiple
updates with and without rewards.

— There is no need to define a domain dependent heuristic or to tune extra
parameters as in Ant-Q.

The main motivation behind DQL is that it allows:

— More exploration as more agents are used during search
— More exploitation as only relevant (best) solutions are effectively rewarded

The hypothesis is that this alternative strategy for updating value functions
achieves, in general, faster convergence times than one-step Q-learning, regard-
less the values of a and ~. To test this hypothesis, we performed several ex-
periments over four problems with different complexity and nature, comparing
Q-learning, Ant-Q and DQL performance. Although, the tests were performed
of deterministic state transition domains, our framework can also be applied to
stochastic state transition functions.

4 Experimental Results

All the experiments were performed on the same machine and the algorithms
were similarly coded by the same author®. Although DQL and Ant-Q use mul-
tiple agents the algorithms are implemented sequentially.

Two maze problems were first considered as they are problems where Q-
learning normally shows good performance. For these problems the algorithms
were tested over all possible a and « values with 0.25 increments. € = 0.1 was
considered for the three algorithms in both maze problems. Each experiment
was performed thirty times and we report the mean CPU time, mean number
of episodes, and mean number of steps per episode®. Algorithm execution stops
when the optimal policy (solid lines in Figure 1) is reached in five consecutive
episodes.

As mentioned earlier, the Ant-Q algorithm was designed for the solution of
traveling salesman problems (TSPs). Two TSP instances previously solved with
Ant-Q are also included in the tests. The same parameter values and stopping
criteria used with Ant-Q were used for DQL and Q-learning. Tables of results
include best solution found, standard deviation of solutions, the mean of all the
solutions, and the mean CPU time to reach the stopping criterion. In this case,
every algorithm was executed 15 times over 200 episodes.

2 All algorithms are coded in C++.
3 The mean number refers to the mean of all the solutions found at a particular
episode.



4.1 Grid world with wind

The first experiment was run on the windy grid world shown in Figure 1 left.
The objective is to find the optimal path from S to G considering a wind force,
which shifts upwards the resulting state when moving horizontally, the strength
of which varies from column to column as shown at the bottom of Figure 1.
For instance, moving horizontally (either left or right) from a square which has
a “wind force” of 1 (indicated at the bottom of Figure 1), causes the agent
to move one square above its intended destination. However, moving vertically
(either down or up) does not produce any effect?. Ant-Q and DQL were both
run with 3 agents. Ant-Q) was tested with and without a heuristic. The results
are shown in Figures 2 and 3 without heuristic for Ant-Q.

Restrictions
R l l
S G actions S A G actions
o wl L
e I P A

o 0 o0 1 1 1 2 2 10 o o o0 1 1 1 2 2 1 0

Fig. 1. Grid world in which horizontal movement is altered by a location-dependent
upward “wind” (left) and windy world with restrictions (right).

Results from the three algorithms are plotted using three different line types,
dashed for Ant-Q, dash-dot for Q-learning, and continuous for DQL. There are
four lines for each algorithm, one for each value of 7. The 4+ symbol correspond
toy=0.25, 0 toy=0.5, ¢ to y=0.75, and O to v = 1.0.

Figure 2 shows the mean CPU time required for each algorithm to reach the
stopping criterion. For Ant-Q and DQL this time corresponds to the mean time
required for all the solutions found at each episode. As can be seen from the
results, both Ant-Q and DQL clearly outperformed Q-learning for all the tested
values of a and 7, significantly reducing the convergence times.

Figure 3 shows the mean number of episodes and the mean number of steps
per episode required for the three algorithms to reach the stopping criterion. For
these two metrics DQL performance was the best of the three algorithms, and
Q-leaning was able to outperform Ant-Q for « > 0.5.

The previously described results are for Ant-Q without using any heuristic.
When Ant-Q was tested using as heuristic the inverse of the Manhattan distance,

4 An agent is not allowed to move outside the borders.
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Fig.2. Mean CPU time in seconds to reach the optimal solution five consecutive
episodes.
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Fig. 3. Mean episodes (left) and steps per episode (right) required to reach the optimal
solution.



it was not able to converge® with three different combinations of (4, 8): (1,1) Q-
values and heuristic function equally important, (2,1) Q-values more important
than the heuristic function, and (1, 2) heuristic function more important than Q-
values. Although, the heuristic used may be reasonable for some maze problems,
it is clear that in general, finding a suitable heuristic may be a very difficult task.

We also decided to test a variant of DQL, called DQL-2, where each agent
performs a complete episode before starting with the next agent. That is, per-
forming m episodes in sequence without sharing information while performing
the task. Figure 4 compares the mean CPU times of DQL (here as DQL-1)
against this “episodic” updating approach (DQL-2). As it can be appreciated
in the figure, sharing information while performing a task reduces convergence
times. Although not shown in the paper, due to restrictions in space, similar
results were observed in the other problems.

Grid world
T

°
=

mean CPU time

Fig. 4. Mean CPU times in seconds between DQL and an “episodic” variant (DQL-2)

We also measured the average number of total updates of Q values (Q¢ +
Q) in DQL against the number of Q updates of Q-learning (see Figure 5). As
can be seen in the figure, although DQL updates a larger number of total Q-
values, it converges faster. We believe that the extra information shared by the
agents during the process helps to reduce convergence times. Similar behavior
was observed on the other problems.

4.2 Grid world with wind and trap

This problem was designed to generate a more difficult maze. An obstacle block-
ing the optimal path is included to the windy grid world, forcing agents to search
for an alternative route. Figure 1 right shows the maze and the optimal policy

® Reach the optimal policy five consecutive episodes before reaching 500,000 transi-
tions.
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Fig. 5. Average number of total Q-value updates for DQL and Q-learning.

that agents must find. The same operation conditions and parameters used in
the previous maze were considered.

Figures 6 and 7 show the measures for the three metrics obtained with the
three algorithms under study. Again, the figures show only the performance of
Ant-Q without heuristic as it was not able to converge with the Manhattan dis-
tance heuristic. In Figure 6 it can be observed that Ant-Q is able to outperformed
DQL mean CPU time for some combinations of « and 7: (a = 0.25,7 # 0.25),
a=0.5,7=0.5, and (a = 1,7 = 0.5,1.0). It shows, however, to be much more
dependent on the values of these parameters. On the other hand, DQL shows a
more stable behavior in relation to the number of episodes and steps per episode
required for the agents to satisfy the stopping criterion.

Restricted Grid world
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Fig.6. Mean CPU time in seconds to reach the optimal solution five consecutive
episodes.
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solution.

4.3 Traveling Salesman Problems

Ant-Q was originally developed to solve instances of TSP. For them, the au-
thors of Ant-Q reported results where Ant-Q outperformed several alternative
algorithms. We took two instances of TSP with the same settings used in the
original Ant-Q paper [4]. The first problem is the 30 cities symmetric TSP known
as Oliver30 proposed in [9], and the second problem is the 48 cities asymmetric
TSP known as Ry48p proposed in [11].

Ant-Q parameters for the pseudo random proportional action choice rule
were the same used by Gambardella, that is, 8 = 2.0, § = 1.0, a = 0.1, v = 0.3,
and HE(i,j) = 1/d;,;, being i, j cities and d; ; the distance between them. For
DQL and Q-learning, the same values for the o and 7 parameters were used.
Q(s, a) values were initialized to the inverse of the number of cities times the
average length of edges, and an e-greedy selection policy, with ¢ = 0.1 6. The
algorithms considered 200 steps or transitions for Oliver30 problem, and 600 for
ryp48. The number of agents were the same in DQL and Ant-Q, 30 for Oliver30
and 48 for Ry48p. For Q-learning a single agent was used.

The performance was evaluated repeating each trial 15 times. We report the
average performances. The CPU time correspond to the average running times
to reach the best result.

In the TSP problems all strategies found the same best solution. Although
Ant-Q was specially “tuned” for this type of problems it did not show the best
performance. It is also interesting to note that Q-learning show the lowest av-
erage solution for Ry48p. It is however clear from the results, that the average
convergence times of DQL are much smaller than the other strategies. In these
particular cases, the heuristic function added to Ant-Q was useful for reducing

6 This policy is equivalent to consider go = 0.9 in the original Ant-Q algorithm



Table 2. Results for the two TSPs.

Oliver30 Ry/8p

Best 423.74 14422
DQL Mean 424.61 14600
Std. Dev. 3.25 100
CPU 3.48 13.29
Q-learning|Mean 425.32 14520
Std. Dev. 4.12 150
CPU 25.92 97.32
Ant-Q Mean 424.92 14750
HE Std. Dev. 3.7 189
CPU 6.39 32.39
Ant-Q Mean 435.43 15365
no HE Std. Dev. 12.7 210
CPU 46.84 76.98

convergence times and standard deviations (which was not the case for the grid
world problems).

5 Conclusions and Future Work

This paper introduces a new strategy for updating Q values implemented in an
algorithm called DQL. DQL uses a set of agents searching the same goal in the
same space. Traces (copies of Q-values updated without rewards) are used to
guide the exploration of agents. The original Q values of only the best solution
found by all the agents is updated using the one-step Q-learning formula. It was
shown how DQL’s guided exploration of several agents with selected exploitation
(updating only the best solution) produces faster convergence times than Q-
learning and Ant-Q on several testbed problems under similar conditions.

The heuristic and extra parameters needed by Ant-Q does not seem to be
producing any benefits. Additionally, selecting a good heuristic can be a difficult
task. DQL, on the other hand, does not require extra parameters and shows, in
general, better convergence times.

DQL updating strategy is performed only on the best path among m solu-
tions. In order to preserve the convergence properties of Q-learning, we need to
show that all the Q-value state-action pairs have a non zero probability of being
updated. This is part of our future work.

Before trying a parallel version, which seems a natural extension, we would
like to perform more tests and compare the results against different strategies
for updating Q values, such as Monte Carlo. It will also be interesting to run
DQL without updating the copies of the Q-values to assess its influence in the
results (which is like running Q-learning several times without updating and
then update the best results found so far).
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