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Abstract

This paper describes an Ant-Q algorithm for
the solution of multiple objective optimiza-
tion problems (MOAQ). The algorithm uses
families to represent the objectives in the
problem. The problem definition considers
that each family finds solutions that depend
on solutions found by the rest of the families,
creating a negotiation mechanism and finding
compromise solutions for all the objectives in-
volved. The compromise solutions are domi-
nation evaluated in the Pareto sense, assign-
ing rewards to the non-dominated solutions
fitting all problem constraints, and punish-
ments to the solutions violating any of them.
MOAQ incrementally learns during the op-
timization process how to generate the com-
promise solutions. It is shown how MOAQ
is used to design water distribution networks
which are non-linear multiple objective opti-
mization problems.

1 INTRODUCTION

It can be said that true optimization must be multiob-
jective; real problems usually have more than one func-
tion to be optimized, and often these functions cannot
be combined into a single one. Historically, the appli-
cation of classical mathematical methods in the solu-
tion of this kind of problems involves an objective func-
tion combination to form a scalar objective function,
usually through a linear combination (weighted sum)
of the multiple objectives, or by turning objectives into
constraints. Aside from genetic algorithms, little re-
search has been done, with the use of alternative opti-
mization techniques to solve multiple objective prob-
lems. The use of genetic algorithms is often restricted
by the need to represent problem constraints, often
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a difficult procedure. Reinforcement Learning, espe-
cially Ant-Q), has shown good results in combinatorial
optimization problems [10, 11, 12]. In reinforcement
learning [13], an agent learns from its own experiences,
receiving rewards and punishments for its actions. In
order to increase the exploration capabilities and to
reduce convergence times, more than one agent can be
used in the solution of a single problem, transform-
ing the basic algorithm to a distributed reinforcement
learning algorithm (Ant-Q). Ant-Q, however, has been
used only in the solution of single objective optimiza-
tion problems. Its distributed characteristics, theoret-
ical background, and representation capabilities make
it a good candidate for the solution of multiple objec-
tive optimization problems.

In this work, an Ant-Q based algorithm, called MOAQ
(Multiple Objective Ant-Q), capable of solving mul-
tiple objective optimization problems, is presented.
In particular, it is shown how MOAQ is applied to
the design of irrigation networks. This problem has
been attacked considering several assumptions to re-

duce it to a single objective optimization problem
[1,3,4,6,7,8,09].

An integral solution for the design of irrigation water
distribution networks, however, requires: (i) the selec-
tion of crops and cropped areas to optimize productiv-
ity and water usage, (ii) the design of the network lay-
out, (iii) the establishment of the water requirements
and minimum water pressures at each hydraulic node,
and (iv) the selection of the pipe diameter for all links
between nodes. In particular, compromise solutions of
crop selection, to maximize profits can produce con-
flicting results if water availability and cropped sur-
face constraints are not violated. The network design
must also satisfy water volume and pressure require-
ments for each node while minimizing costs. Overall,
the problem can be stated as a multiple objective op-
timization problem.



Section 2 describes in greater detail the objective func-
tions and constraints involved in the design of irri-
gation networks. In Section 3, the proposed solution
using MOAQ is described. Section 4 shows some ex-
perimental results and finally, conclusions and future
research directions are given in Section 5.

2 DESIGN OF IRRIGATION
WATER DISTRIBUTION
NETWORKS

Suppose that we have a set of plots for cultivation and
that for every plot there is a list of possible crops.
In addition, each plot has a hydraulic node supply-
ing water in the required quantities to the cultivated
area. Water is supplied to the region by a supply node
located somewhere in the region. Irrigation network
design requires the definition of the network layout;
this means to define the connections between nodes
that can guarantee that all hydraulic nodes are con-
nected to the supply node, and the lengths (links can
have more that one pipe segment) and diameters of
each pipe segment minimize the total pipe investment
based on water demands and minimum pressure re-
quirements. The water demand depends on the crop
and the cropped area. Crop selection for each plot
depends on irrigation water availability in the whole
region. The water requirements are obtained through
production functions for each crop where crop produc-

tivity is represented as function of the required water
[2].

The irrigation water distribution network design prob-
lem can be stated as follows: find the best set of crops
for the plots that maximize regional productivity and
water usage considering that the water to each plot
must be transported the shortest distance to each hy-
draulic node over the minimal cost network that satis-
fies the pressure and flow restrictions.

The problem can be formalized with the following ob-
jectives:

1. Minimize the cost of the network:

min z; = ZZC(Z,m)X(Z,m)

where, C(I,m) and X (I, m) are, respectively, the
cost per unit of pipe segment and length of the
m'Th.. segment of link /.

2. Maximize the profit:

Np

mazxr zo = Z [AC(P)($CPC - C(P) - W(p))] (1>

p=1

where, Np is the number of plots, A.(p) is the
area in plot p to cultivate with crop c, $, is the
profitability of crop ¢, P, is the production per
unit of area of crop ¢, C(p) are the input costs,
W (p) is the cost of the required water for plot p
cultivated with crop c.

The solution is subject to the following constraints: (a)
The variation in pressure (H (I, m)) in the mth segment
of length [ is equal to the hydraulic gradient in a pipe
segment (J(I,m)) times its length:

AH(L,m) = J(I,m)X (1, m) 2)

(b) The required pressure at a particular node s con-
nected to node n must be greater than the minimum
required pressure at n (H,qp,, ) and sufficient to satisfy
the resulting head losses in the water transport from
s to n, but not greater than the maximum possible
pressure at node s (Hya):

Hminn S HS + Z Z Jl,le,m S Hmacc,; (3>

I m

(c) Water requirements must not be greater than the
amount of water available for irrigation. ¢ is the
amount of water from the total volume V; that is avail-
able for irrigation, considering V; is unrestricted in the
region:

Np
> Velp) < Vi
p=1

(d) The sum of cropped areas (A.(p)) in the region
must not be greater than the available area (A;):

Np

ZAc(p> S At

p=1

(e) The volume of water to supply plot p (V.(p))
planted with crop ¢ must not be greater than that
required per unit of area cultivated with the best
crop option (D)) times the maximum cultivated area

(Amaac,c(p>>



Vc (P) S DpAmacc,c (p)

(f) The supply of water for the selected crop for each
plot (D.(p)), considering the plot area (A.(p)) culti-
vated, must not be greater than the capacity of the
pipe segment conveyance plot p (Q(p)):

3" D) A) < Q)

(g) The profit from each plot must be greater than that
obtained considering a reduction in the cropped area,
in all the plots, proportional to the water reduction
ratio:

Ac(p) (5P — C(p) = W(p)) >
[Amam,c(p> ($cpmax,c - C(p) - Wmam(p))] ¢
(h) The profit reduction produced by a crop selected

for plots (£(c, p)), must be similar to that of the whole
region:

£le,p) = Amazjc(p) 8P — Clp) = W(p))

P —
e(p) 8P — C(p) — Winaz(p))

(i) The length (L(l)) of link ! is equal to the sum of
lengths (X (I,m)) of its m segments:

D> O X(l,m) = L(l)

(j) The segment lengths and the cropped areas must
be positive:

X(l,m)>0,A.(p) >0

The hydraulic gradient J(I,m) is assumed to obey the
Hazen-Williams equation; namely, J(I, m) satisfies:

J(l,m) =« (%)1'852 D(1,m) 487

where « is a coefficient whose value depends on the
units used, C' is the Hazen-Williams coeflicient, Q(1)
is the flow in link [, and D(l, m) is the diameter of the
m—th pipe segment in link /.

As can be seen from the above equations, the prob-
lem is non-linear due to the gradient head restrictions

in Eq. 2 and Eq. 3 and to the objective function for
the productivity, Eq. 1. Traditional mathematical pro-
gramming techniques have been used, but only after
making several rigorous assumptions. Some of them
include considering the network layout independently
of the overall network design, the linearization of the
objective function in segments, and the assumption
that all the network hydraulic parameters are given
[1,3,4,6,7,8,9].

3 MOAQ MULTIPLE OBJECTIVE
ANT-Q ALGORITHM

In this section, a multiple objective Ant-Q algorithm
is presented. In particular, the algorithm is applied
to the solution of irrigation network design. However,
the approach can be extended to more objectives and
to other optimization problems.

The basic idea behind MOAQ is to have a family of
agents for each objective. Each family tries to opti-
mize an objective considering the solutions found for
the other objectives. In our algorithm, all the families
must have the same number of agents, say m. As in
Ant-Q, all the agents in one family try to find a solu-
tion at the same time. The m solutions found for one
objective in one cycle influence the m successive start-
ing points of the following family (objective). This
process continues with all the families (objectives).
Once all the families have been tried, a reward is given
to the non-dominated solutions (to all the agents in
each family responsible for that solution) that satis-
fied all the constraints. Results violating constraints
are punished and the rest of the solutions are ignored.
The whole process is repeated several times until only
non dominated solutions (Pareto set) satistying all the
constraints are found or a predetermined number of
iterations is satisfied (see table 1).

The main important points of the algorithm can be
summarized as follows:

e The number of objectives is the same as the num-
ber of families

e The number of agents is the same in all the fam-
ilies
e The solution of one ant in one family (objective)

affects (is used in) the solutions of corresponding
agents in other families (objectives)

e Each family run once and rewards and pun-
ishments are given after all the families have
been tried. Process is repeated until only non-
dominated solutions.



Table 1: MOAQ algorithm

Given a list of n families (objectives) and
m agents for each family
Let N be the maximum number of iterations
Let IN = 0 (initialize iteration number)
Initialize all the () values for all the families
Until only non-dominant solutions or IN > N
let IN:=IN+1
fori=1ton
initialize parameters of family(7)
forj=1tom
map to ant j the solution found
with ant ;7 in objective i — 1
find a solution for objective ¢
evaluate solutions found
for j=1tom
if solution(j) violates any constraint
apply punishment to all its components
else if solution(y) is non dominated
apply reward to all its components
introduce solution(j) into Pareto set
remove all dominated solution
from Pareto set
else if solution(j) is dominated
neither apply reward nor punishment

The order given to the objectives depends on the par-
ticular problem. In some cases, the order can be ar-
bitrary. In irrigation networks, it was necessary to
determine first an initial solution for the crops in each
plot to establish the water demands and then deter-
mine the network layout with this solution.

3.1 DESIGN OF IRRIGATION
NETWORKS

For the solution of irrigation water distribution net-
work design, two cooperating families of agents are
proposed. The first family (familyl) searches for the
least cost network layout, while the second family
(family2) selects crops and defines the optimal area
to cultivate for each plot in the region. In particu-
lar, familyl looks for the minimum distance network
layout connecting all the hydraulic nodes that supply
water to each plot in an agricultural region. The pro-
posed network must guarantee that largest volume of
water travels the shortest distance to minimize costs.
Agents in family2 select a crop for each plot region.
This selection determines the water required for each
plot and its productivity. This second family tries to
maximize the global productivity without exceeding

the irrigation water availability and without violating
the restrictions of the problem. To generate compro-
mise solutions a relation between the distance that wa-
ter must travel from the supply to the node and water
volume required in each plot is used to evaluate the
connection possibilities. The most demanding nodes
should be closer to the supply reducing with this the
water transport rate in the links. The criteria where
to move an ant in a family follows the approach given
by [12].

3.2 OPTIMAL NETWORK LAYOUT

For familyl, a heuristic value is used to evaluate the
advisability benefit of connecting node x to node y:

H(%@/)Z&VQ.—TLN

where () is total demanded flux calculated for the
case when node y is connected to the network, $x
is the network cost when node y is connected to the
network, and Ly is the network length when node
y is connected to the network. The heuristic value
favors connections that increase the total demanded
network flux with the lowest cost and shortest length
increments. In addition, a real value Q(z,y) associ-
ated with each connection is used. The combination
of these two parameters is used to select the next node
to be connected whose selection is made under the fol-
lowing rule.

Considering a stochastic value ¢t € [0,1] calculated on
each iteration, and an initial ¢, value equal to £,,,,, that
decreases with each iteration by a value determined
with the formula ¢5(t) = M%LM, where A\ < 1 we
have:

if t >t

max {Qz,y) H(z,y)’} (4)

yEno-nety,rcnety

Otherwise, the next node is selected considering the
probability of each node to be connected, calculated
with the following equation:

if x € nety, Ny € nonety,

zEno_nety

where, k is the kth ant of familyl, net and no_net are,
respectively, lists of connected and disconnected nodes



for a particular agent. During the first iterations, ex-
ploration (with uniform distribution) is favored over
exploitation, and this is gradually reversed on later
iterations. 3 and § are exponents representing the rel-
ative importance of their bases.

Learning Q-values are calculated using the following
update rule:

Q($5y> — (1 - a) ’ Q(xvy>+

max _ Q(p,z)

@ |:T(I7 y> + v zE€no_nety,pEnety

where « is the learning step, « is the discount factor,
r(z,y) is the reward given to the best solution found
in each iteration calculated using the following rule:

1x10°

7"(.’13,1/) = { éfn—dom'$n_dom

(I7 y) € netn_dom
otherwise

where Ly,_qom 18 the length of the network layout eval-
uated as non dominated, $,_gomis the network cost.
Rewards are given after all the agents in both families
have been tried.

3.3 OPTIMIZATION OF THE IRRIGATED
AREA

For each plot there is a list of possible crops. Each crop
has its own productivity function that depends on the
supplied water. As in the network layout optimization
approach, a Q(c, p) value is considered for all the crops
in the list for each plot. A heuristic value, {(C, P) is
used to evaluate the superiority of crop with respect to
the others. It evaluates the profit distribution, which
must be similar in all the plots, avoiding the existence
of predominant crops.

Ac(p) B8P — Clp) — W(p))
P. —

ep) = T O Gl — O] W) € 115

where, list is a list of crop options for each plot p, that
must be considered by ant & in family2 during the opti-
mization process. A numerical value for £(¢,p) can be
determined in many ways. In this paper, £(c,p) is ini-
tially assigned a value close to one, which means that
there is no water restriction and the crop that gen-
erates the greatest economical benefits is selected for
each plot. Normally, this crop consumes large quanti-
ties of water producing infeasible results, so the £(c, p)
value is gradually reduced until feasible solutions are
found.

The action choice rule is similar to Eqgs..4 and 5 . In
this case it has the following form:

if t>t,

maz [Q(c,p) + X (¢, p)] (6)

celistp

Otherwise the next node is selected considering the
probability of connecting the remaining nodes calcu-
lated by the following equation:

if c €listy, N1 € list,

[Q(e,p) + X (c,p)]
> [QU,p) + X(i,p)]

iclist,,

(7)

The Q values are updated using a similar procedure as
in the optimal network layout.

Q(C’p> — (1 - a) ’ Q(Cap>+

Q- {r(qp) + - max Q(i,p)

i€listy

and the reward function is defined by:

’I“(C) _ { p?"sz't ’ Zj Ac(p) S kn_dom

0 otherwise

where profit is given by 2o in Eq.. 1. In the previous
reward function, crop ¢ was selected for each plot by
the agents evaluated as non dominated (k,_qom )-

The algorithm starts with the same number of agents
for each family. Agents in family2 generate feasible
crop configurations and each one is assign them to the
agents in familyl. Given the crop configuration water
demands can be calculated, network layouts produced
and pipe diameters selected for each link in the net-
work. At this stage, network costs can be determined
and the network - crop configuration solutions evalu-
ated. The evaluation is made considering non domi-
nation criteria in the Pareto sense. A reward, calcu-
lated with its corresponding equation, is given to the
links and crops selected in all the non dominated solu-
tions found on each iteration. Two punishment were
considered. If constraints of a single element (plot or
link) are violated, only the element is punished, but if
generalized constraints are violated (constraints con-
sidering summation of values), all the elements will
be punished. The punishment is calculated consider-
ing the normalized difference between the value for the
proposed solution and the boundary value for the con-
straint. After the rewards and punishments are given,
the whole process is repeated until only non-dominated
solutions are found or a given number of iterations are
occurred.



!

m

o]

!

Figure 1: Hydraulic nodes confuguration, e are hy-
draulic nodes and o is the supply node.

4 RESULTS

The algorithm was tested in the design of a 20 hy-
draulic node network configured as shown in Figure 1.
The data for the plots under consideration are listed
in table 2. Table 3 contains the data for the crops used
in the multiple objective optimization problem. The
parameters used in this work were: A\ = 0.9, v = 0.3,
o = 0]-7 ginitial = 097 6 = 107 6= 2-07Tmax = 100
for network optimization, T;,q, = 200 for crop se-
lection and profit optimization, considering 10 agents
for both families. Initial Q values for links in the

N
network optimization where initialized using @ =5
i=1
(L(3) * ¢V;)/(NZ — Ny) for every link between nodes.
Q values for crops in plots were initialized consider-
ing the profit divided by the total irrigated area times
the water demand for the whole region given no wa-
N, N, N,
ter constraints (Q =>_ P(1)/(>. A(i)* Y V(i))) for
i=1 i=1 i=1
each crop in the plots.

Figure 2 shows the final Pareto set in the objectives
space. A better understanding of the algorithm be-
havior can be seen in Figure 3, where the fraction of
non-dominated solutions in the set versus the itera-
tion number is shown. In this case, the plot was con-
structed considering that each individual in the set of
solutions obtained was compared against all the other
solutions, including the solutions in the Pareto set.
The fraction of non-dominated solutions has a con-
tinuous growing behavior. As the problem difficulty
increases, more evaluations are required to get a large
fraction of non-dominated solutions in the Pareto set.
Once the maximum is obtained, it is maintained over
the time, until the algorithm finishes. Thus, the algo-
rithm behavior is stable for some number of iterations.

Table 2: Plot data

Plot No x,y,z Area (ha)
1 10,10,0  Supply
2 20,10,0 20

3 30,10,0 50

4 40,10,0 100
5 50,10,0 30

6 10,20,0 8

7 20,20,0 25

8 30,20,0 40

9 40,20,0 10
10 50,20,0 11
11 10,30,0  10.3
12 20,30,0 154
13 30,30,0  20.5
14 40,300 21
15 50,30,0 201
16 10,40,0 21
17 20,40,0 201
18 30,40,0 55
19 40,40,0 33
20 50,40,0 21

Table 3: Crop data (Taken from FAO 33).

Crop CFC Yield Price
(m3/(s ha)) (ton/ha) ($/ton)
Alfalfa 0.00697 28 10
Banana 0.00958 60 200
Bean 0.00218 2 50
Cabbage 0.00218 35 40
Citrus 0.00523 45 80
Cotton 0.00566 5 100
Grape 0.00348 30 300
Groundnut  0.00305 3 20
Maize 0.00348 9 20
Olive 0.00261 20 300
Onion 0.00239 45 20
Pea 0.00218 3 30
Pepper 0.00392 25 100
Pineapple 0.00436 90 10
Potato 0.00305 35 10
Rice 0.03048 8 5
Safflower 0.00523 4 400
Sorghum 0.00283 5 200
Sugarbeet 0.00327 60 50
Sugarcane 0.01088 100 45
Sunflower 0.00436 3.5 20
Tobacco 0.00261 2.5 20
Tomato 0.00261 65 50
Watermelon 0.00261 35 40
Wheat 0.00283 6 20



0

20000 L
40000 [

60000 | ]

oo

80000 [

ility $

100000 |

ut
oo 8°°

5 120000 |
°
— 140000 |
160000 |
180000 T
i EBGD oo
1 1 1

200000 1
0 2

o
I:IDEI

oo o
1 1 1 1 1

4 6 8 10 12 14 16 18 20
Network cost x 1000

Figure 2: Final Pareto set.

Non dominated fraction

0.0 1

1 1 1 1 1 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400
[teration Number

Figure 3: Non dominated solutions per iteration.

0

20000 [
40000 [

60000 | u}

oo

80000 L

utility $

100000 |

o o
oo B

Solution found
optlimizing objectives

T 120000 L
he
separately

© 140000 L

o
I:IEIEI

160000 |

]
180000 |

EE:‘D oo oo o
200000 1 1 1 1 1 1 1 1 1

0 2 4 6 8 10 12 14 16 18 20
Network cost x 1000

Figure 4: Solution found optimizing objectives sepa-
retely.

The design of irrigation water distribution networks is
an extremely complex problem and, as mentioned in
Section 1, it has been treated and solved considering
very rigorous assumptions. With MOAQ), designs for
irrigation networks were obtained considering not only
the network layout design but also the crop selection
and cultivated area. It is worth noting that all the
solutions found in the Pareto set by MOAQ satisfied
all the constraints, making them feasible in hydraulic
and economic terms.

Figure 4 shows the network design solution obtained
using distributed reinforcement learning considering
the optimization problem separately. The crop se-
lection problem was solved prior to the network op-
timization and considering the hydraulic parameters
obtained with the solution for crops. When the solu-
tion in Figure 4 is compared with those contained in
the Pareto set, Figure 2, many of the latter are much
better for both objective functions. It can be stated
that algorithm performance was good for the solution
of non linear multiple objective optimization problems,
as can be seen with the results reported.

On the other hand, MOAQ facilitates the representa-
tion of multiple objectives and all the restrictions in-
volved without losing expressivity, making it applica-
ble to other multiple objective problems without sig-
nificant changes.



5 CONCLUSIONS AND FUTURE

WORK

Many real world applications require compromise so-
lutions for several conflicting objectives. The use of
traditional mathematical methods has been severely
restricted and alternative techniques need to be tried.
In this paper, an Ant-Q based algorithm called MOAQ
for the solution of multiple objective optimization
problems has been presented. MOAQ uses a family of
agents for each objective and by sharing partial results
between agents, global compromise solutions can be
found. In particular, MOAQ was used to solve design
problems of irrigation water distribution networks.

As future work, we would like to test MOAQ with
more objectives. In particular for the design of irri-
gation networks, we could try to minimize the length
of the network with the following objective: min z3 =
> Li,j)- This is needed because the minimum cost
network does not always has the minimum length. We
would also like to test MOAQ on other multiple ob-
jective optimization problems, some of which are sug-
gested in [5]and[14].
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