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Introduction

Machine Learning tries to build programs that
automatically improve their performance with
experience

Learning is perhaps the most distinctive characteristic
of human intelligence

Since the beginning of computing, researchers asked
themselves whether machines could be able to learn:
“what we want is a machine that can learn from
experience” (A. Turing, 1947)

Understanding how machines learn may help us to
understand human learning
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Introduction

In order to solve problems we create programs/models

Some tasks are difficult to formalize, there are not
available experts, there might be too much data, ... =
ML

ML automatically generates programs/models from data
This opens an almost endless possible applications
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Taxonomy

Authors classify ML approaches from different perspectives:
e Underlying mathematical model

Nature of the data

Task being solved

Suppositions on the model
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Underlying Mathematical Model

@ Geometric Models: The examples define a space of
instances where geometric models can be build, e.g.,
evaluate distances, search for hyper-planes, find
prototypes, etc.

e Usually the attributes are numeric so it is easy to use
geometric concepts like lines, planes, and distances,
and to do linear transformations and apply different
distance measures

e Some ML examples are: Linear classifiers, k-nearest

neighbors, k-means, clustering in general, SVMs, kernel
classifiers, classifiers based on prototypes, etc.
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Underlying Mathematical Model

® Probabilistic Models: In ML we want to find the best
(most probable) hypothesis given the data

e If P(D) = a priori probability of the data (i.e., which data
is more probable than other) and P(D | h) = probability
of the data given the hypothesis, what we want to
estimate is: P(h | D), the posterior probability of h given
the data

e This can be estimated using Bayes rule:

P(D | h)P(h)

P(h| D) = =g
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Underlying Mathematical Model

¢ To estimate the most probable hypothesis or MAP
(maximum a posteriori hypothesis):

hwap = argmaxpcy (P(h| D))
~ argmases (220

~ argmaxpeq (P(D | h)P(h))
since P(D) is constant and independent of h.

¢ |f we suppose that all the hypotheses are equally likely,
we end-up with the maximum likelihood hypothesis:

huw = argmaxper (P(D | h))

e Under this mathematical framework it is common to use
concepts such as a priori and posterior probabilities,
maximum likelihood, Bayes theorem, etc.
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Underlying Mathematical Model

® Logical Models: Models that can be expressed using
logic, which includes conjunctions, disjunctions,
negation, etc.

¢ They are also known as declarative models and can be
used to provide explanations

¢ |t is common to use logic concepts like complete and
consistent

e ML examples are classification rules, decision trees,
ILP, frequent patterns, subgroup discovery, etc.
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Nature of the Data

This is perhaps the most common ML classification:

© Supervised Learning: There is X data associated with
a label (class) Y and the goal is to find a model that
given an instance of X predicts a label in Y. This
includes classification and regression tasks, and a
commonly used concept is over-fitting

® Unsupervised Learning: In this case there are no
associated labels and the goal is to find an inherent
structure in the data to organize it by similarity or
relations among variables

©® Reinforcement Learning: Learns how to map states to
actions in order to solve a sequential decision problem,
through an iterative process of exploring the
environment
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ML Tasks

Description: Obtains descriptions of the data,
produces summaries, find prototypical examples, etc.

Prediction: Performs classification (discrete labels) and
estimation or regression (continuous labels) tasks

Segmentation: Divides the data into groups or clusters

Dependency analysis: Finds dependencies among
variables and their values

Anomaly detection and exireme cases
Control: Learns which action to take at each state
Optimization and search: Not always considered ML
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Suppositions over the models

e Parametric: The model summarizes the data with a
finite set of parameters

¢ Non parametric: There are no strong suppositions in
terms of the function or model that is induced
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Parametric Models

These algorithms follow two steps:
@ Select the function

® Learn the values of the coefficients of the function from
data
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Parametric Models

A large set of functions can be used, for instance:
¢ Linear functions

Logistic regression

Perceptrons

Naive Bayes

Simple neural networks
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Parametric Models

Advantages:
e Simple: Easy to understand and interpret their results
e Speed: They are learned quickly
e Data: In general needs fewer data

Disadvantages:

e Restrictive: The selected function constrains what can
be learned

¢ Limited Complexity: There are adequate, in general, to
simpler problems

e Fitting: It is possible that the selected model does not
properly fit the underlying function
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Non Parametric Models

¢ Make no assumptions on the shape of the function,
which is determined by the data
e Some examples are:

® k-nearest neighbors
® Decision trees

e SVM

® Bayesian learning

[ ]
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Non Parametric Models

Advantages:
¢ Flexible: Can create a wide range of functions

e Power: They do not make strong assumptions over the
models

¢ Performance: Tend to obtain better performance
Disadvantages:

e Data: Require large quantities of data

e Speed: Can take longer to learn

e Adjustments: They are prone to overfit
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Parametric Models

e |et us suppose that we know the distribution (e.g.,
Gaussian)

e The advantages of the parametric models is that they
tend to depend on few parameters (e.g., mean and
variance)

¢ To estimate the parameters we can use maximum
likelihood
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Maximum Likelihood Estimate

e Suppose an i.i.d. (independent and identically
distributed) sample set X = {x;}},

e Suppose x; is an instance taken from a family of known
distributions, p(x|©), defined by parameters ©

e What we want to estimate is © such that it is most
probable to sample x from p(x|©)
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Maximum Likelihood Estimate

¢ Since x; is independent, the likelihood of the
parameters given X, can be evaluated by the product of
the individual likelihoods:

N
(81X) = p(X|©) = [ pxil®)
t=1

¢ To obtain the maximum likelihood, we can take the
logarithm and change the product into a summation:

L(©]X) = log I(X|©) = Zlogpxt|@)

e For two classes we can use a Bernoulli distribution; for
N classes we can use a multimodal Gaussian
distribution
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Bernoulli Distribution

e The probability of an event to occur (X = 1) is p and
that the event will not occur (X =0)is1—p

P(X) :pX(1 _p)1_X7X S {071}

¢ The expected value and variance of X are:

EX]=) xp(x)=1-p+0-(1-p)=p

Var(X) = Y _(x — E[X])*p(x) = p(1 — p)

X
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Bernoulli Distribution

We have only one parameter p, and we want to
estimate its value p

The log likelihood is:

L(p|X) = log pr’ —p) X

=Y xilogp+(N—_ x)log(1 - p)
t t

We take the derivative with respect to p to maximize,
dl/dp=0

N thf

P="N

Which is what it is expected
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Normal Distribution
e Var(x) =02 E[X] =p

1 (x — u)z]
X) = exp | —
p(x) o, &XP [ 552
® The log likelihood is:
N > (e — p)?
L(,u,O'|X) = —E |Og(27T) — NIOgO' — T

¢ Taking the partial derivatives of each argument and
making them equal to zero:

DX
N

2 — Zt(XtN— m)?

m
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Parametric Classification

¢ Following a Bayesian approach:
p(x|Ci)p(Ci)
p(x)

¢ Since the denominator is constant, the discrimination
function is:

p(Cilx) =

9i(x) = p(x|C))p(C;)

e Or equivalently:

9i(x) = log p(x|C;) + log p(C;)
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Parametric Classification

e If we suppose that p(x|C;) is Gaussian:

1 X i
X|C) = ——exp | ——F~—
P(x|Ci) o p[ 52
e The discrimination function is:

1 X — 11j)?
i(x) = —31og(2x) — fogo ~ "1 1 ogp(c)
i

e We can estimate the mean, standard deviation, and
P(C;) from the data, and substitute:

1 X — m;)?
9i(x) = —zlog(2) — logs; — % + logp(Ci)

1
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Parametric Classification

¢ The first term is constant, and if we assume that the
probabilities of the classes and the variance are
constant:

gi(x) = —(x — m)?
e We can then assign the class to the element that is
closer to its mean:
e C;si|x — mj| = ming|x — mg|
e With two classes, the midpoint is the decision threshold:
91(x) = g2(x)

(x = m)? = (x — my)?

M 4mp
N 2
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Regression

¢ In regression the output or dependent variable is a
function of the inputs or independent variables:
r="f(x)+e

¢ f(x) is an unknown function that we want to estimate
with g(x|©), defined by a set of parameters ©

e |f we suppose that e is Gaussian noise with a zero mean
and constant variance (¢ ~ N (0, 0?)), and placing our
estimator g(-) instead of f(-):

p(r|x) ~ N(g(x]©),0?)
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Regression

e Again, we want to find the parameters © with maximum
likelihood

e We have a set of data (x, r) coming from certain density
distribution p(x, r), that we can write as:
p(x,r) = p(r(x)p(x)

¢ and the logarithm of its likelihood is:

N
L(8]X) = log [ | p(xt, )
t=1

N N

= log [ [ p(rilxt) + log | [ p(x:)

t=1 t=1
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Regression

¢ We can ignore the second term that does not depend
on our estimator:

N _ 2
L(O]X) = |0gH \/21_7“7 exp [—%]
1 \N N
= log <—\/§0> [ 2 a(x¢|©)) 1

N
1
= —Nlog(vamo) — 55 2 (rr — 9(xi|®))?
e The first term, as well as 1/02, are independent of the
parameters, which reduces to the most commonly used
loss function:
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Regression

¢ For intances, in linear regression, we have:
9(xt|wi, wo) = wix; + Wo
¢ |f we take the derivative of the loss function with respect

to wy and wy:
D r=Nwp+w ) x
t

t
Z nxi = wy ZX{ -+ Wy Z(X{)z
t t t

¢ Which can be rewritten in a matrix form as: Aw =y

where: N >
_ Xt
A= s s |

oL e[S
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Regression

Which can be solved as: w = A~y

The same procedure can be extended to polynomial
regressions and framing them as: Ax = y

Roughly the same is done in multivariate problems

The order of the polynomials is important. Higher order
polynomials have more variance with small changes in
the data, but can fit better the data

There is a tradeoff between bias and variance
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Cross Entropy

¢ Another common application is to learn a probability
function with two possible outcomes (e.g.,0 0 1)

e |f the data (D) are: D = {(x1,04),...,(Xm,dm)}, where
d; is the observed value (0 or 1) of f(x;), and assuming
that the data elements are independent:

P(D| 1) = [T P0xdi | b

i=1
e If x; is independent of h

m

P(D | h) =[] P(d; | h,x;)P(x;)

i=1
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Cross Entropy
e Since his the probability of the target function
P(d; =1 h,x;) = h(x;), and in general:

' N h(X,‘) if d,':1
P(d'””x')—{ 1—hx) ifdi=0

e This can be written as:
P(d; | h,x;) = h(x)%(1 — h(x;))' =%

e So:

P(D | h) = ﬁ h(x)?(1 = h(x))' =9 P(x)

i=1
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Cross Entropy

e The maximum likelihood is then:

hw = argmaxnen <ﬁ h(x)% (1 - h(Xi))1_d’P(X/)>

i=1

¢ |gnoring the last term (that does not depend on h), we
have:

m

hw = argmaxney <H h(x)%(1 - h(Xi))1_d’>

i=1

e Which is a generalization of the binomial distribution
(e.g., describes the probability of (di, ..., dn) results
when tossing m coins, assuming that each coin has a
probability of h(x;) of being heads)
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Cross Entropy

¢ |n the Binomial distribution it is assumed that all coins
have the same probability of heads

e Taking (again) the logarithm:

hu = argmaxncy (Zm: diln(h(x;)) + (1 — dj)In(1 — h(X/))>

i=1

e Which due to its similarity to the entropy measure, its
negative is called cross entropy.
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Loss Functions

¢ The loss functions are used to optimize a model
(minimize its loss)
® The two most commonly used loss functions in ML are:
® Mean square error (MSE o L2): Regression

N
1 ~\2
MSE = ) ;(yf - i)
® Cross Entropy: Classification
For 2 classes:
CE(y,p) = —ylog(p) — (1 — y)log(1 — p)
For m classes:

CE(y,p) = Zyc/og p.c)

c=1

e Other loss functions include: Hinge, Huber,
Kullback-Leibler, RMSE, MAE (L1)
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