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Introduction

• Machine Learning tries to build programs that

automatically improve their performance with

experience

• Learning is perhaps the most distinctive characteristic

of human intelligence

• Since the beginning of computing, researchers asked

themselves whether machines could be able to learn:

“”what we want is a machine that can learn from

experience” (A. Turing, 1947)

• Understanding how machines learn may help us to

understand human learning
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Introduction

• In order to solve problems we create programs/models

• Some tasks are difficult to formalize, there are not

available experts, there might be too much data, . . . ⇒
ML

• ML automatically generates programs/models from data

• This opens an almost endless possible applications
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Taxonomy

Authors classify ML approaches from different perspectives:

• Underlying mathematical model

• Nature of the data

• Task being solved

• Suppositions on the model
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Underlying Mathematical Model

1 Geometric Models: The examples define a space of

instances where geometric models can be build, e.g.,

evaluate distances, search for hyper-planes, find

prototypes, etc.

• Usually the attributes are numeric so it is easy to use

geometric concepts like lines, planes, and distances,

and to do linear transformations and apply different

distance measures

• Some ML examples are: Linear classifiers, k-nearest

neighbors, k-means, clustering in general, SVMs, kernel

classifiers, classifiers based on prototypes, etc.
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Underlying Mathematical Model

2 Probabilistic Models: In ML we want to find the best

(most probable) hypothesis given the data

• If P(D) = a priori probability of the data (i.e., which data

is more probable than other) and P(D | h) = probability

of the data given the hypothesis, what we want to

estimate is: P(h | D), the posterior probability of h given

the data

• This can be estimated using Bayes rule:

P(h | D) =
P(D | h)P(h)

P(D)
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Underlying Mathematical Model

• To estimate the most probable hypothesis or MAP

(maximum a posteriori hypothesis):

hMAP = argmaxh∈H (P(h | D))

= argmaxh∈H

(

P(D|h)P(h)
P(D)

)

≈ argmaxh∈H (P(D | h)P(h))

since P(D) is constant and independent of h.

• If we suppose that all the hypotheses are equally likely,

we end-up with the maximum likelihood hypothesis:

hML = argmaxh∈H (P(D | h))

• Under this mathematical framework it is common to use

concepts such as a priori and posterior probabilities,

maximum likelihood, Bayes theorem, etc.
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Underlying Mathematical Model

3 Logical Models: Models that can be expressed using

logic, which includes conjunctions, disjunctions,

negation, etc.

• They are also known as declarative models and can be

used to provide explanations

• It is common to use logic concepts like complete and

consistent

• ML examples are classification rules, decision trees,

ILP, frequent patterns, subgroup discovery, etc.
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Nature of the Data

This is perhaps the most common ML classification:

1 Supervised Learning: There is X data associated with

a label (class) Y and the goal is to find a model that

given an instance of X predicts a label in Y . This

includes classification and regression tasks, and a

commonly used concept is over-fitting

2 Unsupervised Learning: In this case there are no

associated labels and the goal is to find an inherent

structure in the data to organize it by similarity or

relations among variables

3 Reinforcement Learning: Learns how to map states to

actions in order to solve a sequential decision problem,

through an iterative process of exploring the

environment
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ML Tasks

• Description: Obtains descriptions of the data,

produces summaries, find prototypical examples, etc.

• Prediction: Performs classification (discrete labels) and

estimation or regression (continuous labels) tasks

• Segmentation: Divides the data into groups or clusters

• Dependency analysis: Finds dependencies among

variables and their values

• Anomaly detection and extreme cases

• Control: Learns which action to take at each state

• Optimization and search: Not always considered ML
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Suppositions over the models

• Parametric: The model summarizes the data with a

finite set of parameters

• Non parametric: There are no strong suppositions in

terms of the function or model that is induced
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Parametric Models

These algorithms follow two steps:

1 Select the function

2 Learn the values of the coefficients of the function from

data
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Parametric Models

A large set of functions can be used, for instance:

• Linear functions

• Logistic regression

• Perceptrons

• Naı̈ve Bayes

• Simple neural networks

• ...
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Parametric Models

Advantages:

• Simple: Easy to understand and interpret their results

• Speed: They are learned quickly

• Data: In general needs fewer data

Disadvantages:

• Restrictive: The selected function constrains what can

be learned

• Limited Complexity: There are adequate, in general, to

simpler problems

• Fitting: It is possible that the selected model does not

properly fit the underlying function
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Non Parametric Models

• Make no assumptions on the shape of the function,

which is determined by the data

• Some examples are:
• k-nearest neighbors
• Decision trees
• SVM
• Bayesian learning
• ...
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Non Parametric Models

Advantages:

• Flexible: Can create a wide range of functions

• Power: They do not make strong assumptions over the

models

• Performance: Tend to obtain better performance

Disadvantages:

• Data: Require large quantities of data

• Speed: Can take longer to learn

• Adjustments: They are prone to overfit
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Parametric Models

• Let us suppose that we know the distribution (e.g.,

Gaussian)

• The advantages of the parametric models is that they

tend to depend on few parameters (e.g., mean and

variance)

• To estimate the parameters we can use maximum

likelihood
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Maximum Likelihood Estimate

• Suppose an i.i.d. (independent and identically

distributed) sample set X = {xt}N
t=1

• Suppose xt is an instance taken from a family of known

distributions, p(x |Θ), defined by parameters Θ

• What we want to estimate is Θ such that it is most

probable to sample x from p(x |Θ)
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Maximum Likelihood Estimate

• Since xt is independent, the likelihood of the

parameters given X , can be evaluated by the product of

the individual likelihoods:

l(Θ|X ) ≡ p(X |Θ) =
N
∏

t=1

p(xt |Θ)

• To obtain the maximum likelihood, we can take the

logarithm and change the product into a summation:

L(Θ|X ) ≡ log l(X |Θ) =

N
∑

t=1

log p(xt |Θ)

• For two classes we can use a Bernoulli distribution; for

N classes we can use a multimodal Gaussian

distribution
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Bernoulli Distribution

• The probability of an event to occur (X = 1) is p and

that the event will not occur (X = 0) is 1 − p

P(x) = px(1 − p)1−x , x ∈ {0,1}

• The expected value and variance of X are:

E [X ] =
∑

x

xp(x) = 1 · p + 0 · (1 − p) = p

Var(X ) =
∑

x

(x − E [X ])2p(x) = p(1 − p)
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Bernoulli Distribution

• We have only one parameter p, and we want to

estimate its value p̂

• The log likelihood is:

L(p|X ) = log
N
∏

t=1

pxt (1 − p)1−xt

=
∑

t

xt log p + (N −
∑

t

xt) log(1 − p)

• We take the derivative with respect to p to maximize,

dL/dp = 0

p̂ =

∑

t xt

N

• Which is what it is expected
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Normal Distribution

• Var(x) ≡ σ2,E [X ] = µ

p(x) =
1√
2πσ

exp

[

−(x − µ)2

2σ2

]

• The log likelihood is:

L(µ, σ|X ) = −N

2
log(2π)− N log σ −

∑

t(xt − µ)2

2σ2

• Taking the partial derivatives of each argument and

making them equal to zero:

m =

∑

t xt

N

s2 =

∑

t(xt − m)2

N
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Parametric Classification

• Following a Bayesian approach:

p(Ci |x) =
p(x |Ci)p(Ci)

p(x)

• Since the denominator is constant, the discrimination

function is:

gi(x) = p(x |Ci)p(Ci)

• Or equivalently:

gi(x) = log p(x |Ci) + log p(Ci)
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Parametric Classification

• If we suppose that p(x |Ci) is Gaussian:

p(x |Ci) =
1√

2πσi

exp

[

−(x − µi)
2

2σ2
i

]

• The discrimination function is:

gi(x) = −1

2
log(2π)− logσi −

(x − µi)
2

2σ2
i

+ logp(Ci)

• We can estimate the mean, standard deviation, and

P(Ci) from the data, and substitute:

gi(x) = −1

2
log(2π)− logsi −

(x − mi)
2

2s2
i

+ logp(Ci)
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Parametric Classification

• The first term is constant, and if we assume that the

probabilities of the classes and the variance are

constant:

gi(x) = −(x − mi)
2

• We can then assign the class to the element that is

closer to its mean:

• Ci si |x − mi | = mink |x − mk |
• With two classes, the midpoint is the decision threshold:

g1(x) = g2(x)

(x − mi)
2 = (x − m2)

2

x =
m1 + m2

2
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Regression

• In regression the output or dependent variable is a

function of the inputs or independent variables:

r = f (x) + ǫ

• f (x) is an unknown function that we want to estimate

with g(x |Θ), defined by a set of parameters Θ

• If we suppose that ǫ is Gaussian noise with a zero mean

and constant variance (ǫ ∼ N (0, σ2)), and placing our

estimator g(·) instead of f (·):

p(r |x) ∼ N (g(x |Θ), σ2)
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Regression

• Again, we want to find the parameters Θ with maximum

likelihood

• We have a set of data (x , r) coming from certain density

distribution p(x , r), that we can write as:

p(x , r) = p(r |x)p(x)

• and the logarithm of its likelihood is:

L(Θ|X ) = log

N
∏

t=1

p(xt , rt )

= log

N
∏

t=1

p(rt |xt) + log

N
∏

t=1

p(xt)
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Regression

• We can ignore the second term that does not depend
on our estimator:

L(Θ|X) = log

N
∏

t=1

1√
2πσ

exp

[

− (rt − g(xt |Θ))2

2σ2

]

= log

(

1√
2πσ

)N

exp

[

− 1

2σ2

N
∑

t=1

(rt − g(xt |Θ))2

]

= −N log(
√

2πσ)− 1

2σ2

N
∑

t=1

(rt − g(xt |Θ))2

• The first term, as well as 1/σ2, are independent of the

parameters, which reduces to the most commonly used

loss function:

= −1

2

N
∑

t=1

(rt − g(xt |Θ))2
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Regression

• For intances, in linear regression, we have:

g(xt |w1,w0) = w1xt + w0

• If we take the derivative of the loss function with respect

to w1 and w0:
∑

t

rt = Nw0 + w1

∑

t

xt

∑

t

rtxt = w0

∑

t

xt + w1

∑

t

(xt)
2

• Which can be rewritten in a matrix form as: Aw = y

where:

A =

[

N
∑

t xt
∑

t xt

∑

t(xt)
2

]

w =

[

w0

w1

]

; y =

[ ∑

t rt
∑

t rtxt

]
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Regression

• Which can be solved as: w = A−1y

• The same procedure can be extended to polynomial

regressions and framing them as: Ax = y

• Roughly the same is done in multivariate problems

• The order of the polynomials is important. Higher order

polynomials have more variance with small changes in

the data, but can fit better the data

• There is a tradeoff between bias and variance
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Cross Entropy

• Another common application is to learn a probability

function with two possible outcomes (e.g., 0 o 1)

• If the data (D) are: D = {(x1,d1), . . . , (xm,dm)}, where

di is the observed value (0 or 1) of f (xi), and assuming

that the data elements are independent:

P(D | h) =
m
∏

i=1

P(xi ,di | h)

• If xi is independent of h

P(D | h) =

m
∏

i=1

P(di | h, xi )P(xi )
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Cross Entropy

• Since h is the probability of the target function

P(di = 1 | h, xi) = h(xi), and in general:

P(di | h, xi ) =

{

h(xi) if di = 1

1 − h(xi) if di = 0

• This can be written as:

P(di | h, xi) = h(xi)
di (1 − h(xi))

1−di

• So:

P(D | h) =
m
∏

i=1

h(xi )
di (1 − h(xi))

1−di P(xi )
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Cross Entropy

• The maximum likelihood is then:

hML = argmaxh∈H

(

m
∏

i=1

h(xi)
di (1 − h(xi))

1−di P(xi )

)

• Ignoring the last term (that does not depend on h), we

have:

hML = argmaxh∈H

(

m
∏

i=1

h(xi )
di (1 − h(xi))

1−di

)

• Which is a generalization of the binomial distribution

(e.g., describes the probability of (d1, . . . ,dm) results

when tossing m coins, assuming that each coin has a

probability of h(xi ) of being heads)
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Cross Entropy

• In the Binomial distribution it is assumed that all coins

have the same probability of heads

• Taking (again) the logarithm:

hML = argmaxh∈H

(

m
∑

i=1

di ln(h(xi )) + (1 − di)ln(1 − h(xi))

)

• Which due to its similarity to the entropy measure, its

negative is called cross entropy.
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Loss Functions

• The loss functions are used to optimize a model

(minimize its loss)
• The two most commonly used loss functions in ML are:

• Mean square error (MSE o L2): Regression

MSE = −1

2

N
∑

t=1

(yi − ŷi)
2

• Cross Entropy: Classification

For 2 classes:

CE(y , p) = −y log(p) − (1 − y) log(1 − p)

For m classes:

CE(y , p) = −
m
∑

c=1

yc log(p
,
c)

• Other loss functions include: Hinge, Huber,

Kullback-Leibler, RMSE, MAE (L1)
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