Submodular function maximization

Hugo Jair Escalante

Outline

- Set functions
- Submodularity and monotonicity
- Maximization of submodular functions
- Applications: CSMMI
- Dealing with streams
- Experiments & results
- Discussion and final remarks

Set functions

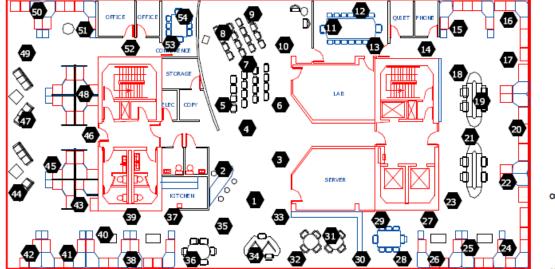
• Functions of the form:

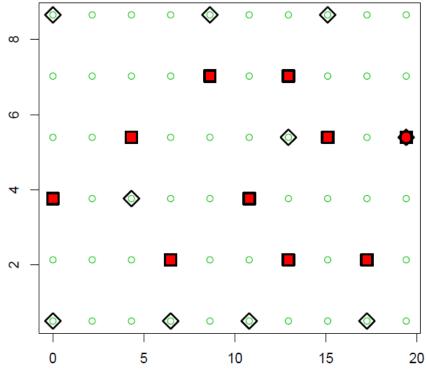
$$f: 2^V \to \mathbb{R}$$

With V a finite set, and assuming $f(\Phi)=0$

 Example: consider the problem of placing sensors to cover some space represented by locations (V), and f(S) the utility obtained when placing sensors at locations S

Set functions





Submodularity

Definition 1.1 (Discrete derivative) For a set function $f : 2^V \to \mathbb{R}$, $S \subseteq V$, and $e \in V$, let $\Delta_f(e \mid S) := f(S \cup \{e\}) - f(S)$ be the *discrete derivative* of f at S with respect to e.

Definition 1.2 (Submodularity) A function $f : 2^V \to \mathbb{R}$ is submodular if for every $A \subseteq B \subseteq V$ and $e \in V \setminus B$ it holds that

 $\Delta(e \mid A) \ge \Delta(e \mid B) \,.$

Equivalently, a function $f: 2^V \to \mathbb{R}$ is submodular if for every $A, B \subseteq V$,

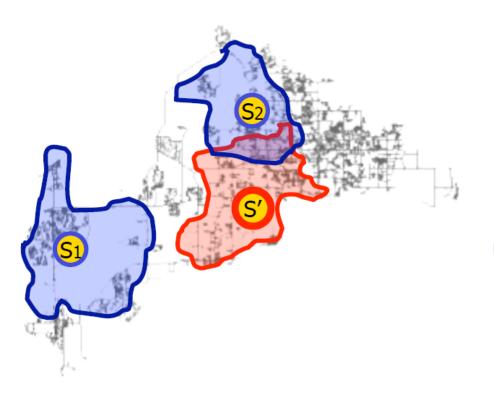
 $f(A \cap B) + f(A \cup B) \le f(A) + f(B).$

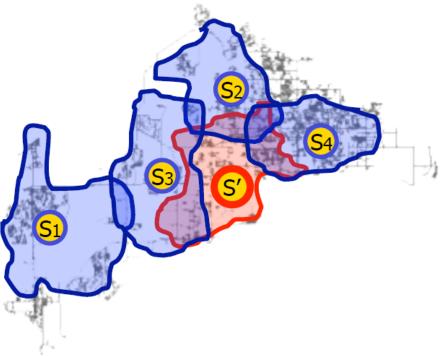
Submodularity

Definition 1.3 (Monotonicity) A function $f: 2^V \to \mathbb{R}$ is monotone if for every $A \subseteq B \subseteq V$, $f(A) \leq f(B)$.

f is called monotone iff for all e and S it holds that: $\triangle_f(e|S) \ge 0$

Submodular functions





(a) Adding s' to set $\{s_1, s_2\}$ (b) Adding s' to superset $\{s_1, \dots, s_4\}$ $\Delta(s' \mid \{s_1, s_2\}) \ge \Delta(s' \mid \{s_1, \dots, s_4\})$

Diminishing returns effect in the problem of placing sensors in a water distribution network to detect contaminants: *if more sensors are already placed there is more overlap, and less gain utility. Selecting any given element earlier helps more than selecting it later.*

Submodular functions

• Some submodular functions:

Modular functions

for all $A, B \subseteq V$ it holds that $f(A) + f(B) = f(A \cup B) + f(A \cap B)$.

Weighted coverage functions

$$f(S) := g\Big(\bigcup_{v \in S} v\Big) = \sum_{x \in \bigcup_{v \in S} v} w(x),$$

- Facility location

$$f(S) = \sum_{i=1}^{m} \max_{j \in S} M_{i,j}.$$
$$H(\mathbf{X}_S) = -\sum_{i=1}^{m} P(\mathbf{x}_S) \log_2 P(\mathbf{x}_S)$$

 \mathbf{x}_S

– Entropy

$$f(S) = I(\mathbf{Y}; \mathbf{X}_S) = H(\mathbf{Y}) - H(\mathbf{Y} \mid \mathbf{X}_S)$$

- Submodular functions arise in several domains and problems (e.g., max-coverage, facility location, mutual information, ...)
- Consider the problem of **data summarization**: selecting representative subsets of manageable size out of large data sets
 - Exemplar-based clustering, document and corpus summarization, recomender systems, active set selection

Many data summarization tasks can be formulated as:

$$\max_{S \subseteq V} f(S) \quad \text{s.t.} \quad |S| \le k$$

- Let S* denote the optimal solution, with value: $\label{eq:optimal} \operatorname{OPT} = f(S^*)$
- This problem is NP-hard for many classes of submodular functions.

• Nemhauser et al. showed that a simple greedy (polynomial time) algorithm is highly effective:

- Start with the empty set $S_0 = \Phi$ - Iterate k-times over the whole data set: $S_i = S_{i-1} \cup \{ \arg \max_{e \in V} \Delta_f(e|S_{i-1}) \}$

 Nemhauser et al. proved that: f(S^g) ≥ (1 − 1/e)OPT (the solution is provably within 63% of the optimal?)

For several classes of monotone submodular functions it is known that this is the best approximation guarantee that one can hope.

• Proof: Nemhauser et al. 1978

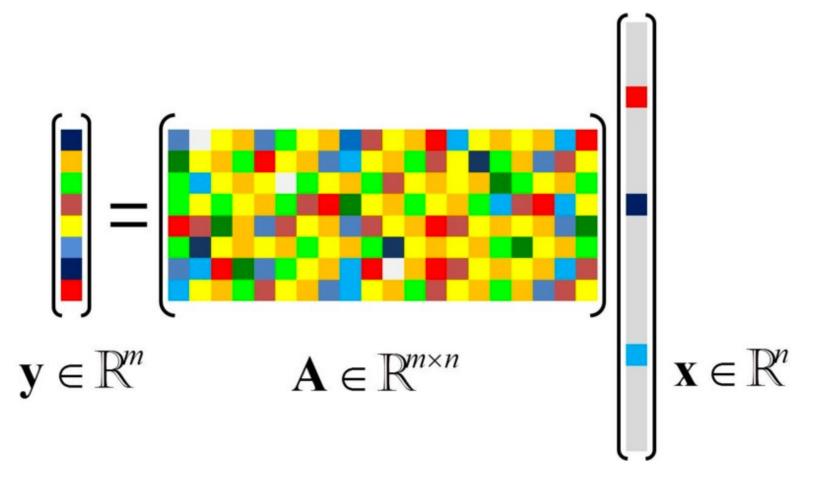
Many data summarization

- Sample applications:
 - Outbreak detection
 - News article recommendation
 - Non-parametric learning
 - Document and corpus summarization
 - Network inference
 - Viral marketing

 Problem: to learn a dictionary of codewords to be used for the SC representation of videos for action and gesture recognition

Jun Wan, Vassilis Athitsos, Pat Jangyodsuk, Hugo Jair Escalante, Qiuqi Ruan, Isabelle Guyon. **CSMMI: Class-Specific Maximization of Mutual Information for Action and Gesture Recognition.** IEEE Trans. Image Processing, Vol 23(7):3152--3165

Sparse representations: Idea, to learn a dictionary



Sparse representations: Idea, to learn a dictionary

$$\Phi_i^0 = [\phi_1, \ldots \phi_j, \ldots \phi_K], \phi_j \in \Re^n$$

• Such that:

$$\min_{\Phi_i^0, X_{\Phi_i^0}} \{ \|Y_i - \Phi_i^0 X_{\Phi_i^0}\|_F^2 \} \quad s.t. \ \|x_j\|_0 \le T$$

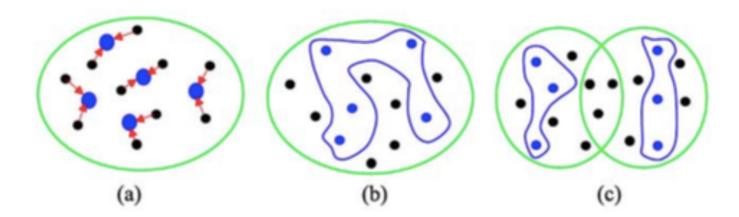
 The reconstruction error with class specific dictionaries is used as classifier

$$i_Y = \underset{i \in [1,2,...,C]}{\arg \min} \|Y - \Phi_i^* \widehat{X_{Y_i}}\|_2^2$$

$$\widehat{X_{Y_i}} = \underset{X_{Y_i}}{\arg\min} \|Y - \Phi_i^* X_{Y_i}\|_F^2 \quad s.t. \ \|x\|_0 \le T$$

• Related works, learn dictionaries regardless of the classes (starting from KSVD)

• CSMMI: to learn class specific dictionaries, maximizing MI



- Key idea:
 - 1. Learn class specific dictionaries of size K (KSVD) $\Phi_i^0 = [\phi_1, \dots \phi_j, \dots \phi_K], \phi_j \in \Re^n$
 - 2. Select a subset of codewords , k<K for each class

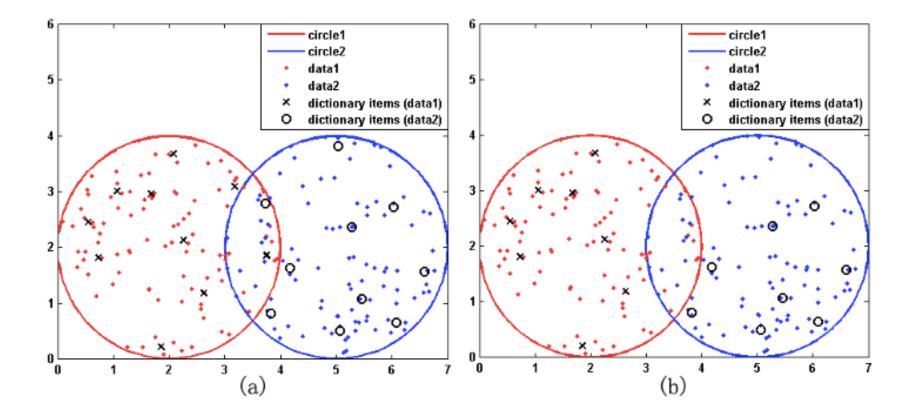
$$\Phi_{1}^{*}, \Phi_{2}^{*}, \dots, \Phi_{C}^{*} (|\Phi_{i}^{*}| = k, k < K).$$

$$\underset{\phi_{i} \in \Phi_{i}^{0} \setminus \Phi_{i}^{*}}{\operatorname{intra-class MI term(\tau_{1})}}$$

$$\overline{I(\Phi_{i}^{*} \cup \phi_{i}; \Phi_{i}^{0} \setminus (\Phi_{i}^{*} \cup \phi_{i})) - I(\Phi_{i}^{*}; \Phi_{i}^{0} \setminus \Phi_{i}^{*})}$$

$$\underset{-[I(\Phi_{i}^{*} \cup \phi_{i}; \Phi^{0} \setminus \Phi_{i}^{0}) - I(\Phi_{i}^{*}; \Phi^{0} \setminus \Phi_{i}^{0})]}{\operatorname{inter-class MI term(\tau_{2})}}$$

$$(3)$$



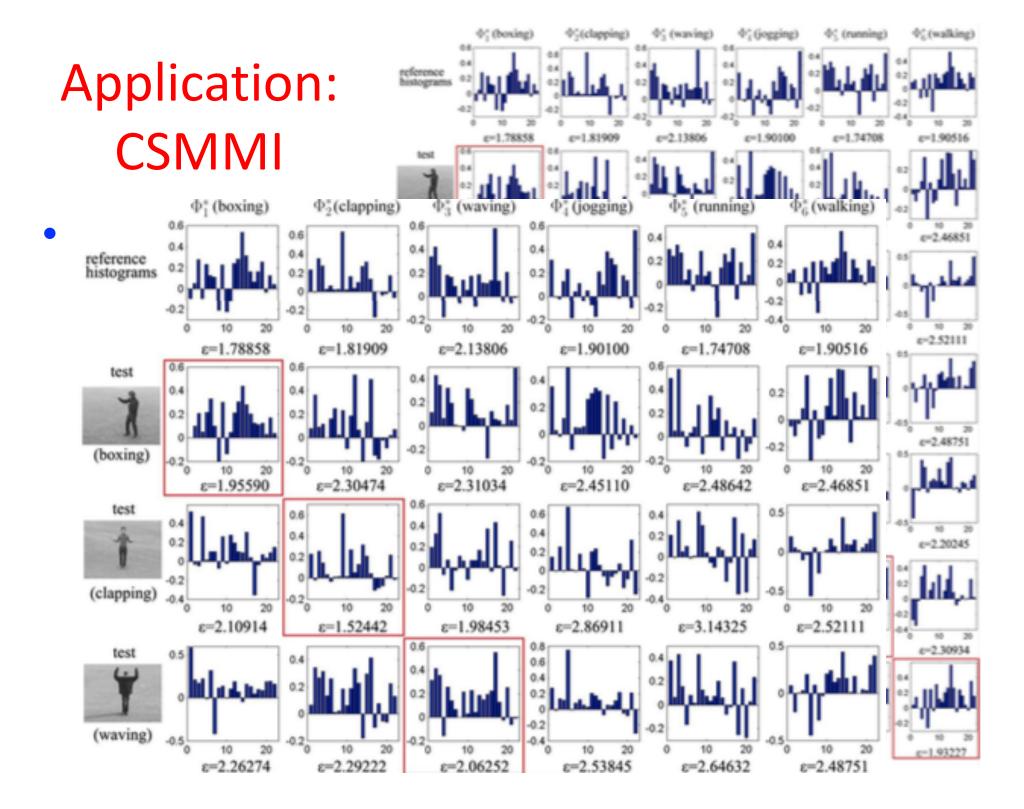
• Experimental results

COMPARISON ON THE WEIZMANN ACTION DATASET

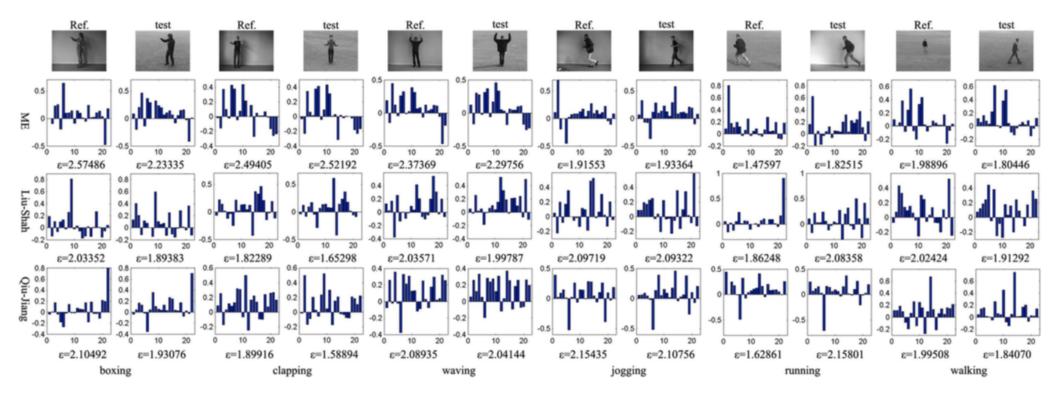
Papers	Methods	Dictionary	Average
		Size	Accuracy
[38]	Space-time shape		97.83%
[39]	Multiple instance learning		95.75%
	+kinematic feature		
[37]	Sparse linear approximation	proximation —	
	+ feature covariance matrices		
[26]	prototype trees	—	100%
[22]	pLSA+cuboid	1200	90%
[1]	Concatenated dictionary 256		98.9%
	+LMP		
[40]	Self-Similarities		95.3%
our method	CSMMI+STIP	140	100%

COMPARISON ON THE KTH ACTION DATASET

Papers	Methods	Dictionary	Average
		Size	Accuracy
[29]	non-linear SVM+STIP	4000	91.8%
[39]	multiple instance learning	—	87.7%
	+kinematic feature		
[41]	probabilistic spatiotemporal	—	88.0%
	voting		
[37]	sparse linear approximation		97.4%
	+Feature Covariance Matrices		
[26]	prototype trees	—	95.77%
[42]	Independent subspace analysis	—	93.9%
our method	CSMMI+STIP	365	98.83%



Experimental results



• Experimental results

TABLE III

COMPARISON ON THE UCF SPORTS ACTION DATASET

Papers	Methods	Dictionary	Average
		Size	Accuracy
[30]	Maximum Average	_	69.2%
	Correlation Height		
[42]	Independent subspace analysis	_	86.5%
[1]	class-specific dictionary	256	83.8%
	+cuboid		
[43]	hierarchy of discriminative	300	87.27%
	shape and motion features		
[44]	hough transform-based voting	—	86.6%
[3]	ME+STIP	325	81.33%
[6]	Liu-Shah+STIP	250	84%
[3]	Qiu-Jiang+STIP	308	85.33%
our method	CSMMI+STIP	469/250	98.0%/87.33%

TABLE IV

COMPARISON ON THE UCF YOUTUBE ACTION DATASET

Papers	Methods	Dictionary	Average
		Size	Accuracy
[31]	cuboid+difussion maps	1000	70.4%
[45]	hybrid features	2000	71.2%
[42]	Independent Subspace Analysis	_	75.8%
[3]	ME+STIP	715	71.1%
[6]	Liu-Shah+STIP	624	72.7%
[3]	Qiu-Jiang+STIP	678	73.3%
our method	CSMMI+STIP	721	78.6%

TABLE V

COMPARISON ON THE HOLLYWOOD2 ACTION DATASET

Papers	Methods	Dictionary Size	mAP
[47]	dense+HOG/HOF	4000	47.4%
[48]	dense trajectories	—	58.3%
[42]	independent subspace analysis	—	53.3%
[46]	compensated descriptors	—	62.5%
	+VLAD representation		
[3]	ME+STIP	329	41.3%
[6]	Liu-Shah+STIP	415	41.9%
[3]	Qiu-Jiang+STIP	394	43.2%
our method	CSMMI+STIP	437	62.1%

TABLE VI

COMPARISON ON THE KECK ACTION DATASET

Papers	Methods	Static setting	Dynamic setting
[26]	prototype trees	95.2%	91.07%
[49]	Product Manifolds	94.4%	92.3%
[3]	ME+shape-motion	91.2%	89.3%
[6]	Liu-Shah+shape-motion	94.2%	90.7%
[3]	Qiu-Jiang+shape-motion	94.9	92.7%
[3]	Qiu-Jiang*+shape-motion	97%	—
our method	CSMMI+shape-motion	95.1 %	93.2%

Many data summarization

- In many contemporary applications, running the standard greedy algorithm is computationally prohibitive:
 - The data set does not fit in main memory
 - Data itself arrives in a stream, possibly cannot be stored
- Streaming algorithms: Access only a small fraction of data at any point in time and provide approximate solutions

Streaming submodular maximization algorithms

Streaming submodular maximization

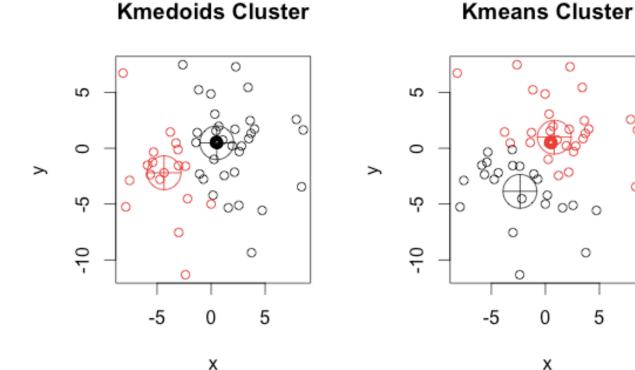
- Assumptions:
 - The ground set is ordered (arbitrarily) and any streaming algorithm must process V in the given order $V = \{e_1, \ldots, e_n\}$
 - At each iteration t the algorithm may maintain a memory $M_t \subset V$ of points and must be ready to output a candidate feasible solution $S_t \subset M_t$ of size at most $|S_t| \leq k$
 - When a new point arrives from the stream, the algorithm may elect to remember it

Streaming submodular maximization

- The performance of a streaming algorithm is measured by:
 - Number of passes the algorithm has to make over the stream
 - Memory required by the algorithm
 - Running time of the algorithm
 - Approximation ratio: $f(S_T)/\text{OPT}$

Sample applications (1)

• Exemplar based clustering: Select a set of exemplars that better represent a massive data set.



Sample applications (1)

 Exemplar based clustering: Select a set of exemplars that better represent a massive data set.

• K-medoid problem:
$$L(S) = \frac{1}{|V|} \sum_{e \in V} \min_{v \in S} d(e, v).$$

• Introducing an auxiliary element e_0 we can turn L into a monotone submodular function

$$f(S) = L(\{e_0\}) - L(S \cup \{e_0\}).$$

Sample applications (2)

 Large-scale nonparametric learning (Active set selection): select a small representative subset of instances and only work with a kernel matrix restricted to this subset

$$K_{V,V} = \begin{pmatrix} \mathcal{K}_{e_1,e_1} & \dots & \mathcal{K}_{e_1,e_n} \\ \vdots & & \vdots \\ \mathcal{K}_{e_n,e_1} & \dots & \mathcal{K}_{e_n,e_n} \end{pmatrix}$$

Sample applications (2)

• The informative vector machine criterion for Gaussian processes

$$f(S) = \frac{1}{2} \log \det(\mathbf{I} + \sigma^{-2} \Sigma_{S,S}),$$

 $f(S) = I(\mathbf{Y}_S; \mathbf{X}_V) = H(\mathbf{X}_V) - H(\mathbf{X}_V | \mathbf{Y}_S) = \frac{1}{2} \log \det(\mathbf{I} + \sigma^{-2} \Sigma_{S,S})$

$$K_{V,V} = \begin{pmatrix} \mathcal{K}_{e_1,e_1} & \dots & \mathcal{K}_{e_1,e_n} \\ \vdots & & \vdots \\ \mathcal{K}_{e_n,e_1} & \dots & \mathcal{K}_{e_n,e_n} \end{pmatrix}.$$

Many data summarization

- Naïve approximations:
 - Greedy algorithm: too comp. expensive and cannot run in real streams
 - Maintaining in memory the k-best elements: performance degrades arbitrarily with k

	# passes	approx. guarantee	memory	update time
Standard Greedy [27]	O(k)	(1 - 1/e)	O(k)	O(k)
GREEDY-SCALING 20	$O(1/\delta)$	$\delta/2$	$kn^{\delta}\log n$?
STREAM-GREEDY 14	multiple	$(1/2 - \varepsilon)$	O(k)	O(k)
SIEVE-STREAMING	1	$(1/2 - \varepsilon)$	$O(k \log(k) / \varepsilon)$	$O(\log(k)/\varepsilon)$

- Key observations:
 - Knowing OPT helps
 - -Knowing $m = \max_{e \in V} f(\{e\})$ is enough
 - Lazy updates (approximate m)

$$S_i = S_{i-1} \cup \{ \arg \max_{e \in V} \Delta_f(e|S_{i-1}) \}$$

- Knowing OPT helps.
 - If S_i is the set of the first *i* elements picked by the greedy algorithm, then the marginal value:

$$\Delta_f(e_{i+1}|S_i)$$

– Of the next element added is at least:

$$(\mathsf{OPT} - f(S_i))/k$$

• Idea: identify elements with similarly high marginal value, under a lowered threshold: β OPT/k

$$S_i = S_{i-1} \cup \{ \arg \max_{e \in V} \Delta_f(e|S_{i-1}) \}$$

 Suppose we know OPT up to a constant factor α, i.e., we have a value v such that:

 $\mathsf{OPT} \ge v \ge \alpha \cdot \mathsf{OPT} \qquad \quad 0 \le \alpha \le 1$

• The algorithm starts with $S_0 = \Phi$, and then after observing each element, it adds it to S if the marginal value is at least:

$$(v/2 - f(S))/(k - |S|)$$

and we are still below the cardinality constraint

Algorithm 1 SIEVE-STREAMING-KNOW-OPT-VAL

Input: v such that $OPT \ge v \ge \alpha \ OPT$ 1: $S = \emptyset$ 2: for i = 1 to n do 3: if $\Delta_f(e_i \mid S) \ge \frac{v/2 - f(S)}{k - |S|}$ and $|S_v| < k$ then 4: $S := S \cup \{e_i\}$ 5: return S

> PROPOSITION 5.1. Assuming input v to algorithm 1 satisfies $OPT \ge v \ge \alpha \ OPT$, the algorithm satisfies the following properties

- It outputs a set S such that $|S| \leq k$ and $f(S) \geq \frac{\alpha}{2} OPT$
- It does 1 pass over the data set, stores at most k elements and has O(1) update time per element.

Obtaining a good approximation to OPT is not straightforward

Ain't a very useful estimate! with v=km and $\alpha=1/k$, we get a guarantee: OPT/2k

 $m \leq \text{OPT} \leq k \cdot m.$

Equivalently, a function $f: 2^V \to \mathbb{R}$ is submodular if for every $A, B \subseteq V$,

 $f(A\cap B)+f(A\cup B)\leq f(A)+f(B).$

- Idea: refining the threshold. Consider the set: $O = \{ (1 + \epsilon)^i | i \in \mathbb{Z}, m \le (1 + \epsilon)^i \le k \cdot m \}$
- There should exist at least some $v \in O$ such that: (1ϵ) OPT $\leq v \leq O$ PT

Algorithm 2 SIEVE-STREAMING-KNOW-MAX-VAL

Input: $m = \max_{e \in V} f(\{e\})$ 1: $O = \{(1 + \epsilon)^i | i \in \mathbb{Z}, m \leq (1 + \epsilon)^i \leq k \cdot m\}$ 2: For each $v \in O, S_v := \emptyset$ 3: for i = 1 to n do 4: for $v \in O$ do 5: if $\Delta_f(e_i \mid S_v) \geq \frac{v/2 - f(S_v)}{k - |S_v|}$ and $|S_v| < k$ then 6: $S_v := S_v \cup \{e_i\}$ 7: return $\operatorname{argmax}_{v \in O_n} f(S_v)$

PROPOSITION 5.2. Assuming input m to Algorithm 2 satisfies $m = \max_{e \in V} f(\{e\})$, the algorithm satisfies the following properties

- It outputs a set S such that $|S| \leq k$ and $f(S) \geq \left(\frac{1}{2} \epsilon\right) \textit{OPT}$
- It does 1 pass over the data set, stores at most $O\left(\frac{k \log k}{\epsilon}\right)$ elements and has $O\left(\frac{\log k}{\epsilon}\right)$ update time per element.

- Final algorithm: relax the assumption we need to know the maximum value of all singletons:
 - Maintain an auxiliary variable *m* which holds the current maximum singleton element
 - Initiate thresholds for an increased range:

 $v = (1+\epsilon)^i, m \le (1+\epsilon)^i \le 2 \cdot k \cdot m$

Algorithm 3 Sieve-Streaming

- 1: $O = \{ (1+\epsilon)^i | i \in \mathbb{Z} \}$
- 2: For each $v \in O, S_v := \emptyset$ (maintain the sets only for the necessary v's lazily)
- 3: m := 0
- 4: for i = 1 to n do

5:
$$m := \max(m, f(\{e_i\}))$$

6:
$$O_i = \{ (1+\epsilon)^i | m \le (1+\epsilon)^i \le 2 \cdot k \cdot m \}$$

- 7: Delete all S_v such that $v \notin O_i$.
- 8: for $v \in O_i$ do

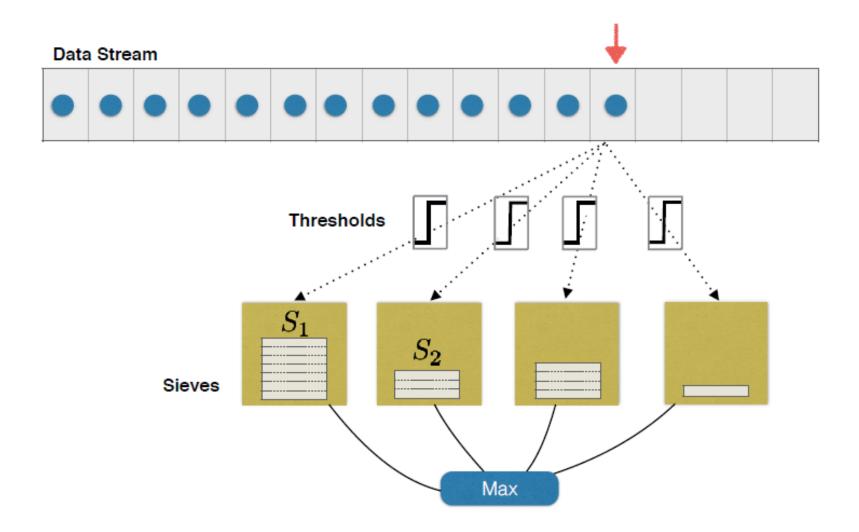
9: if
$$\Delta_f(e_i \mid S_v) \ge \frac{v/2 - f(S_v)}{k - |S_v|}$$
 and $|S_v| < k$ then

 $10: \qquad S_v := S_v \cup \{e_i\}$

11: return $\operatorname{argmax}_{v \in O_n} f(S_v)$

- THEOREM 5.3. SIEVE-STREAMING (Algorithm 3) satisfies the following properties

- It outputs a set S such that $|S| \leq k$ and $f(S) \geq (\frac{1}{2} \epsilon) \text{ OPT}$
- It does 1 pass over the data set, stores at most $O\left(\frac{k \log k}{\epsilon}\right)$ elements and has $O\left(\frac{\log k}{\epsilon}\right)$ update time per element.

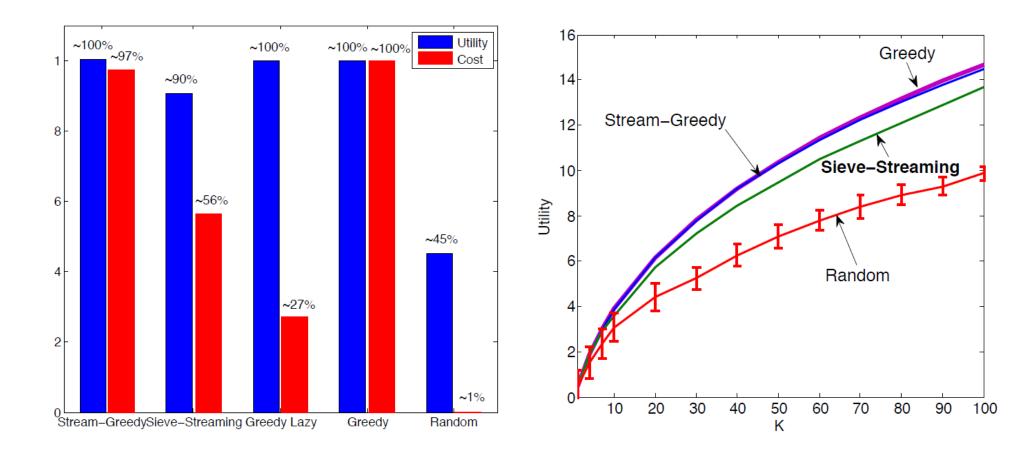


Experimental results

- Two applications:
 - Exemplar-based clustering
 - Active set selection for nonparametric learning
- Baselines vs. the Sieve-streaming algorithm
 - Random selection
 - Standard greedy
 - Lazy greedy
 - Stream greedy

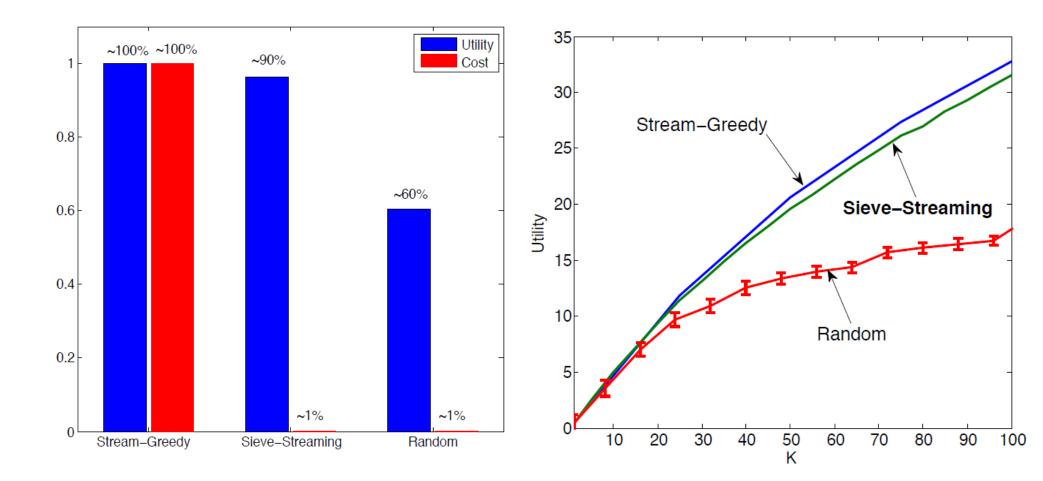
Many data summarization

Active set selection (5875 inst. 22 feats)



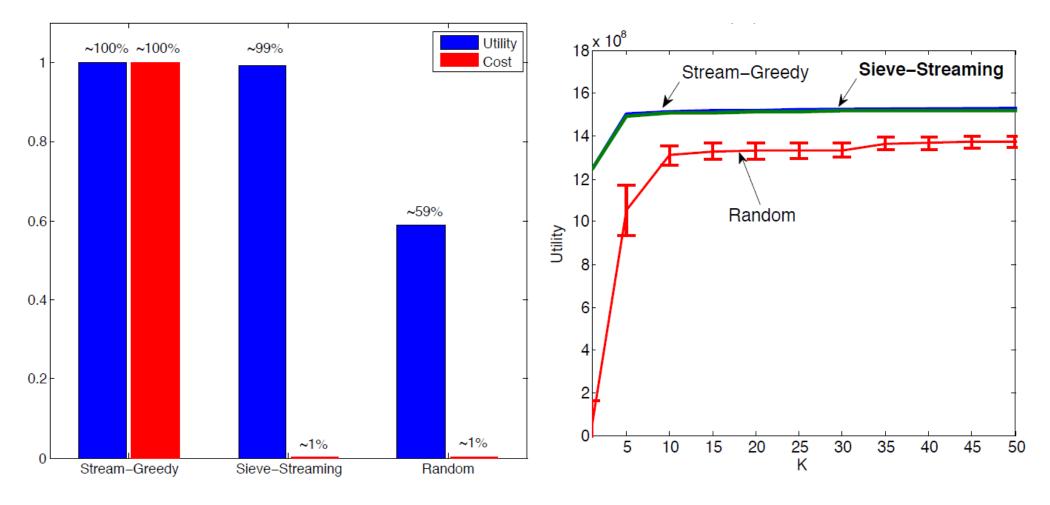
Many data summarization

Active set selection (+45 million inst. 6 feats)



Many data summarization

• Exemplar-based clustering (2.5 million inst. 68 feats.)



Discussion

- Nice algorithms:
 - Easy to implement
 - Performance guarantees
 - Too many applications
- But, still have to be evaluated in the corresponding tasks
- Main challenge on using SFM: proof your objective function is monotone submodular
- How good is the guarantee for different tasks?
- There is already a lot of (ongoing) work on the use of SFM for diverse tasks
- Matlab Toolbox for Submodular Function Optimization (v 2.0)

http://las.ethz.ch/sfo/

Final remarks

- Research opportunities sith SFM:
 - NMF on a budget with SFM: what criterion?
 - Prototype selection/generation for NN classification (instance selection)
 - Vocabulary learning/construction for BoVWs: replace kmeans with SFM of a supervised criterion
 - Multimodal document summarization / multimodal snippet generation: define appropriate criteria for SFM

References

- G. L. Nemhauser and L. A. Wolsey. Best algorithms for approximating the maximum of a submodular set function. Math. Oper. Research, 1978.
- Badanidiyuru, Ashwinkumar, et al. **Streaming submodular maximization: massive data summarization on the fly.** *Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2014.*
- Andreas Krause, Daniel Golovin, **Submodular Function Maximization**, *Chapter in Tractability: Practical Approaches* to Hard Problems, Cambridge University Press, 2014.
- Andreas Krause, Ajit Singh, Carlos Guestrin, Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies, In Journal of Machine Learning Research (JMLR), vol. 9, pp. 235-284, 2008.
- Krause, Andreas, and Ryan G. Gomes. **Budgeted nonparametric learning from data streams.** *Proceedings of the 27th International Conference on Machine Learning (ICML-10).* 2010.
- Mirzasoleiman, Baharan, et al. Distributed submodular maximization: Identifying representative elements in massive data. Advances in Neural Information Processing Systems. 2013.
- Jun Wan, Vassilis Athitsos, Pat Jangyodsuk, Hugo Jair Escalante, Qiuqi Ruan, Isabelle Guyon. CSMMI: Class-Specific Maximization of Mutual Information for Action and Gesture Recognition. IEEE Trans. Image Processing, Vol 23(7):3152--3165