Submodular function
maximization

Hugo Jair Escalante



Outline

Set functions

Submodularity and monotonicity
Maximization of submodular functions
Applications: CSMMI

Dealing with streams

Experiments & results

Discussion and final remarks



Set functions

 Functions of the form:
f:2Y 5 R

With V a finite set, and assuming f(®)=0

 Example: consider the problem of placing sensors
to cover some space represented by locations (V),
and f(S) the utility obtained when placing sensors
at locations S



Set functions




Submodularity

Definition 1.1 (Discrete derivative) For a set function f:2¥ — R, SC V., ande €V,
let As(e|S):= f(SU{e}) — f(S) be the discrete derivative of f at S with respect to e.

Definition 1.2 (Submodularity) A function f : 2V — R is submodular if for every
ACBCVande € V\ B it holds that

Ale| A) > A(e| B).

Equivalently, a function f : 2V — R is submodular if for every A, B C V.,

f(ANB) + f(AUB) < f(A) + f(B).



Submodularity

Definition 1.3 (Monotonicity) A function f : 2V — R is monotone if for every A C B C
V, f(4) < f(B).

fis called monotone iff for all e and S it holds that: A ¢(e|S) > 0



Submodular functions

(a) Adding s’ to set {s1,s2} (b) Adding s’ to superset {s1,...,s4}

A(s" | {s1,82}) > A(s" | {s1,...,84})

Diminishing returns effect in the problem of placing sensors in a water distribution
network to detect contaminants: if more sensors are already placed there is more overlap,
and less gain utility. Selecting any given element earlier helps more than selecting it later.



Submodular functions

e Some submodular functions:

— Modular functions
for all A, B C V it holds that f(A)+ f(B) = f(AUB)+ f(ANB).

— Weighted coverage functions
18)=9(Uv)= Y w),

veS z€EUyes v

— Facility location

m

f(S) = ;I;lgng

— Entropy

H(Xs) = — Y P(xg)log, P(xs)

— Mutual information

f(8) = I(Y;Xs) = H(Y) — H(Y | X5s)



Maximization of submodular functions

 Submodular functions arise in several domains
and problems (e.g., max-coverage, facility
location, mutual information, ...)

 Consider the problem of data summarization:
selecting representative subsets of manageable
size out of large data sets

— Exemplar-based clustering, document and corpus

summarization, recomender systems, active set
selection



Maximization of submodular functions

e Many data summarization tasks can be
formulated as:

max f(S) s.t. |9 <k

SCV

* Let S* denote the optimal solution, with value:
OPT = f(S™)

* IThis problem is NP-hard for many classes of
submodular functions.

f(S) a black-box utility function, for now



Maximization of submodular functions

* Nemhauser et al. showed that a simple greedy
(polynomial time) algorithm is highly effective:

— Start with the empty set S,=@

— Iterate k-times over the whole data set:
S, =5;,_1 U {arg ma‘gc Af(e|SZ-_1)}

* Nemhauser et al. proved that: f(57) =2 (1 —1/e)0PT

(the solution is provably within 63% of the
optimal?)

For several classes of monotone submodular functions it is known that this is the best
approximation guarantee that one can hope.



Maximization of submodular functions

e Proof: Nemhauser et al. 1978



Many data summarization

 Sample applications:
— Outbreak detection

— News article recommendation

— Non-parametric learning

— Document and corpus summarization
— Network inference

— Viral marketing



Application: CSMMI

* Problem: to learn a dictionary of codewords
to be used for the SC representation of videos
for action and gesture recognition

! CE O, dia
S

(a) (b)

W= -ﬂﬂlﬁ

(c)

q 3}
' Wal

(e)

‘.mﬂfﬂ:ﬂ:ﬂ

(2 (h)

Jun Wan, Vassilis Athitsos, Pat Jangyodsuk, Hugo Jair Escalante, Qiuqi Ruan, Isabelle Guyon. CSMMI:
Class-Specific Maximization of Mutual Information for Action and Gesture Recognition. IEEE Trans.
Image Processing, Vol 23(7):3152--3165



Application: CSMMI

e Sparse representations: Idea, to learn a
dictionary

x e K




Application: CSMMI

e Sparse representations: Idea, to learn a
dictionary

o = [f1,...0j,...0kl,¢; € R"
e Such that:

min {|Y; — ®}Xgolz} st Ixjllo < T

0
(Di ’X(D?



Application: CSMMI

* The reconstruction error with class specific
dictionaries is used as classifier

iy = argmin ||Y — ®*Xy, |3
ie[l,2,...,C]

e —— . 2
XY,‘ =argmin [Y — (I);‘XY,' “F s.t. ||xllo<T
Xy,



Application: CSMMI

* Related works, learn dictionaries regardless of
the classes (starting from KSVD)

e CSMMI: to learn class specific dictionaries,
maximizing Ml

77090 G

(b)



Application: CSMMI

e Key idea:
1. Learn class specific dictionaries of size K (KSVD)

) = [f1,...0j,...0kl,¢; € R"

2. Select a subset of codewords , k<K for each class

Ok, 0L (I0F = k k < K).

intra—class M1 term(t;)

.

argmax (@} Udg;; @\ (OF U y)) — 1(DF; @) \ @F)
i €D\ @}

inter—class MI term(my)

—U(@F U g @°\ @%) — 1(@F; @\ @%)]  (3)




Application: CSMMI

6 T T T 6 T T T
circlel circle1
circle? circle2
+  datal + datat
i) +  data2 i) +  data2
X dictionary items (datal) X dictionary items (data1)
O dictionary items (data2) O dictionary items (data2)




Application: CSMMI

* Experimental results

COMPARISON ON THE WEIZMANN ACTION DATASET

Papers Methods Dictionary Average
Size Accuracy
[38] Space-time shape — 97.83%
[39] Multiple instance learning — 95.75%
+kinematic feature
[37] Sparse linear approximation — 100%
+ feature covariance matrices
[26] prototype trees — 100%
[22] pLSA+cuboid 1200 90%
[1] Concatenated dictionary 256 98.9%
+LLMP
[40] Self-Similarities — 95.3%
our method CSMMI+STIP 140 100 %

COMPARISON ON THE KTH ACTION DATASET

Papers Methods Dictionary | Average
Size Accuracy

[29] non-linear SVM+STIP 4000 91.8%

[39] multiple instance learning — 87.7%

+kinematic feature
[41] probabilistic spatiotemporal — 88.0%
voting
[37] sparse linear approximation S 97.4%
+Feature Covariance Matrices

[26] prototype trees — 95.77%

[42] Independent subspace analysis — 93.9%
our method CSMMI+STIP 365 98.83%




{ oneg) &

& Yogpng) ¢ (runneng) ¢ (walkeg)
te te te - o
L 8s
h—c’— 02 2 ' .
. ¢ - &2
- - as
® ® ~ > ® . > ®

Application:

el ll” o2

CS IVI IVI I ¢-l’ﬂ5! o1 90100 17400 o1 90306
, ik L..ll U, Ly, .
¢} (boxing) L (glappmg P (waving) “,Uogglng) P: 1mnnmg) (\ml (ing)
' ol & = c-:‘m’:
02 () )
ol | . AI.J
| | 02
<9
Y e L
e=190516 _,, o

£=].78858

0 2

(clapping) , ‘o

(waving) , 55

£=1.95590

10

e=2.10914

20
£=2.26274

10

% ™ o0 v ™
e=2.30474 e=231034
o
‘02
' 0
L2
o W ™| o W 2
£=1.52442 £=1.98453
p— ,
o4
‘102
0
% 2 [*% e »
£=2.29222 £=2.06252

J 08/

| oal
{02

06

0
02

0

10

e=2.86911

10

.
e=245110

5
£=2.53845

(} 10
£=2. 48642

' T

o

- h | s

0 w 2 0
£=3.14325

: — 08

h o

0 w2 %
£=2.64632

B L

C"Z“SS' I -
% e =
=2 0048
&= 2$2l|l 'j‘
J ;-*mu
J -
I
. - ‘:c » =
‘o ” Llo“\’
£=2 48751



£=2.03352
8 - -

Application: CSMMI

Experimental results

BN i b SR B R DR N MR RN
A el

, c-lj93364_ ‘

10
£=2.57486

10

=
£=2.10492
boxing

20 o
£=2.23335

20 0
£=1.89383
08/ - -

10 20

10

£=1.93076

» J

0‘

02|

0

02|
04

| 02!
h 0
02 '
o 10 2 % 0 2
249405  £=2.52192

05| 1 05 |
50‘ v — -056 - —

£=1.82289
086/ - —

£=1.89916 £=1.58894
clapping

£=1.65298
06, - —_

0
0 2 % w0 2 0
e=237369  £=2.29756
| 04/
i 02/
0
{ 02!
TR ™
£=2.03571 £=1.99787
r - — 04 - —
k02
0
{ 02|
04 - —
10 20
£=2.08935 e=2.04144
waving

, c=|.9|553_ _

10

10
£=2.15435

2 o0
£=2.09719

| 05!

2 o

jogging

10

10
£=2.10756

-
£=2.09322

X

os/ o8| | o8 06/
08| | 08 | 04l | 04l
04 | 02 { 02
02| [ o 0
4,:. ] 02l =02 | B J
© 1 20 o0 1 2 o0 1 20 0 1 2
, & 1.47597 , &= 1.82515 £=1.98896 £=1.80446
04
0s 0s| | 02
.F 1 “ H} 0
o»-nj-.-ﬂl 0 e ‘
[ 2 o [ 0 1 20 0 10 20
e=1 .86248 r.=2 08358 £=2.02424 £=1.91292
05, . y ¢ .
l 06/ { o8|
0 04 | 04/
02| 02|
05| { 0 0
| ) - 421 ’ J 02| ’ )
o 10 2 0o 1 20 o0 10 20
£=1.62861 c=2. 1 5801 £=1.99508 £=1.84070
running walking



Application: CSMMI

* Experimental results

TABLE III

COMPARISON ON THE UCF SPORTS ACTION DATASET

Papers Methods Dictionary Average
Size Accuracy
[30] Maximum Average — 69.2%
Correlation Height
42] Independent subspace analysis — 86.5%
[1] class-specific dictionary 256 83.8%
+cuboid
[43] hierarchy of discriminative 300 87.27%
shape and motion features
[44] hough transform-based voting — 86.6%
[3] ME+STIP 325 81.33%
[6] Liu-Shah+STIP 250 84%
[3] Qiu-Jiang+STIP 308 85.33%
our method CSMMI+STIP 469/250 98.0%/87.33%
TABLE IV

COMPARISON ON THE UCF YOUTUBE ACTION DATASET

Papers Methods Dictionary | Average

Size Accuracy
[31] cuboid-+difussion maps 1000 70.4%
[45] hybrid features 2000 71.2%
[42] Independent Subspace Analysis - 75.8%
[3] ME+STIP 715 71.1%
[6] Liu-Shah+STIP 624 72.7%
[3] Quu-Jiang+STIP 678 73.3%

our method CSMMI+STIP 721 78.6% |

TABLE V

COMPARISON ON THE HOLLYWOOD2 ACTION DATASET

[ Papers | Methods | Dictionary Size | mAP |
[47] dense+HOG/HOF 4000 47.4%
(48] dense trajectories — 58.3%
[42] independent subspace analysis - 53.3%
[46] compensated descriptors — 62.5%

+VLAD representation
[3] ME+STIP 329 41.3%
[6] Liu-Shah+STIP 415 41.9%
[3] Qiu-Jiang+STIP 394 43.2%
our method CSMMI+STIP 437 62.1%
TABLE VI

COMPARISON ON THE KECK ACTION DATASET

Papers | Methods | Static seting | Dynamic setting |
[26] prototype trees 95.2% 91.07%
[49] Product Manifolds 94.4% 92.3%
13] ME+shape-motion 91.2% 89.3%
6] Liu-Shah+shape-motion 94.2% 90.7%
3] Qiu-Jiang+shape-motion 94.9 92.7%
3] Qiu-Jiang ™ +shape-motion 97% -
our method CSMM1I+shape-motion 95.1% 93.2%




Many data summarization

* |n many contemporary applications, running the
standard greedy algorithm is computationally
prohibitive:

— The data set does not fit in main memory

— Data itself arrives in a stream, possibly cannot be
stored

 Streaming algorithms: Access only a small
fraction of data at any point in time and provide
approximate solutions

Streaming submodular maximization algorithms



Streaming submodular maximization

* Assumptions:

— The ground set is ordered (arbitrarily) and any
streaming algorithm must process V in the given
orderV = {ei1,...,en}

— At each iteration t the algorithm may maintain a
memory M; C V of points and must be ready to
output a candidate feasible solution S; C M; of
size at most |S:| < k

— When a new point arrives from the stream, the
algorithm may elect to remember it



Streaming submodular maximization

* The performance of a streaming algorithm is
measured by:

— Number of passes the algorithm has to make over
the stream

— Memory required by the algorithm
— Running time of the algorithm
— Approximation ratio: f(.ST)/0PT



Sample applications (1)

 Exemplar based clustering: Select a set of
exemplars that better represent a massive

Kmedoids Cluster Kmeans Cluster
o O O o O O
W — Oo O wn —
O o
O O
o -4 o9 %& o -
O O
o | o o _| o
O O
| | | |
5 0 5 5 0 5



Sample applications (1)

 Exemplar based clustering: Select a set of
exemplars that better represent a massive
data set.

* K-medoid problem: L(S) = 7 Z/gggd e, )

* Introducing an auxiliary element e, we can
turn L into a monotone submodular function

f(S) = L({eo}) — L(SU{eo}).



Sample applications (2)

* Large-scale nonparametric learning (Active
set selection): select a small representative
subset of instances and only work with a
kernel matrix restricted to this subset

K€1,61 ’C€1,en

lCen,el c v ]Cenaen



Sample applications (2)
e The informative vector machine criterion for

Gaussian processes

£(S) = % log det(I + 025 5).

f(8) = 1(Ys:Xy) = H(Xv) - H(Xv[Ys) = jlogdet(I+ 07 *Es.5)



Many data summarization

* Naive approximations:

— Greedy algorithm:

too comp.

cannot run in real streams

expensive and

— Maintaining in memory the k-best elements:
performance degrades arbitrarily with k

# passes | approx. guarantee memory update time
Standard Greedy [27 O(k) (1—1/e) O(k) O(k)
GREEDY-SCALING [20] | O(1/9) 5/2 kn® logn ?
STREAM-GREEDY [14] | multiple (1/2 —¢) O(k) O(k)
SIEVE-STREAMING 1 (1/2 —¢) O(klog(k)/c) | O(log(k)/<)




The Sieve-streaming algorithm

e Key observations:
— Knowing OPT helps
— Knowing m = max.cv f({e}) is enough
— Lazy updates (approximate m)



The Sieve-streaming algorithm

S; = Si—1 U{arg max ANr(elSi—1)}

 Knowing OPT helps.

—If S, is the set of the first i elements picked by the
greedy algorithm, then the marginal value:

Ag(eit1]Si)
— Of the next element added is at least:

(OPT — f(S5i))/k

* |dea: identify elements with similarly high

marginal value, under a lowered threshold:
BOPT/k



The Sieve-streaming algorithm

S; = Si—1 U{arg max ANr(elSi—1)}

* Suppose we know gpT up to a constant factor
o, i.e., we have a value v such that:

OPT > v > «-0PT O0<a<l

* The algorithm starts with S,=@, and then after
observing each element, it adds it to S if the marginal
value is at least:

(v/2=f(5))/(k—=1S])

and we are still below the cardinality constraint



The Sieve-streaming algorithm

Algorithm 1 SIEVE-STREAMING-KNOW-OPT-VAL
Input: v such that OPT > v > « OPT

I: S=10

2: for2=1ton do

3 if Ag(e; | S) > v/,f__lgls) and |S,| < k then

4: S :=SU{e}

5. return S

PROPOSITION 5.1. Assuming input v to algorithm[1] sat-
1sfies OPT > v > « OPT, the algorithm satisfies the following
properties

o It outputs a set S such that |S| < k and f(S) = 50PT

e [t does 1 pass over the data set, stores at most k ele-
ments and has O(1) update time per element.



The Sieve-streaming algorithm

e Obtaining a good approximation to OPT is not
straightforward

Ain’t a very useful estimate!
with v=km and a=1/k, we get a guarantee:

OPT/2k

w
m < 0PT < k - m.

Equivalently, a function f : 2" — R is submodular if for every A, B C V.

fIANB) + f(AUB) < f(A) + f(B).



The Sieve-streaming algorithm

* |dea: refining the threshold. Consider the set:
O={1+eicZm<(l+¢€ <k-m}

e There should exist at least somewv € O such
that: (1 — ¢)OPT < v < OPT



The Sieve-streaming algorithm

Algorithm 2 SIEVE-STREAMING-KNOW-MAX-VAL

Input: m = max.cv f({e})
:0O={(14+€&)'i€Z,m<(1+€¢"'<k-m}
: For each v € O, S, :=
: fori=1ton do
for v € O do
if Ag(es | Sy) > =55 and [S,| < k then
Sy = Sy U{ei}

return argmax,.o f(5)

rl}c.ot\Dr—l

NS T

PROPOSITION 5.2. Assuming input m to Algorithm sat-
isfies m = maxeev f({e}), the algorithm satisfies the follow-
g properties

o [t outputs a set S such that |S| < k and f(S) >

1
(3 —€) OPT
e [t does 1 pass over the data set, stores at most O (—Lk 12 k)

log k

elements and has O ( -

) update time per element.



The Sieve-streaming algorithm

* Final algorithm: relax the assumption we need
to know the maximum value of all singletons:

— Maintain an auxiliary variable m which holds the
current maximum singleton element

— Initiate thresholds for an increased range:

v=(14+€e)'m<(14+e)<2-k-m



The Sieve-streaming algorithm

Algorithm 3 SIEVE-STREAMING

1:

b

[ Sy W

= L XSS e W

O={(1+¢)']i € Z}
For each v € O, S, := 0 (maintain the sets only for the
necessary v’s lazily)
m:=0
for:=1ton do
m := max(m, f({e:}))
O; ={(1+e)'Im< (1+€)<2-k-m}
Delete all S, such that v ¢ O;.

for v € O; do
if Ag(e;| Sy) > v/,f:IJ;(j”) and |S,| < k then
Sy = Sy U{e;}

: return argmax,.o f(5)

THEOREM 5.3. SIEVE-STREAMING (Algorz’thm@) satisfies
the following properties

o [t outputs a set S such that |S| < k and f(S) >
(3 —€) OPT

e [t does 1 pass over the data set, stores at most O (—k lzg k)
log

P

elements and has O ( ) update time per element.



The Sieve-streaming algorithm

Data Stream ‘

v,
A

Thresholds _r H _,_

Sieves




Experimental results

* Two applications:

— Exemplar-based clustering
— Active set selection for nonparametric learning

e Baselines vs. the Sieve-streaming algorithm
— Random selection
— Standard greedy
— Lazy greedy
— Stream greedy



Many data summarization

e Active set selection (5875 inst. 22 feats)

I Utility

~100%

~100%

~97%

Stream-GreedySieve—Streaming Greedy Lazy

~100% ~100%

I Cost |

~1%

Greedy Random

16

14+

12

10

Utility
[o8)

Stream-Greedy

Greedy

70

Sieve-Streaming

80

90 100

10 20 30

40 50 60



Many data summarization

* Active set selection (+45 million inst. 6 feats)

~100% ~100%

0 Stream-Greedy

~90%

I Utility
I Cost |

~60%

~1%

Sieve-Streaming

Random

35
30t
Stream-Greedy
25 \
?20- Sieve-Streaming
=
15+
10t
Random
5_
0 10 20 30 40 50 60 70 80 90 100
K




Many data summarization

 Exemplar-based clustering (2.5 million inst. 68

feats.)
x 10°
| Sielve—SltrearrIIing

~99°0 - Utlllty T T T T T
B | O
/ Stream-Greedy /

~100% ~100%
16}

Random

Utility

50

0 5 10 15 20 25 30 35 40 45
K

~1%

Random

Sieve-Streaming

Stream-Greedy



Discussion

Nice algorithms:

— Easy to implement

— Performance guarantees
— Too many applications

But, still have to be evaluated in the corresponding tasks

Main challenge on using SFM: proof your objective function is monotone
submodular

How good is the guarantee for different tasks?
There is already a lot of (ongoing) work on the use of SFM for diverse tasks

Matlab Toolbox for Submodular Function Optimization (v 2.0)
http://las.ethz.ch/sfo/




Final remarks

* Research opportunities sith SFM:
— NMF on a budget with SFM: what criterion?

— Prototype selection/generation for NN classification
(instance selection)

— Vocabulary learning/construction for BoVWs: replace k-
means with SFM of a supervised criterion

— Multimodal document summarization / multimodal
snippet generation: define appropriate criteria for SFM



References

G. L. Nemhauser and L. A. Wolsey. Best algorithms for approximating the maximum of a submodular set
function. Math. Oper. Research, 1978.

Badanidiyuru, Ashwinkumar, et al. Streaming submodular maximization: massive data summarization on the fly.
Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM,
2014.

Andreas Krause, Daniel Golovin, Submodular Function Maximization, Chapter in Tractability: Practical Approaches
to Hard Problems, Cambridge University Press, 2014.

Andreas Krause, Ajit Singh, Carlos Guestrin, Near-Optimal Sensor Placements in Gaussian Processes: Theory,
Efficient Algorithms and Empirical Studies, In Journal of Machine Learning Research (JMLR), vol. 9, pp. 235-284,
2008.

Krause, Andreas, and Ryan G. Gomes. Budgeted nonparametric learning from data streams. Proceedings of the
27th International Conference on Machine Learning (ICML-10). 2010.

Mirzasoleiman, Baharan, et al. Distributed submodular maximization: Identifying representative elements in
massive data. Advances in Neural Information Processing Systems. 2013.

Jun Wan, Vassilis Athitsos, Pat Jangyodsuk, Hugo Jair Escalante, Qiuqi Ruan, Isabelle Guyon. CSMMI: Class-Specific
Maximization of Mutual Information for Action and Gesture Recognition. IEEE Trans. Image Processing, Vol
23(7):3152--3165



