Submodular function
maximization

Hugo Jair Escalante



Outline

Set functions

Submodularity and monotonicity
Maximization of submodular functions
Applications: CSMMI

Dealing with streams

Experiments & results

Discussion and final remarks



Set functions

 Functions of the form:
f:2Y 5 R

With V a finite set, and assuming f(®)=0

 Example: consider the problem of placing sensors
to cover some space represented by locations (V),
and f(S) the utility obtained when placing sensors
at locations S



Set functions




Submodularity

Definition 1.1 (Discrete derivative) For a set function f:2¥ — R, SC V., ande €V,
let As(e|S):= f(SU{e}) — f(S) be the discrete derivative of f at S with respect to e.

Definition 1.2 (Submodularity) A function f : 2V — R is submodular if for every
ACBCVande € V\ B it holds that

Ale| A) > A(e| B).

Equivalently, a function f : 2V — R is submodular if for every A, B C V.,

f(ANB) + f(AUB) < f(A) + f(B).



Submodularity

Definition 1.3 (Monotonicity) A function f : 2V — R is monotone if for every A C B C
V, f(4) < f(B).

fis called monotone iff for all e and S it holds that: A ¢(e|S) > 0



Submodular functions

(a) Adding s’ to set {s1,s2} (b) Adding s’ to superset {s1,...,s4}

A(s" | {s1,82}) > A(s" | {s1,...,84})

Diminishing returns effect in the problem of placing sensors in a water distribution
network to detect contaminants: if more sensors are already placed there is more overlap,
and less gain utility. Selecting any given element earlier helps more than selecting it later.



Submodular functions

e Some submodular functions:

— Modular functions
for all A, B C V it holds that f(A)+ f(B) = f(AUB)+ f(ANB).

— Weighted coverage functions
18)=9(Uv)= Y w),

veS z€EUyes v

— Facility location

m

f(S) = ;I;lgng

— Entropy

H(Xs) = — Y P(xg)log, P(xs)

— Mutual information

f(8) = I(Y;Xs) = H(Y) — H(Y | X5s)



Maximization of submodular functions

 Submodular functions arise in several domains
and problems (e.g., max-coverage, facility
location, mutual information, ...)

 Consider the problem of data summarization:
selecting representative subsets of manageable
size out of large data sets

— Exemplar-based clustering, document and corpus

summarization, recomender systems, active set
selection



Maximization of submodular functions

e Many data summarization tasks can be
formulated as:

max f(S) s.t. |9 <k

SCV

* Let S* denote the optimal solution, with value:
OPT = f(S™)

* IThis problem is NP-hard for many classes of
submodular functions.

f(S) a black-box utility function, for now



Maximization of submodular functions

* Nemhauser et al. showed that a simple greedy
(polynomial time) algorithm is highly effective:

— Start with the empty set S,=@

— Iterate k-times over the whole data set:
S, =5;,_1 U {arg ma‘gc Af(e|SZ-_1)}

* Nemhauser et al. proved that: f(57) =2 (1 —1/e)0PT

(the solution is provably within 63% of the
optimal?)

For several classes of monotone submodular functions it is known that this is the best
approximation guarantee that one can hope.



Maximization of submodular functions

e Proof: Nemhauser et al. 1978



Many data summarization

 Sample applications:
— Outbreak detection

— News article recommendation

— Non-parametric learning

— Document and corpus summarization
— Network inference

— Viral marketing



Application: CSMMI

* Problem: to learn a dictionary of codewords
to be used for the SC representation of videos
for action and gesture recognition
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Application: CSMMI

e Sparse representations: Idea, to learn a
dictionary

x e K




Application: CSMMI

e Sparse representations: Idea, to learn a
dictionary

o = [f1,...0j,...0kl,¢; € R"
e Such that:

min {|Y; — ®}Xgolz} st Ixjllo < T

0
(Di ’X(D?



Application: CSMMI

* The reconstruction error with class specific
dictionaries is used as classifier

iy = argmin ||Y — ®*Xy, |3
ie[l,2,...,C]

e —— . 2
XY,‘ =argmin [Y — (I);‘XY,' “F s.t. ||xllo<T
Xy,



Application: CSMMI

* Related works, learn dictionaries regardless of
the classes (starting from KSVD)

e CSMMI: to learn class specific dictionaries,
maximizing Ml
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Application: CSMMI

e Key idea:
1. Learn class specific dictionaries of size K (KSVD)

) = [f1,...0j,...0kl,¢; € R"

2. Select a subset of codewords , k<K for each class

Ok, 0L (I0F = k k < K).

intra—class M1 term(t;)

.

argmax (@} Udg;; @\ (OF U y)) — 1(DF; @) \ @F)
i €D\ @}

inter—class MI term(my)

—U(@F U g @°\ @%) — 1(@F; @\ @%)]  (3)




Application: CSMMI
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Application: CSMMI

* Experimental results

COMPARISON ON THE WEIZMANN ACTION DATASET

Papers Methods Dictionary Average
Size Accuracy
[38] Space-time shape — 97.83%
[39] Multiple instance learning — 95.75%
+kinematic feature
[37] Sparse linear approximation — 100%
+ feature covariance matrices
[26] prototype trees — 100%
[22] pLSA+cuboid 1200 90%
[1] Concatenated dictionary 256 98.9%
+LLMP
[40] Self-Similarities — 95.3%
our method CSMMI+STIP 140 100 %

COMPARISON ON THE KTH ACTION DATASET

Papers Methods Dictionary | Average
Size Accuracy

[29] non-linear SVM+STIP 4000 91.8%

[39] multiple instance learning — 87.7%

+kinematic feature
[41] probabilistic spatiotemporal — 88.0%
voting
[37] sparse linear approximation S 97.4%
+Feature Covariance Matrices

[26] prototype trees — 95.77%

[42] Independent subspace analysis — 93.9%
our method CSMMI+STIP 365 98.83%
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Application: CSMMI

Experimental results
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Application: CSMMI

* Experimental results

TABLE III

COMPARISON ON THE UCF SPORTS ACTION DATASET

Papers Methods Dictionary Average
Size Accuracy
[30] Maximum Average — 69.2%
Correlation Height
42] Independent subspace analysis — 86.5%
[1] class-specific dictionary 256 83.8%
+cuboid
[43] hierarchy of discriminative 300 87.27%
shape and motion features
[44] hough transform-based voting — 86.6%
[3] ME+STIP 325 81.33%
[6] Liu-Shah+STIP 250 84%
[3] Qiu-Jiang+STIP 308 85.33%
our method CSMMI+STIP 469/250 98.0%/87.33%
TABLE IV

COMPARISON ON THE UCF YOUTUBE ACTION DATASET

Papers Methods Dictionary | Average

Size Accuracy
[31] cuboid-+difussion maps 1000 70.4%
[45] hybrid features 2000 71.2%
[42] Independent Subspace Analysis - 75.8%
[3] ME+STIP 715 71.1%
[6] Liu-Shah+STIP 624 72.7%
[3] Quu-Jiang+STIP 678 73.3%

our method CSMMI+STIP 721 78.6% |

TABLE V

COMPARISON ON THE HOLLYWOOD2 ACTION DATASET

[ Papers | Methods | Dictionary Size | mAP |
[47] dense+HOG/HOF 4000 47.4%
(48] dense trajectories — 58.3%
[42] independent subspace analysis - 53.3%
[46] compensated descriptors — 62.5%

+VLAD representation
[3] ME+STIP 329 41.3%
[6] Liu-Shah+STIP 415 41.9%
[3] Qiu-Jiang+STIP 394 43.2%
our method CSMMI+STIP 437 62.1%
TABLE VI

COMPARISON ON THE KECK ACTION DATASET

Papers | Methods | Static seting | Dynamic setting |
[26] prototype trees 95.2% 91.07%
[49] Product Manifolds 94.4% 92.3%
13] ME+shape-motion 91.2% 89.3%
6] Liu-Shah+shape-motion 94.2% 90.7%
3] Qiu-Jiang+shape-motion 94.9 92.7%
3] Qiu-Jiang ™ +shape-motion 97% -
our method CSMM1I+shape-motion 95.1% 93.2%




Many data summarization

* |n many contemporary applications, running the
standard greedy algorithm is computationally
prohibitive:

— The data set does not fit in main memory

— Data itself arrives in a stream, possibly cannot be
stored

 Streaming algorithms: Access only a small
fraction of data at any point in time and provide
approximate solutions

Streaming submodular maximization algorithms



Streaming submodular maximization

* Assumptions:

— The ground set is ordered (arbitrarily) and any
streaming algorithm must process V in the given
orderV = {ei1,...,en}

— At each iteration t the algorithm may maintain a
memory M; C V of points and must be ready to
output a candidate feasible solution S; C M; of
size at most |S:| < k

— When a new point arrives from the stream, the
algorithm may elect to remember it



Streaming submodular maximization

* The performance of a streaming algorithm is
measured by:

— Number of passes the algorithm has to make over
the stream

— Memory required by the algorithm
— Running time of the algorithm
— Approximation ratio: f(.ST)/0PT



Sample applications (1)

 Exemplar based clustering: Select a set of
exemplars that better represent a massive

Kmedoids Cluster Kmeans Cluster
o O O o O O
W — Oo O wn —
O o
O O
o -4 o9 %& o -
O O
o | o o _| o
O O
| | | |
5 0 5 5 0 5



Sample applications (1)

 Exemplar based clustering: Select a set of
exemplars that better represent a massive
data set.

* K-medoid problem: L(S) = 7 Z/gggd e, )

* Introducing an auxiliary element e, we can
turn L into a monotone submodular function

f(S) = L({eo}) — L(SU{eo}).



Sample applications (2)

* Large-scale nonparametric learning (Active
set selection): select a small representative
subset of instances and only work with a
kernel matrix restricted to this subset

K€1,61 ’C€1,en

lCen,el c v ]Cenaen



Sample applications (2)
e The informative vector machine criterion for

Gaussian processes

£(S) = % log det(I + 025 5).

f(8) = 1(Ys:Xy) = H(Xv) - H(Xv[Ys) = jlogdet(I+ 07 *Es.5)



Many data summarization

* Naive approximations:

— Greedy algorithm:

too comp.

cannot run in real streams

expensive and

— Maintaining in memory the k-best elements:
performance degrades arbitrarily with k

# passes | approx. guarantee memory update time
Standard Greedy [27 O(k) (1—1/e) O(k) O(k)
GREEDY-SCALING [20] | O(1/9) 5/2 kn® logn ?
STREAM-GREEDY [14] | multiple (1/2 —¢) O(k) O(k)
SIEVE-STREAMING 1 (1/2 —¢) O(klog(k)/c) | O(log(k)/<)




The Sieve-streaming algorithm

e Key observations:
— Knowing OPT helps
— Knowing m = max.cv f({e}) is enough
— Lazy updates (approximate m)



The Sieve-streaming algorithm

S; = Si—1 U{arg max ANr(elSi—1)}

 Knowing OPT helps.

—If S, is the set of the first i elements picked by the
greedy algorithm, then the marginal value:

Ag(eit1]Si)
— Of the next element added is at least:

(OPT — f(S5i))/k

* |dea: identify elements with similarly high

marginal value, under a lowered threshold:
BOPT/k



The Sieve-streaming algorithm

S; = Si—1 U{arg max ANr(elSi—1)}

* Suppose we know gpT up to a constant factor
o, i.e., we have a value v such that:

OPT > v > «-0PT O0<a<l

* The algorithm starts with S,=@, and then after
observing each element, it adds it to S if the marginal
value is at least:

(v/2=f(5))/(k—=1S])

and we are still below the cardinality constraint



The Sieve-streaming algorithm

Algorithm 1 SIEVE-STREAMING-KNOW-OPT-VAL
Input: v such that OPT > v > « OPT

I: S=10

2: for2=1ton do

3 if Ag(e; | S) > v/,f__lgls) and |S,| < k then

4: S :=SU{e}

5. return S

PROPOSITION 5.1. Assuming input v to algorithm[1] sat-
1sfies OPT > v > « OPT, the algorithm satisfies the following
properties

o It outputs a set S such that |S| < k and f(S) = 50PT

e [t does 1 pass over the data set, stores at most k ele-
ments and has O(1) update time per element.



The Sieve-streaming algorithm

e Obtaining a good approximation to OPT is not
straightforward

Ain’t a very useful estimate!
with v=km and a=1/k, we get a guarantee:

OPT/2k

w
m < 0PT < k - m.

Equivalently, a function f : 2" — R is submodular if for every A, B C V.

fIANB) + f(AUB) < f(A) + f(B).



The Sieve-streaming algorithm

* |dea: refining the threshold. Consider the set:
O={1+eicZm<(l+¢€ <k-m}

e There should exist at least somewv € O such
that: (1 — ¢)OPT < v < OPT



The Sieve-streaming algorithm

Algorithm 2 SIEVE-STREAMING-KNOW-MAX-VAL

Input: m = max.cv f({e})
:0O={(14+€&)'i€Z,m<(1+€¢"'<k-m}
: For each v € O, S, :=
: fori=1ton do
for v € O do
if Ag(es | Sy) > =55 and [S,| < k then
Sy = Sy U{ei}

return argmax,.o f(5)

rl}c.ot\Dr—l

NS T

PROPOSITION 5.2. Assuming input m to Algorithm sat-
isfies m = maxeev f({e}), the algorithm satisfies the follow-
g properties

o [t outputs a set S such that |S| < k and f(S) >

1
(3 —€) OPT
e [t does 1 pass over the data set, stores at most O (—Lk 12 k)

log k

elements and has O ( -

) update time per element.



The Sieve-streaming algorithm

* Final algorithm: relax the assumption we need
to know the maximum value of all singletons:

— Maintain an auxiliary variable m which holds the
current maximum singleton element

— Initiate thresholds for an increased range:

v=(14+€e)'m<(14+e)<2-k-m



The Sieve-streaming algorithm

Algorithm 3 SIEVE-STREAMING

1:

b

[ Sy W

= L XSS e W

O={(1+¢)']i € Z}
For each v € O, S, := 0 (maintain the sets only for the
necessary v’s lazily)
m:=0
for:=1ton do
m := max(m, f({e:}))
O; ={(1+e)'Im< (1+€)<2-k-m}
Delete all S, such that v ¢ O;.

for v € O; do
if Ag(e;| Sy) > v/,f:IJ;(j”) and |S,| < k then
Sy = Sy U{e;}

: return argmax,.o f(5)

THEOREM 5.3. SIEVE-STREAMING (Algorz’thm@) satisfies
the following properties

o [t outputs a set S such that |S| < k and f(S) >
(3 —€) OPT

e [t does 1 pass over the data set, stores at most O (—k lzg k)
log

P

elements and has O ( ) update time per element.



The Sieve-streaming algorithm

Data Stream ‘

v,
A

Thresholds _r H _,_

Sieves




Experimental results

* Two applications:

— Exemplar-based clustering
— Active set selection for nonparametric learning

e Baselines vs. the Sieve-streaming algorithm
— Random selection
— Standard greedy
— Lazy greedy
— Stream greedy



Many data summarization

e Active set selection (5875 inst. 22 feats)
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Many data summarization

* Active set selection (+45 million inst. 6 feats)
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Many data summarization

 Exemplar-based clustering (2.5 million inst. 68

feats.)
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Discussion

Nice algorithms:

— Easy to implement

— Performance guarantees
— Too many applications

But, still have to be evaluated in the corresponding tasks

Main challenge on using SFM: proof your objective function is monotone
submodular

How good is the guarantee for different tasks?
There is already a lot of (ongoing) work on the use of SFM for diverse tasks

Matlab Toolbox for Submodular Function Optimization (v 2.0)
http://las.ethz.ch/sfo/




Final remarks

* Research opportunities sith SFM:
— NMF on a budget with SFM: what criterion?

— Prototype selection/generation for NN classification
(instance selection)

— Vocabulary learning/construction for BoVWs: replace k-
means with SFM of a supervised criterion

— Multimodal document summarization / multimodal
snippet generation: define appropriate criteria for SFM
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