

Hugo Jair Escalante

MULTI-OBJECTIVE EVOLUTIONARY OPTIMIZATION: FEW APPLICATIONS

Contents

- Single and multi objective optimization
- Multi-objective evolutionary algorithms (NSGA-II)
- Maximizing diversification of search results
- Prototype generation for classification
- Discussion

Multi-objective Evolutionary Algorithms: two applications

SINGLE/MULTI OBJECTIVE OPTIMIZATION

Mathematical optimization

From Wikipedia, the free encyclopedia

For other uses, see Optimization (disambiguation).

In mathematics, computer science, or management science, **mathematical optimization** (alternatively, **optimization** or **mathematical programming**) is the selection of a best element (with regard to some criteria) from some set of available alternatives.^[1]

In the simplest case, an optimization problem consists of maximizing or minimizing a real function by systematically choosing input values from within an allowed set and computing the value of the function. The generalization of optimization theory and techniques to other formulations comprises a large area of applied mathematics. More generally, optimization includes finding "best available" values of some objective function given a defined domain, including a variety of different types of objective functions and different types of domains.

http://en.wikipedia.org/wiki/Mathematical optimization

Single-objective optimization

• A single-objective optimization problem can be defined as:

$$\begin{array}{ll} \min & f(\mathbf{x}) \\ \text{s.t.} & g_{i}(\mathbf{x}) \leq 0 \text{ for } i = \{1, ..., l\} \\ & h_{j}(\mathbf{x}) = 0 \text{ for } j = \{1, ..., J\} \\ & \mathbf{x}_{k}^{l} \leq \mathbf{x}_{k} \leq \mathbf{x}_{k}^{u} \text{ for } k = \{1, ..., n\} \end{array}$$

Single-objective optimization

Función: Rosenbrock

Brian Birge's PSO demo for matlab

 $f(x,y) = (1-x)^2 + 100(y-x^2)^2.$

Single-objective optimization

In this type of problems we want to find a solution x* associated to an extreme value of *f*. There are different types of methods for approaching this problems (e.g., gradient-based, simplex, heuristic, etc.)

• A multi-objective optimization problem can be defined as:

$$\begin{array}{ll} \min & f(\mathbf{x}) = \langle f_1(\mathbf{x}), \, ..., f_N(\mathbf{x}) \rangle \\ \text{s.t.} & g_i(\mathbf{x}) \leq 0 \text{ for } i = \{1, ..., I\} \\ & h_j(\mathbf{x}) = 0 \text{ for } j = \{1, ..., J\} \\ & \mathbf{x}_k^l \leq \mathbf{x}_k \leq \mathbf{x}_k^u \text{ for } k = \{1, ..., n\} \end{array}$$

 In MOO we deal with problems involving more than one objective. Hence a good candidate solution to solve the problem must return acceptable values for all of the considered objectives

 Optimum in MOO: The solution that represents the best tradeoff among the considered objectives

- Pareto optimality: one of the most accepted notions of optimum
- (Some) MOO methods are based in the concept of dominance to determine if a solution is better than other

Pareto dominance: Solution \mathbf{x}_1 dominates \mathbf{x}_2 iff \mathbf{x}_1 is better than \mathbf{x}_2 in at least in one objective and it is not worse in the rest.

- A solution x* is a Pareto optimum iff does not exist another solution x' such that x'dominate x*
- Problem: The output of a MOO method is not a single solution but an approximation to the Pareto optimal set

No solution is better than another in the Pareto optimal set. Selecting a single solution is the job of the decision maker.

MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS (NSGA-II)

Multi-objective Evolutionary Algorithms: two applications

Evolutionary Computing

- EC Is the collective name for a range of **problemsolving** techniques based on principles of biological evolution, such as **natural selection** and **genetic inheritance**.
- These techniques are being increasingly widely applied to a variety of problems, ranging from practical applications in industry and commerce to leading-edge scientific research.

Evolutionary Computing

NSGA-II : (perhaps) the most used MOEA

Algorithm 1 NSGA-II algorithm Deb et al. (2002).	
Require: N_{pop} , f, g { N_{pop} number of individuals (solutions); g number of generations f = $\langle f_1(\mathcal{P}), f_2(\mathcal{P}) \rangle$ objectives}	Non-dominated sorting
1: Initialize population \mathcal{X}_0	
2: Evaluate objective functions $\mathbf{f} = \langle f_1(\mathcal{P}), f_2(\mathcal{P}) \rangle, \forall \mathcal{P} : \mathcal{P} \in \mathcal{X}_0$	
3: Identify fronts $\mathcal{F}_{1,\ldots,F}$ by sorting solutions according to their non-dominance	
$\text{level } \forall \mathcal{P}: \mathcal{P} \in \mathcal{X}_0$	
4: while $i = 1 < g$ do	
5: Create child population Q_i from \mathcal{X}_i applying evolutionary operators.	
6: Evaluate objective functions $\mathbf{f}, \forall \mathcal{P} : \mathcal{P} \in \mathcal{Q}_i$	
7: Identify fronts $\mathcal{F}_{1,\ldots,F}$ by sorting solutions according to their non-dominance	
level $orall \mathcal{P}: \mathcal{P} \in \mathcal{X}_i \cup \mathcal{Q}_i$	
8: $\mathcal{X}_{i+1} = \emptyset; \ j = 1;$	
9: while $ \mathcal{X}_{i+1} < N_{pop}$ do	
10: $\mathcal{X}_{i+1} = \mathcal{X}_{i+1} \cup \mathcal{F}_j; \ j = j+1;$	
11: end while	
12: Select the last individuals for \mathcal{X}_{i+1} from \mathcal{F}_j using crowding distance	
13: end while	

NSGA-II : (perhaps) the most used MOEA

Crowding distance

Algorithm 1 NSGA-II algorithm Deb et al. (2002).

Require: N_{pop}, f, g

 $\{N_{pop} \text{ number of individuals (solutions)}; g \text{ number of generations}\}$

 $\mathbf{f} = \langle f_1(\mathcal{P}), f_2(\mathcal{P}) \rangle$ objectives}

- 1: Initialize population \mathcal{X}_0
- 2: Evaluate objective functions $\mathbf{f} = \langle f_1(\mathcal{P}), f_2(\mathcal{P}) \rangle, \forall \mathcal{P} : \mathcal{P} \in \mathcal{X}_0$
- Identify fronts *F*_{1,...,F} by sorting solutions according to their non-dominance level ∀*P* : *P* ∈ *X*₀
- 4: while i = 1 < g do
- 5: Create child population Q_i from \mathcal{X}_i applying evolutionary operators.
- 6: Evaluate objective functions $\mathbf{f}, \forall \mathcal{P} : \mathcal{P} \in \mathcal{Q}_i$

7: Identify fronts $\mathcal{F}_{1,...,F}$ by sorting solutions according to their non-dominance level $\forall \mathcal{P} : \mathcal{P} \in \mathcal{X}_i \cup \mathcal{Q}_i$

- 8: $\mathcal{X}_{i+1} = \emptyset; j = 1;$
- 9: while $|\mathcal{X}_{i+1}| < N_{pop}$ do
- 10: $\mathcal{X}_{i+1} = \mathcal{X}_{i+1} \cup \mathcal{F}_j; \ j = j+1;$
- 11: end while

12: Select the last individuals for \mathcal{X}_{i+1} from \mathcal{F}_j using crowding distance

13: end while

NSGA-II : (perhaps) the most used MOEA

Hugo Jair Escalante, Alicia Morales. **TIA-INAOE's approach for the 2013 Retrieving Diverse Social Images task.** *MediaEval 2013 Workshop, October 18-19, 2013, Barcelona, Spain, CEUR Workshop Proceedings,* Vol. 1043, 2013

MAXIMIXING VISUAL DIVERSITY OF IMAGE RETRIEVAL RESULTS

Diversification of retrieval results in content-based image retrieval

 Given a list of images (relevant to a query), to re-rank the list such that the visual diversity of top-ranked images is maximized

Diversification of retrieval results in content-based image retrieval

 Given a list of images (relevant to a query), to re-rank the list such that the visual diversity of top-ranked images is maximized

MediaEval Benchmarking Initiative for Multimedia Evaluation

The "multi" in multimedia: speech, audio, visual content, tags, users, context

- The 2013 Retrieving Diverse Social Images Task: Result diversification in social photo retrieval. Organizers:
 - Provide data
 - Ranked lists of documents
 - Textual features, visual features, tags, comments, etc.
 - Evaluation
 - Evaluate participants

http://www.multimediaeval.org/mediaeval2013/diverseimages2013/

MediaEval Benchmarking Initiative for Multimedia Evaluation

The "multi" in multimedia: speech, audio, visual content, tags, users, context

Aachen Cathedral 50° 46' 29" N, 6° 5' 4" E

MediaEval Benchmarking Initiative for Multimedia Evaluation

The "multi" in multimedia: speech, audio, visual content, tags, users, context

- Considered scenario:
 - A user searches for images of a specific location in social media (e.g., Flickr)
 - *Text* is used for searching

- The user wants that images in the first positions of the list are visually diverse to each other
- Additionally, all of the images must be relevant:
 - About the searched location (GPS coordinates)
 - No person in the image
 - ...

Casas Grandes Chihuahua Mexico

 Idea: to re-rank the list of images such that a tradeoff between relevance and diversity is maximized

NSGA-II is used to approach the problem as follows:

Maximize $< \rho(S^0, S), \beta(S) >$

MORD: Representation

A solution to our problem is a ranked list of images

MORD: Representation

NSGA-II is used to approach the problem as follows:

Maximize $< \rho(S^0, S), \beta(S) >$

• Diversity criterion:

$$\beta(S) = \sum_{i=2}^{N} \min(d_d(I_i, I_{1,...,i-1}))$$

• Diversity criterion:

• Diversity criterion:

$$\beta(S) = \sum_{i=2}^{N} \min(d_d(I_i, I_{1,...,i-1}))$$

MORD: Evolutionary stuff

- Initialization: Solutions are generated by adding random numbers to the original scores-vector
- Evolutionary operators: Standard cross-over and mutation operators were used

MORD: Selection of a single-solution

• We take the solution offering the best tradeoff between both objectives

Experiments & results

• Three runs were submitted:

- 1. Visual
- 2. Textual
- 3. Visual+Textual

MediaEval Benchmarking Initiative for Multimedia Evaluation The "multi" in multimedia: speech, audio, visual content, tags, users, context

∎edíaEval Benchmark

	12. 1	Ex	pert eva	luation		
ļ	C@10	C@20	P@10	P@20	F@10	F@20
1	0.3808	0.5699	0.7146	0.7143	0.4795	0.6125
2	0.3885	0.5732	0.7091	0.7136	0.4801	0.6102
3	0.3823	0.5690	0.6977	0.7076	0.4728	0.6067
	•	Crowd-	sourcing	g evalua	tion	
	C@10	C@20	P@10	P@20	F@10	F@20
1	0.7194	0.8499	0.6755	0.6745	0.6640	0.7245
2	0.7503	0.8625	0.6755	0.6898	0.6790	0.7392
3	0.7479	0.8675	0.6714	0.6918	0.6769	0.7464

Table 2: Official results obtained by MORD.

Initial list (7 topics in top-12 images)

Re-ranked (8 topics in top-12 images)

• Comparison with other participants: 6th out 11

• Comparison with other participants: 5th out 11

• Comparison with other participants: 6th out of 11

Conclusions

- The multi-objective formulation for RD is promising, but not as effective as we expected
 - The initial ranked list was not too reliable?
 - No feature selection / special processing of features
 - Did not take advantage of meta-data (tags/ comments/ etc.)
- Too many parameters/decisions to fix/take

Future work

- Alternative objective functions for both relevance and diversity.
- Evaluation of the gains over single-objective combinatoric approaches
- Efficient implementation in GPUs
- Incorporating feature selection into the optimization process

Hugo Jair Escalante, Maribel Marin-Castro, Mario Graff, Alicia Morales-Reyes, Manuel Montes, Alejandro Rosales, Jesús A. González, Carlos A. Reyes. **MOPG: Multi-objective prototype generation for classification.** *Submitted to Pattern Recognition, October 12, 2013*

MOPG: MULTI-OBJECTIVE PROTOTYPE GENERATION FOR CLASSIFICATION

KNN – classifier

One of the most popular non-parametric classifiers

Easy to implement and very effective

Main issues with KNN:

- The curse of dimensionality
- Efficiency
- Sensibility to noisy data

Prototype-based classification

- KNN classifiers using a subset of the original data
- The goal is to reduce the computational cost of standard KNN, by filtering out noisy/redundant instances and keeping the most informative ones
- **Key issue:** how to select/obtain the set of prototypes for a classification problem?

Prototype generation

 Problem: To select a (small) subset of instances such that the classification performance of a particular classifier (KNN) is not degraded significantly

Accuracy vs reduction dilemma

MOPG: Multi-Objective Prototype Generation

- Idea: approaching the PG problem as one of multi-objective optimization, where the objectives are: reduction and accuracy
- Goal: to obtain solutions that offer a good tradeoff between both objectives, and then select one for classification

MOPG: Multi-Objective Prototype Generation

• NSGA-II is used to approach the following problem: maximize $\langle f_1(\mathcal{P}), f_2(\mathcal{P}) \rangle$

subject to $\mathcal{P} \in \mathcal{Y}$

MOPG: Representation

A solution to our problem is a set of instances (the prototypes)

MOPG: Initialization

- Training data is divided into development and validation partitions
 - *Development:* Instances from which prototypes can be generated
 - Validation: Hold-out data set to evaluate solutions
 - The partition is updated every iteration

• Initialization: For each class we randomly select a set of training instances (class distribution is mantained)

MOPG: Evolutionary operators

- **Crossover:** with uniform probability either
 - Interchange (same-class) prototypes between solutions
 - Replace a prototype of class k in one solution with the average of all prototypes from class k in the other prototype
- **Mutation:** with uniform probability either
 - Add a vector of random numbers to a prototype
 - Replace a prototype with another instance frmo the development set

MOPG: Selection of a single-solution

• We evaluate the performance of each solution in the Pareto front and chose the one with highest accuracy

Pareto front for two sample data sets

- We performed experiments over 59 classification problems of diverse characteristics
- Compared the performance of our proposal to that of 25 alternative prototype generation techniques

I. Triguero, J. Derrac, S. García and F.Herrera, **A Taxonomy and Experimental Study on Prototype Generation for Nearest Neighbor Classification**. IEEE Trans. on Systems, Man, and Cybernetics--Part C, 42 (1) (2012) 86-100, 2012

Data Set	#Ex.	#Atts.	#Num.	#Nom.	#Cl.	Data Set	#Ex.	#Atts.	#Num.	#Nom.	#Cl.
abalone	4,174	8	7	1	28	marketing	8,993	13	13	0	9
appendicitis	106	7	7	0	2	monks	432	6	6	0	2
australian	690	14	8	6	2	movement_libras	360	90	90	0	15
autos	205	25	15	10	6	newthyroid	215	5	5	0	3
balance	625	4	4	0	3	nursery	12,960	8	0	8	5
banana	5,300	2	2	0	2	pageblocks	5,472	10	10	0	5
bands	539	19	19	0	2	penbased	10,992	16	16	0	10
breast	286	9	0	9	2	phoneme	5,404	5	5	0	2
bupa	345	6	6	0	2	pima	768	8	8	0	2
car	1,728	6	0	6	4	ring	7,400	20	20	0	2
chess	3,196	36	0	36	2	saheart	462	9	8	1	2
cleveland	297	13	13	0	5	satimage	6,435	36	36	0	7
coil2000	9,822	85	85	0	2	segment	2,310	19	19	0	7
contraceptive	1,473	9	6	3	3	sonar	208	60	70	0	2
crx	125	15	6	9	2	spambase	4,597	55	55	0	2
dermatology	366	33	1	32	6	spectheart	267	44	44	0	2
ecoli	336	7	7	0	8	splice	3,190	60	0	60	3
flare-solar	1,066	9	0	9	2	tae	151	5	5	0	3
german	1,000	20	6	14	2	texture	5,500	40	40	0	11
glass	214	9	9	0	7	tic-tac-toe	958	9	0	9	2
haberman	306	3	3	0	2	thyroid	7,200	21	6	15	3
hayes-roth	133	4	4	0	3	titanic	2,201	3	3	0	2
heart	270	13	6	7	2	twonorm	7,400	20	20	0	2
hepatitis	155	19	19	0	2	vehicle	846	18	18	0	4
housevotes	435	16	0	16	2	vowel	990	13	11	2	11
iris	150	4	4	0	3	wine	178	13	13	0	3
led7digit	500	7	0	1	10	wisconsin	683	9	9	0	2
lymphography	148	18	3	15	4	yeast	1484	8	8	0	10
magic	19,020	10	10	0	2	200	101	17	0	17	7
mammographic	961	5	0	5	2						

I. Triguero, J. Derrac, S. García and F.Herrera, **A Taxonomy and Experimental Study on Prototype Generation for Nearest Neighbor Classification**. IEEE Trans. on Systems, Man, and Cybernetics--Part C, 42 (1) (2012) 86-100, 2012

• Evaluation of the selection strategy:

		Accuracy		Reduction			
Method	All	\mathbf{S} mall	Large	All	$\mathbf{S}\mathbf{m}\mathbf{a}\mathbf{l}\mathbf{l}$	Large	
Strategy	$73.94{\pm}18.58$	81.29 ± 20.05	70.93 ± 16.95	98.67 ± 1.15	$99.41 {\pm} 0.29$	98.39 ± 1.16	
Best	$76.64{\pm}17.46$	82.05 ± 19.77	74.51 ± 15.84	98.78 ± 1.18	99.48 ± 0.29	98.52 ± 1.22	

• Parameter settings

Parameter	Value	Accuracy	Reduction
Individuals (N_{pop})	.50	$71.68\% \pm 18.18$	$97.24\% \pm 1.21$
	100	$72.25\% \pm 17.80$	${\bf 97.26\% \pm 1.25}$
	250	$73.13\% \pm 18.10$	$97.23\% \pm 1.31$
Generations (g)	50	$71.68\% \pm 18.18$	$97.24\% \pm 1.21$
	100	$72.71\% \pm 18.03$	$97.53\% \pm 1.29$
	250	$73.32\% \pm 18.11$	$97.62\% \pm 1.34$
	500	$73.37\% \pm 18.08$	$\mathbf{97.70\%} \pm 1.31$
Train-set-size (η)	0.1	$72.11\% \pm 18.33$	$98.84\% \pm 1.09$
	0.3	$\bf 73.07\% \pm 18.18$	$98.19\% \pm 1.13$
	0.5	$71.68\% \pm 18.18$	$97.24\% \pm 1.21$
	0.7	$72.12\% \pm 18.44$	$96.85\% \pm 1.38$
	0.9	$70.30\% \pm 20.39$	$96.38\% \pm 1.67$
Initial prot. (I_p)	0.005	$71.19\% \pm 18.18$	$99.01\%\pm1.28$
	0.01	$71.20\% \pm 18.31$	$98.97\% \pm 1.26$
	0.05	$72.14\% \pm 18.74$	$98.37\% \pm 1.16$
	0.1	$71.68\% \pm 18.18$	$97.24\% \pm 1.21$
	0.2	$73.07\% \pm 17.76$	$95.19\% \pm 1.82$
	0.4	$73.20\% \pm 17.72$	$89.86\% \pm 3.87$

• Parameter settings

• Comparison with related work

	r	Training set reduction				
Measure	All	Small	Large	All	Small	Large
MOGP	$73.94\% \pm 18.58$	$70.93\%{\pm}16.95$	81.30%±20.05	98.67%	98.39%	99.41%
GENN	$78.48\% \pm 18.57$	75.64%±15. <mark>4</mark> 5	81.33%±21.70	17.19%	18.62%	15.76%
PSCSA	$66.94\%{\pm}20.39$	66.82%±18.74	67.07%±22.05	99.23%	98.58%	99.88%
1NN	$77.04\% \pm 19.44$	73.48%±16.64	80.60%±22.24	0%	0%	0%

Reduction – Accuracy tradeoff (reduction * accuracy)

Reduction – Accuracy tradeoff (reduction * accuracy)

 Comparison with the best* methods (so far) for PG

${\bf Reduction} \times {\bf Accuracy}$						
Method	Ref.	Small	Large			
MOGP	Ours	80.06	72.33			
$\rm SFLSDE/RandtoBest/1/Bin$	(Triguero et al., 2011)	81.54	72.23			
$\rm SFLSDE/Rand/1/Bin$	(Triguero et al., 2011)	81.67	71.88			
SSMA+SFLSDE/RandtoBest/1/Bin	(Triguero et al., 2011)	81.64	74.95			
$(2 \times \text{Reduction} \times \text{Accuracy})/(\text{Reduction} + \text{Accuracy})$						
MOGP	Ours	88.98	84.12			
$\mathbf{SFLSDE}/\mathbf{RandtoBest}/1/\mathbf{Bin}$	(Triguero et al., 2011)	89.92	84.48			
SFLSDE/Rand/1/Bin	(Triguero et al., 2011)	89.99	84.25			
SSMA+SFLSDE/RandtoBest/1/Bin	(Triguero et al., 2011)	90.02	86.15			

Conclusions

- The multi-objective formulation for PG is a promising alternative to mono-objective approaches
 - We hope our work can foster the development of other multi-objective optimization methods for PG.
- We showed evidence supporting the hypothesis that our proposal, MOPG, is very competitive in terms of both objectives reduction and accuracy
 - MOPG outperforms most PG methods proposed so far

Future work

- Devising better ways to select the best solution from the Pareto front
- Efficient implementation of MOPG to deal with big-data problems (GPUs)
- Adapt MOPG for the generation of visual vocabularies

M. García-Limón, H. J. Escalante, E. Morales, A. Morales. Simultaneous **Generation of Prototypes and Features through Genetic Programming.** GECCO '14 Proceedings of the 2014 conference on Genetic and evolutionary computation, pp. 517-524, (Full paper, Oral presentation), Vancouver, Canada, July, 12-17, 2014.

M. Alfonso García, H. J. Escalante, E. Morales. **Towards Simultaneous Prototype and Feature Generation.** Proc. of the XVI IEEE Autumn Meeting of Power, Electronics and Computer Science ROPEC 2014 INTERNACIONAL, pp. 393–398, 2014.

SIMULTANEOUS GENERATION OF PROTOTYPES AND FEATURES

Generación de prototipos y características mediante programación genética multi-objetivo

Mauricio A. García Limón

Tesis de Maestría Asesores: Dr. Hugo Jair Escalante. Dr. Eduardo Morales F.

Instituto Nacional de Astrofísica Óptica y Electrónica (INAOE) Coordinación de Ciencias Computacionales

Diciembre 1, 2014

Best MS Thesis on Artificial Intelligence 2015, (SMIA)

Figura: Clasificador de vecinos más cercanos (kNN).

Ventajas

- * Sencilla implementación
- * No necesita etapa de entrenamiento.
- * Manejo de un gran número de clases.

Desventajas

- * Alto costo en almacenamiento (O(N * M)).
- * Alto costo computacional $(O(N^2))$.
- * Sensibilidad a ejemplos mal clasificados (Ruido).

Reduciendo el costo de kNN

- Is it possible to apply the same approach to generate features?
- Is it possible to perform both feature and prototype generation simultaneously?
- A multi-objective formulation would further help?

- We aim to find a set of prototypes and features such that:
 - Accuracy is maximized
 - Number of instances reduced
 - Number of features is kept low
- Proposed solution: Multi-objective GP
 - Same idea: combine instances/features to generate prototypes/features.
 - Multiobjective implementation (NSGA-II)

M. García-Limón, H. J. Escalante, E. Morales, A. Morales. Simultaneous **Generation of Prototypes and Features through Genetic Programming.** GECCO '14 Proceedings of the 2014 conference on Genetic and evolutionary computation, pp. 517-524, (Full paper, Oral presentation), Vancouver, Canada, July, 12-17, 2014.

• A different feature space for each class

NSGA-II : (perhaps) the most used MOEA

Algorithm 1 NSGA-II algorithm Deb et al. (2002).	
Require: N_{pop} , f, g $\{N_{pop} \text{ number of individuals (solutions)}; g \text{ number of generations}$ $\mathbf{f} = \langle f_1(\mathcal{P}), f_2(\mathcal{P}) \rangle$ objectives}	Non-dominated sorting
1: Initialize population \mathcal{X}_0	
2: Evaluate objective functions $\mathbf{f} = \langle f_1(\mathcal{P}), f_2(\mathcal{P}) \rangle, \forall \mathcal{P} : \mathcal{P} \in \mathcal{X}_0$	
3: Identify fronts $\mathcal{F}_{1,\ldots,F}$ by sorting solutions according to their non-dominance \mathcal{L}	
$\text{level} \; \forall \mathcal{P} : \mathcal{P} \in \mathcal{X}_0$	
4: while $i = 1 < g$ do	
5: Create child population Q_i from \mathcal{X}_i applying evolutionary operators.	
6: Evaluate objective functions $\mathbf{f}, \forall \mathcal{P} : \mathcal{P} \in \mathcal{Q}_i$	
7: Identify fronts $\mathcal{F}_{1,\dots,F}$ by sorting solutions according to their non-dominance	
level $\forall \mathcal{P} : \mathcal{P} \in \mathcal{X}_i \cup \mathcal{Q}_i$	
8: $\mathcal{X}_{i+1} = \emptyset; j = 1;$	
9: while $ \mathcal{X}_{i+1} < N_{pop}$ do	
10: $\mathcal{X}_{i+1} = \mathcal{X}_{i+1} \cup \mathcal{F}_j; \ j = j+1;$	
11: end while	
12: Select the last individuals for \mathcal{X}_{i+1} from \mathcal{F}_j using crowding distance	
13: end while	

NSGA-II : (perhaps) the most used MOEA

Crowding distance

Algorithm 1 NSGA-II algorithm Deb et al. (2002).

Require: N_{pop} , f, g

 $\{N_{pop} \text{ number of individuals (solutions)}; g \text{ number of generations}\}$

 $\mathbf{f} = \langle f_1(\mathcal{P}), f_2(\mathcal{P}) \rangle$ objectives}

- 1: Initialize population \mathcal{X}_0
- 2: Evaluate objective functions $\mathbf{f} = \langle f_1(\mathcal{P}), f_2(\mathcal{P}) \rangle, \forall \mathcal{P} : \mathcal{P} \in \mathcal{X}_0$
- Identify fronts *F*_{1,...,F} by sorting solutions according to their non-dominance level ∀*P* : *P* ∈ *X*₀
- 4: while i = 1 < g do
- 5: Create child population Q_i from \mathcal{X}_i applying evolutionary operators.
- 6: Evaluate objective functions $\mathbf{f}, \forall \mathcal{P} : \mathcal{P} \in \mathcal{Q}_i$

7: Identify fronts $\mathcal{F}_{1,...,F}$ by sorting solutions according to their non-dominance level $\forall \mathcal{P} : \mathcal{P} \in \mathcal{X}_i \cup \mathcal{Q}_i$

- 8: $\mathcal{X}_{i+1} = \emptyset; j = 1;$
- 9: while $|\mathcal{X}_{i+1}| < N_{pop}$ do
- 10: $\mathcal{X}_{i+1} = \mathcal{X}_{i+1} \cup \mathcal{F}_j; \ j = j+1;$
- 11: end while

12: Select the last individuals for \mathcal{X}_{i+1} from \mathcal{F}_j using crowding distance

13: end while

NSGA-II : (perhaps) the most used MOEA

• We select a solution by looking at accuracy only

• Example:

- Original data set (initial instances and input space)

• Example:

Prototypes and input space for class 1

• Example:

Prototypes and input space for class 2

• Some results:

Tabla: Método mono-objetivo vs generación independiente de prototipos y características.

	Propi	Jesta	Sólo Pr	ototipos	Sólo Características		
	Media	Std	Media	Std	Media	Std	
Exactitud Promedio	80.25	19.93	78.37	20.24	82.82	21.91	
Reducción de Instancias Promedio	99.43	0.09	99.40	0.11	-	-	
Reducción de Características Promedio	41.45	12.76	-	-	36.78*	14.65	

• Some results:

Small data sets

	Multi-Objetivo		Mono-Objetivo		EMOPG+FS		MOPG		1NN	
	Media	Std.	Media	Std.	Media	Std.	Media	Std.	Media	Std.
Exactitud	70.84	17.74	71.97	15.76	74.26*	14.70	74.82	18.35	73.48	16.64
Red. de Instancias	98.43	1.65	98.39*	1.37	97.32*	1.49	98.60	1.32	-	-
Red. de Características	88.65	7.52	42.62 *	5.13	60.47 *	19.14	-	-	-	-

* Diferencia estadísticamente significante.

Large data sets

	Multi-Objetivo		Mono-Objetivo		EMOPG+FS		MOPG		1NN	
	Media	Std.	Media	Std.	Media	Std.	Media	Std.	Media	Std.
Exactitud	76.19	21.25	80.25*	19.93	81.82 *	20.24	72.10	19.46	80.60	22.24
Red. de Instancias	99.82	0.16	99.43 *	0.09	98.42 *	0.45	98.82 *	0.70	-	-
Red. de Características	89.74	12.36	41.45*	12.76	49.09*	29.00	-	-	-	-

Figura: Reducción promedio vs. exactitud para bases de datos pequeñas

Figura: Reducción promedio vs. exactitud para bases de datos grandes

- Competitive performance on generation of both prototypes and features
- Class-specific input spaces
- Other uses: oversampling, data embedding, visualization,
- Issue: not scalable to large data sets

Questions?