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SINGLE/MULTI OBJECTIVE

OPTIMIZATION

Multi-objective Evolutionary Algorithms: two applications



http://en.wikipedia.org/wiki/Mathematical_optimization



• A single-objective optimization problem can 

be defined as:

min   f(x)

Single-objective optimization

min   f(x)

s.t. gi(x) ≤ 0 for i = {1,…,I}

hj(x) = 0 for j = {1,…,J}

xl
k ≤ xk ≤ xu

k for k = {1,…,n}



Single-objective optimization

Brian Birge’s PSO demo for matlab

Función: Rosenbrock



Single-objective optimization

• In this type of problems we want to find a

solution x* associated to an extreme value of

f. There are different types of methods for

approaching this problems (e.g., gradient-approaching this problems (e.g., gradient-

based, simplex, heuristic, etc. )



• A multi-objective optimization problem can be

defined as:

min   f(x) = ‹f (x), …, f (x)›

Multi-objective optimization

min   f(x) = ‹f1(x), …, fN(x)›

s.t. gi(x) ≤ 0 for i = {1,…,I}

hj(x) = 0 for j = {1,…,J}

xl
k ≤ xk ≤ xu

k for k = {1,…,n}



Multi-objective optimization

Decision space Objectives space

f2(x)

f1(x)



Multi-objective optimization

• In MOO we deal with problems involving more

than one objective. Hence a good candidate

solution to solve the problem must return

acceptable values for all of the consideredacceptable values for all of the considered

objectives

• Optimum in MOO: The solution that

represents the best tradeoff among the

considered objectives



Multi-objective optimization

• Pareto optimality: one of

the most accepted

notions of optimum

• (Some) MOO methods• (Some) MOO methods

are based in the concept

of dominance to

determine if a solution is

better than other

Pareto dominance: Solution x1 dominates x2 iff x1 is better than x2

in at least in one objective and it is not worse in the rest.



Multi-objective optimization

• A solution x* is a Pareto

optimum iff does not

exist another solution x´

such that x´dominate x*

• Problem: The output of a

MOO method is not a

single solution but an

approximation to the

Pareto optimal set

No solution is better than another in the Pareto optimal set. 

Selecting a single solution is the job of the decision maker. 



MULTI-OBJECTIVE EVOLUTIONARY

ALGORITHMS (NSGA-II)

Multi-objective Evolutionary Algorithms: two applications



Evolutionary Computing

• EC Is the collective name for a range of problem-

solving techniques based on principles of

biological evolution, such as natural selection

and genetic inheritance.and genetic inheritance.

• These techniques are being increasingly widely

applied to a variety of problems, ranging from

practical applications in industry and commerce

to leading-edge scientific research.



Evolutionary Computing

• Trial and error problem solving approach:

– While not_satisfied_with_solution

1. Generate candidate solution(s) for the problem at 

handhand

2. Evaluate the quality of the candidate solution (s)

– Return best_solution_found

EC techniques generate new 

solutions according to (rough) 

analogies with biological

evolution principles



NSGA-II : (perhaps) the most used

MOEA

Non-dominated

sorting



NSGA-II : (perhaps) the most used

MOEA

Crowding distance



NSGA-II : (perhaps) the most used

MOEA

NSGA-II’s output



Hugo Jair Escalante, Alicia Morales. TIA-INAOE's approach for the 2013

MAXIMIXING VISUAL DIVERSITY OF 

IMAGE RETRIEVAL RESULTS

Hugo Jair Escalante, Alicia Morales. TIA-INAOE's approach for the 2013

Retrieving Diverse Social Images task. MediaEval 2013 Workshop,

October 18-19, 2013, Barcelona, Spain, CEUR Workshop Proceedings, Vol.

1043, 2013



Diversification of retrieval results in 

content-based image retrieval

• Given a list of images (relevant to a query), to

re-rank the list such that the visual diversity of

top-ranked images is maximized

Machu-Picchu in 

the background

Retrieval model

Image

collection

Query



Diversification of retrieval results in 

content-based image retrieval

• Given a list of images (relevant to a query), to

re-rank the list such that the visual diversity of

top-ranked images is maximized

…

? ? ? ? ?

? ? ? ? ?



• The 2013 Retrieving Diverse Social Images 
Task: Result diversification in social photo 
retrieval. Organizers: retrieval. Organizers: 

– Provide data

• Ranked lists of documents 

• Textual features, visual features, tags, comments, etc.

• Evaluation 

– Evaluate participants 

http://www.multimediaeval.org/mediaeval2013/diverseimages2013/





• Considered scenario:
– A user searches for images of a specific location in social

media (e.g., Flickr)

– Text is used for searching

– The user wants that images in the first positions of the list– The user wants that images in the first positions of the list
are visually diverse to each other

– Additionally, all of the images must be relevant:
• About the searched location (GPS coordinates)

• No person in the image

• …

Casas Grandes 

Chihuahua Mexico



Multi-objective optimization

for result diversification

• Idea: to re-rank the list of images such that a 

tradeoff between relevance and diversity is

maximized



Multi-objective optimization

for result diversification

• NSGA-II is used to approach the problem as

follows:

Maximize < ρ(S0, S) , β(S) >

• Where:

Diversity termRelevance term

Maximize < ρ(S , S) , β(S) >



MORD: Representation

Each solution is the
vector of scores to
generate the ranked
list

A solution to our

problem is a

ranked list of

images



MORD: Representation
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2
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Multi-objective optimization

for result diversification

• NSGA-II is used to approach the problem as

follows:

Maximize < ρ(S0, S) , β(S) >

• Where:

Diversity termRelevance term

Maximize < ρ(S , S) , β(S) >



Multi-objective optimization

for result diversification

• Diversity criterion:

…

? ? ? ? ?

? ? ? ? ?



Multi-objective optimization

for result diversification

• Diversity criterion:

…

? ? ? ? ?

? ? ? ? ?



Multi-objective optimization

for result diversification

• Diversity criterion:

…

? ? ? ? ?

? ? ? ? ?



MORD: Evolutionary stuff

• Initialization: Solutions
are generated by adding
random numbers to the
original scores-vector

• Evolutionary operators:
Standard cross-over and
mutation operators
were used



MORD: Selection of a single-solution

• We take the solution offering the best tradeoff between

both objectives



Experiments & results

• Three runs were submitted:

1. Visual

2. Textual

3. Visual+Textual
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Experiments & results

Initial list (7 topics in top-12 images)



Experiments & results

Re-ranked (8 topics in top-12 images)



Experiments & results

• Comparison with other participants: 6th out 11
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Experiments & results

• Comparison with other participants:  5th out 11
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Experiments & results

• Comparison with other participants: 6th out of 11

0.9

1
MULTIMEDIA

 

P@10
C@10
F

1
@1

0.4

0.5

0.6

0.7

0.8

Team

P
er

fo
rm

an
ce

 

S
O

T
O

N
−

U
K

LI
P

6−
F

R

LA
P

I−
R

O

R
G

U

B
M

E
−

H
U

G
E

N
T

−
B

E

B
IL

K
E

N
T

−
T

R

U
E

C
−

JP

C
E

A
LI

S
T

−
F

R

T
IA

IN
A

O
E

−
M

X



Conclusions

• The multi-objective formulation for RD is
promising, but not as effective as we expected

• The initial ranked list was not too reliable?

• No feature selection / special processing of
features

• No feature selection / special processing of
features

• Did not take advantage of meta-data (tags/
comments/ etc.)

• Too many parameters/decisions to fix/take



Future work

• Alternative objective functions for both relevance
and diversity.

• Evaluation of the gains over single-objective
combinatoric approachescombinatoric approaches

• Efficient implementation in GPUs

• Incorporating feature selection into the
optimization process



Hugo Jair Escalante, Maribel Marin-Castro, Mario Graff, Alicia Morales-

Reyes, Manuel Montes, Alejandro Rosales, Jesús A. González, Carlos A. 

MOPG: MULTI-OBJECTIVE PROTOTYPE

GENERATION FOR CLASSIFICATION

Reyes, Manuel Montes, Alejandro Rosales, Jesús A. González, Carlos A. 

Reyes. MOPG: Multi-objective prototype generation for classification. 

Submitted to Pattern Recognition, October 12, 2013



KNN – classifier

• One of the most popular non-parametric

classifiers

• Easy to implement and very effective

• Main issues with KNN:

– The curse of dimensionality

– Efficiency

– Sensibility to noisy data

Positive examples

Negative examples



Prototype-based classification

• KNN classifiers using a subset of
the original data

• The goal is to reduce the
computational cost of standardcomputational cost of standard
KNN, by filtering out
noisy/redundant instances and
keeping the most informative
ones

• Key issue: how to select/obtain
the set of prototypes for a
classification problem?



Prototype generation 

• Problem: To select a (small)

subset of instances such

that the classification

Positive examples

Negative examples

that the classification

performance of a particular

classifier (KNN) is not

degraded significantly



Accuracy vs reduction dilemma 

• The two key aspects for the evaluation of PG
methods are: reduction and accuracy on
unseen data
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MOPG: Multi-Objective

Prototype Generation

• Idea: approaching the PG problem as one of

multi-objective optimization, where the

objectives are: reduction and accuracy

• Goal: to obtain solutions that offer a good

tradeoff between both objectives, and then

select one for classification



MOPG: Multi-Objective

Prototype Generation

• NSGA-II is used to approach the following

problem:

• Where: f1(P) = δ(P, D); f2(P) = γ(P, D)

Hold-out classification

performance

Training set 

reduction



MOPG: Representation

Each solution is codified

as matrix of size P x d

Instances                   

Features

A solution to our

problem is a set

of instances (the

prototypes)



MOPG: Initialization

• Training data is divided into development and
validation partitions

• Development: Instances from which prototypes can
be generated

• Validation: Hold-out data set to evaluate solutions• Validation: Hold-out data set to evaluate solutions

• The partition is updated every iteration

• Initialization: For each class we randomly select a set
of training instances (class distribution is mantained)



MOPG: Evolutionary operators

• Crossover: with uniform probability either

• Interchange (same-class) prototypes
between solutions

• Replace a prototype of class k in one
solution with the average of all
prototypes from class k in the other
prototype
prototypes from class k in the other
prototype

• Mutation: with uniform probability either

• Add a vector of random numbers to a
prototype

• Replace a prototype with another
instance frmo the development set



MOPG: Selection of a single-solution
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• We evaluate the performance of each solution in the
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Experiments and results

• We performed experiments over 59

classification problems of diverse

characteristics

• Compared the performance of our proposal to

that of 25 alternative prototype generation

techniques

I. Triguero, J. Derrac, S. García and F.Herrera, A Taxonomy and Experimental Study on Prototype Generation for Nearest 

Neighbor Classification . IEEE Trans. on Systems, Man, and Cybernetics--Part C, 42 (1) (2012) 86-100, 2012



Experiments and results

I. Triguero, J. Derrac, S. García and F.Herrera, A Taxonomy and Experimental Study on Prototype Generation for Nearest 

Neighbor Classification . IEEE Trans. on Systems, Man, and Cybernetics--Part C, 42 (1) (2012) 86-100, 2012



Experiments & results

• Evaluation of the selection strategy:
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Experiments & results

• Parameter settings



Experiments & results

• Parameter settings
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Experiments & results

• Comparison with related work



Experiments & results

• Comparison with related work
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• Comparison with related work
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Experiments & results

• Comparison with the best* methods (so far)

for PG



Conclusions

• The multi-objective formulation for PG is a promising
alternative to mono-objective approaches

• We hope our work can foster the development of
other multi-objective optimization methods for PG.

• We showed evidence supporting the hypothesis that
our proposal, MOPG, is very competitive in terms of
both objectives reduction and accuracy

• MOPG outperforms most PG methods proposed so
far



Future work

• Devising better ways to select the best

solution from the Pareto front

• Efficient implementation of MOPG to deal• Efficient implementation of MOPG to deal

with big-data problems (GPUs)

• Adapt MOPG for the generation of visual

vocabularies
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Simultaneous generation of features

and prototypes

• Is it possible to apply the same approach to

generate features?

• Is it possible to perform both feature and• Is it possible to perform both feature and

prototype generation simultaneously?

• A multi-objective formulation would further

help?



Simultaneous generation of features

and prototypes

• We aim to find a set of prototypes and features
such that:

– Accuracy is maximized

– Number of instances reduced

– Number of features is kept low– Number of features is kept low

• Proposed solution: Multi-objective GP

– Same idea: combine instances/features to generate
prototypes/features.

– Multiobjective implementation (NSGA-II)

M. García-Limón, H. J. Escalante, E. Morales, A. Morales. Simultaneous Generation of Prototypes and Features through Genetic

Programming. GECCO '14 Proceedings of the 2014 conference on Genetic and evolutionary computation, pp. 517-524, (Full

paper, Oral presentation), Vancouver, Canada, July, 12-17, 2014.



Simultaneous generation of features

and prototypes



Simultaneous generation of features

and prototypes

• A different feature space for each class



NSGA-II : (perhaps) the most used

MOEA

Non-dominated

sorting



NSGA-II : (perhaps) the most used

MOEA

Crowding distance



NSGA-II : (perhaps) the most used

MOEA

NSGA-II’s output



Simultaneous generation of features

and prototypes

• We select a solution by looking at accuracy

only



Simultaneous generation of features

and prototypes

• Example:

– Original data set (initial instances and input space)



Simultaneous generation of features

and prototypes

• Example:

– Prototypes and input space for class 1



Simultaneous generation of features

and prototypes

• Example:

– Prototypes and input space for class 2



Simultaneous generation of features

and prototypes

• Some results:



Simultaneous generation of features

and prototypes

• Some results:

Small data sets

Large data sets



Simultaneous generation of features

and prototypes



Simultaneous generation of features

and prototypes



Simultaneous generation of features

and prototypes

• Competitive performance on generation of both
prototypes and features

• Class-specific input spaces• Class-specific input spaces

• Other uses: oversampling, data embedding, 
visualization,  

• Issue: not scalable to large data sets



Questions?


