
Deep	learning:	an	
introduction

Hugo	Jair	Escalante,	Eduardo	Morales

Contents

• Deep	learning	in	a	nutshell
• The	boom	of	deep	learning:	famous	achievements!
• Neural	networks
• Deep	neural	networks
• Deep	learning	variants
• Extensions
• Final	remarks

Deep	learning	in	a	nutshell

• Deep learning is a machine learning methodology that aims at solving
(modeling) problems by building layer-wise models with several (many)
levels of increasing abstraction

• Layers of these models capture discriminative/descriptive information from
raw data

• Can be used for: supervised/unsupervised learning, reinforcement
learning, feature extraction, …

• Examples: multi-layer perceptrons, deep neural networks, convolutional
neural networks, deep belief nets, auto encoders, etc.

Deep	learning	in	a	nutshell

• Features of deep learning methods:
• Large number of parameters (on the ranges of millions)
• Require large amounts of data to be trained
• Can extract features automatically
• Can leverage unlabeled data
• Extremely complex models
• Require of specialized hardware for training them efficiently
• Dominate the arenas of machine learning applications (e.g., computer vision,
NLP)

Deep	learning	in	a	nutshell

• How	does	a	non	deep	model	looks	like?

! x = $% & + (

Deep	learning	in	a	nutshell

• How	does	a	(not	too	deep)	DL	model	looks	like?

! x =)*%*(),%,)-%- . + (+ (,) + (*

Deep	learning	in	a	nutshell

• Going	deeper	(CNNs)

http://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html

The	boom	of	DL:	brief	history

The	boom	of	DL:	noticeable	achivements

• Large	scale	image	classification

• Speech	recognition

• Face	recognition

• Deep	reinforcement	learning

• Other	achievements
• Image	captioning
• Word	embeddings
• Gesture	/	action	recognition
• Super	resolution	
• …

Breakthrough	achievements	I	(ImageNET)

• In 2012, Krizhevsky et al. succeded at training a convolutional neural
network with about 1 million images, approaching the ImageNET
large scale classification challenge (1000 of classes, millions of
images)

Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. Advances in
Neural Information Processing Systems 25 (NIPS 2012)

The	ImageNET challenge

• ImageNET:	A	huge	resource	
comprising	millions	of	
images.
• Images	were	downloaded	
from	the	web	using	synsets
from	WordNet
• The	ImageNET challenge	is	
organized	since	2011
• Classification
• Object	detection
• Object	localization

Breakthrough	achievements	I	(ImageNET)

• Performance	improvement	with	solutions	from	those	days	was	
impressive
• Key	for	success:

• GPU	based	training
• RELU	activation	functions
• Dropout	regularization
• Big	data	/	complex	model

Breakthrough	achievements	I	(ImageNET)

• AlexNet is nowadays (perhaps) the most used architecture for image
classification and related tasks, it is included in most DL toolkits
• This success inspired other major achievements in computer vision
with DL (... Ultimately establishing DL as the de facto methodology in
CV)

•

Checked,	June	14
(one	day	after:	12437	citations,	today?)

Breakthrough	achievements	II	(Speech	
recognition)
• Around	2012,	the	most	important	IT	companies	converged	to	the	use	
of	Restricted	Boltzman Machines	for	Speech	Recognition
• Key	idea:	RBM-pretraining +	fine	tunning +	HMM	

Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N. Sainath,
and Brian Kingsbury. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Processing
Magazine, Vol 29(6):82 - 97, 2012

Breakthrough	achievements	II	(Speech	
recognition)
• Impressive	results	were	attained	by	such	type	of	models:

Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N. Sainath,
and Brian Kingsbury. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Processing
Magazine, Vol 29(6):82 - 97, 2012

Breakthrough	achievements	++:	Deepface

• In 2014, it was announced deep face a deep neural net trained on
4.44 million images

Yaniv Tagiman,	Ming	Yang,	Marc	Aurelio	Ranzato,	Lior Wolf.	DeepFace:	Closing	the	Gap	to	Human-Level	Performance	in	Face	Verification,	CVPR	2014	

Breakthrough	achievements	++:	Deepface

• Deepface achieved	a	97.35%	of	recognition	accuracy	in	the	LFW	data	
set	(human	97.5%)	and	91.4%	in	the	youtube faces	data	set.

Breakthrough	achievements	++:	DeepRL

• In	2015,	the	deepmind team	published	their	Deep-Q	network:	a	DL	
architecture	that	by	”looking”	at	the	pixels	produced	in	videogames	
and	using	game	scores,	was	able	to	learn	to	play	Atari	

Volodymyr Mnih,	et	al.	Human-level	Control	through	Deep	Reinforcement	Learning	In	Nature,	518:	529–533,	2015.

Breakthrough	achievements	++:	DeepRL

• DQ	outperformed	all	previous	
solutions	in	a	suite	of	50	Atari	
games

• Achieving	human	(expert)	
level		performance	in	a	large	
portion	of	the	games

https://deepmind.com/blog/deep-reinforcement-learning/

Breakthrough	achievements	++:	Image	
Captioning

https://pdollar.wordpress.com/2015/01/21/image-captioning/

Breakthrough	achievements	++:	Image	
Captioning

https://pdollar.wordpress.com/2015/01/21/image-captioning/

Breakthrough	achievements	++

• Image	captioning https://pdollar.wordpress.com/2015/01/21/image-
captioning/
• Distributed	representations	for	words
• Translation	
• …

References
• Book:

• Ian Goodfellow, Yoshua Bengio, Aaron Courville. Deep Learning.MIT Press, 2016
• Overviews:

• Yann LeCun, Yoshua Bengio & Geoffrey Hinton. Deep learning. Nature 521, 436–444 (28 May 2015)
• Andrew L. Beam. Deep Learning 101 - Part 1: History and Background, Blog post, Feb 23, 2017

• Breakthrough:
• Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton. ImageNet Classification with Deep Convolutional Neural Networks.

Advances in Neural Information Processing Systems 25 (NIPS 2012)
• Yaniv Tagiman, Ming Yang, Marc Aurelio Ranzato, Lior Wolf. DeepFace: Closing the Gap to Human-Level Performance in Face

Verification, CVPR 2014
• Volodymyr Mnih, et al. Human-level Control through Deep Reinforcement Learning In Nature, 518: 529–533, 2015.
• Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya

Khosla, Michael Bernstein, Alexander C. Berg and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. IJCV, 2015.
• Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent

Vanhoucke, Patrick Nguyen, Tara N. Sainath, and Brian Kingsbury. Deep Neural Networks for Acoustic Modeling in Speech
Recognition: The Shared Views of Four Research Groups. IEEE Signal Processing Magazine, Vol 29(6):82 - 97, 2012

• https://pdollar.wordpress.com/2015/01/21/image-captioning/

Deep	learning	in	a	nutshell

• Deep learning is a machine learning methodology that aims at solving
(modeling) problems by building layer-wise models with several (many)
levels of increasing abstraction

• Layers of these models capture discriminative/descriptive information from
raw data

• Can be used for: supervised/unsupervised learning, reinforcement
learning, feature extraction, …

• Examples: multi-layer perceptrons, deep neural networks, convolutional
neural networks, deep belief nets, auto encoders, etc.

Deep	neural	networks

• Deep	feedforward	networks	are	the	``essential”	deep	learning	models	

• Conventionally,	a	neural	network	is	said	to	be	deep	if	it	has	at	least	2	
hidden	layers

• Hence,	feedforward	neural	networks	comprise	the	fundamentals	of	
deep	learning

• How	much	do	you	know	about	NNs?	

Neural	networks	– recap.

• A feedforward neural network is a model:
• That approximates functions of the form 0	 = 	!(&; Θ)

• Is formed by multiple (nonlinear) functions arranged in layers
• Layers form a network
• In which information flows in a single (forward) direction

Neural	networks	– recap.

• Neuron	analogy

Slide from I. Guyon

Neural	networks	– recap.	(from	perceptrons
to	DNNs)
• In general neural networks are built of units that resemble the
perceptron (linear units activated by a differentiable function)

• We will revisit the perceptron, linear units and will arrive to MLPs or
DNNs

Neural	networks	– recap.	(from	perceptrons
to	DNNs)

• Perceptron. A simple, linear classifier that can solve
linearly separable classification problems
(grandparent of NNs and the SVM)

• Given:
• 4 = {(67, 07)-,…,:}, with &7	 ∈ 	ℝ> and 07 ∈ 	 {−1, 1}

• A perceptron learns a discriminative function of the
form:
• ! 6 = ABCD(E6 + (), withE ∈	ℝ

>

• The fundamental unit of DNNs!

?

x1

x2

No	Cancer

Cancer

?0<+× bxw

0>+× bxw

0=+× bxw

Neural	networks	– recap.	(from	perceptrons
to	DNNs)
• How	to	determine	the	weights	w?

• The	Perceptron	learning	algorithm

1. w ← randomly	initialize	weights
2. Repeat	until	stop	criterion	meet

I. For	each	67 ∈ 4
a) G7 ← E67 + (//	estimate	perceptron’s	prediction	
b) ∆E ← K(07 − G7) //	estimate	the	rate	of	change
c) E ← E + ∆E //Update	w

3. Return	w

• Convergence	guaranteed	(linearly	separable	problems)

What	if	the	problem	is	non	linearly	separable?

Intuition?

Neural	networks	– recap.	(from	perceptrons
to	DNNs)
• For	non-linearly	separable	problems,	weights	for	a	similar	unit	can	be	
optimized	with	gradient	descent

• Suppose	we	want	to	learn	weights	for	a	perceptron	without	threshold
• ! 6 = 	 (E6 + (),	with	E ∈ 	ℝ

>
	

• ! 6 = 	 (E6), if	we	augment	the	input	space	with	a	1,	and	include	b	into	w

• And	suppose	we	want	to	minimize:	
• M E =

-

,
∑ (07 − G7)

,:

7O-

• How	to	learn	these	weights?

Neural	networks	– recap.	(from	perceptrons
to	DNNs)
• Problem:

• Minimize	M E =
-

,
∑ (07 − G7)

,:

7O- w.r.t w

• Idea: to explore the space of
possible values that w can take.
Starting with an initial w and
updating it in the direction that
decreases the error
• (hint: the gradient of E(w) indicates
the direction that produces the
highest increase in E starting in w)

Neural	networks	– recap.	(from	perceptrons
to	DNNs)
• The	math:

Neural	networks	– recap.	(from	perceptrons
to	DNNs)
• The	delta	rule	learning	algorithm	(gradient	descend)

1. w ← randomly	initialize	weights
2. Repeat	until	stop	criterion	meet

I. ∆E←	initialize	to	0
II. For	each	67 ∈ 4

a) G7 ← E67 + (//	estimate	perceptron’s	prediction	
b) For	each	weight	j	estimate

1. ∆ER ← ∆ER + K(07 − G7) &S,R	 //	estimate	the	rate	of	change
III. E ← E+ ∆E //Update	w

3. Return	w

Neural	networks	– recap.	(from	perceptrons
to	DNNs)
• SGD:	in	practice,	a	stochastic	version	of	the	algorithm	is	used,	in	
which	weights	are	updated	after	processing	each	input

1. w ← randomly	initialize	weights
2. Repeat	until	stop	criterion	meet

I. ∆E←	initialize	to	0
II. For	each	67 ∈ 4

a) G7 ← E67 + (//	estimate	perceptron’s	prediction	
b) For	each	weight	j	estimate

1. ∆ER ← ∆ER + K(07 − G7) &S,R	 //	estimate	the	rate	of	change
c) E ← E+ ∆E //Update	w

3. Return	w

Neural	networks	– recap.	(from	perceptrons
to	DNNs)
• The problem with preceptrons et al.: They
can only learn linear functions. When the
data is not linearly separable the best one
can do is to expect to have a good fit

• Solutions?
• To map the data into a non linear feature
space in which the problem can become
linearly separable

• How?

Neural	networks	– recap.	(from	perceptrons
to	DNNs)
• What about stacking multiple layers
of linear units?
• Still will produce only linear functions

• Idea: stacking multiple layers of linear
units activated with non linear
functions

Neural	networks	– recap.	(from	perceptrons
to	DNNs)
• Introducing	non	linearities in	units

Slide from I. Guyon

Neural	networks	– recap.	(from	perceptrons
to	DNNs)
• Introducing	non	linearities in	units

T. Mitchell.Machine Learning, McGrawHill 1997,

Neural	networks	– recap.	(from	perceptrons
to	DNNs)

• Disentangling NNs

Neural	networks	– recap.	(from	perceptrons
to	DNNs)

• Disentangling NNs

Neural	networks	– recap.	(from	perceptrons
to	DNNs)

Input	units
• Disentangling NNs

Neural	networks	– recap.	(from	perceptrons
to	DNNs)

Hidden inputs

• Disentangling NNs

Neural	networks	– recap.	(from	perceptrons
to	DNNs)

• Disentangling NNs

Neural	networks	– recap.	(from	perceptrons
to	DNNs)

• Disentangling NNs

Neural	networks	– recap.	(from	perceptrons
to	DNNs)

• Disentangling NNs

Neural	networks	– recap.	(from	perceptrons
to	DNNs)

Weight matrix (4x3)

Neural	networks	– recap.	(from	perceptrons
to	DNNs)

Weight matrix (4x3)

Neural	networks	– recap.	(from	perceptrons
to	DNNs)

Weight matrix (4x3)

Neural	networks	– recap.	(from	perceptrons
to	DNNs)

Weight matrix (4x3)

Linear	combination
(perceptrón	unit)

Neural	networks	– recap.	(from	perceptrons
to	DNNs)

Weight matrix (4x3)

Linear	combination
(perceptrón	unit)

Non	linear
activation

Neural	networks	– recap.	(from	perceptrons
to	DNNs)

Weight matrix (4x3)

Linear	combination
(perceptrón	unit)

Non	linear
activation

Neural	networks	– recap.	(from	perceptrons
to	DNNs)

Weight matrix (4x3)

Linear	combination
(perceptrón	unit)

Non	linear
activation

Neural	networks	– recap.	(from	perceptrons
to	DNNs)

Weight matrix (4x3)

Linear	combination
(perceptrón	unit)

Non	linear
activation

Neural	networks	– recap.	(from	perceptrons
to	DNNs)

Neural	networks	– recap.	(from	perceptrons
to	DNNs)

Neural	networks	– recap.	(from	perceptrons
to	DNNs)

Neural	networks	– recap.	(from	perceptrons
to	DNNs)

Input	units hidden units output	units

Neural	networks	– recap.	(from	perceptrons
to	DNNs)
• As	other learning algorithms,	NNs	aim	to	learn	a	function	mapping	
inputs	to	outputs
• Training	a	NN	reduces	to	learning	the	weights	in	the	network	that	
minimize	an	error	estimate
• How	many	parameters?
• How	to	adjust/determine	their	values?
• What	criterion	to	adopt?

Neural	networks	– recap.	(from	perceptrons
to	DNNs)

Neural	networks	– recap.	(from	perceptrons
to	DNNs)
• The	de	facto	algorithm	for	training	NNs	is	backpropagation	+	gradient	
descent

• Key	idea:	
• use	gradient	descent	to	learn	the	weights	that	best	fit	the	data	
• smartly	using	the	chain	rules	of	calculus,	to	dedicate	the	gradient	of	error	
with	respect	to	weights	

Neural	networks	– recap.	(from	perceptrons
to	DNNs)

• The backprop + SGD
algorithm for training a
MLP

T. Mitchell.Machine Learning, McGrawHill 1997,

Neural	networks	– recap.	(from	perceptrons
to	DNNs)

• The backprop +
SGD algorithm for
training a MLP

Neural	networks	– recap.	(from	perceptrons
to	DNNs)

Neural	networks	– recap.	(from	perceptrons
to	DNNs)
• We	want	to	obtain	the	set	of	weights	that	minimize

• For	a	specific	instance	d

• Using	stochastic	gradient	descent,	we	aim	to	update	the	weights	with	
each	instance	d	as	follows

Neural	networks	– recap.	(from	perceptrons
to	DNNs)
• We	aim	to	estimate

• Since	every	weight	influence	the	model	only	
through

• We	have:
The	chain	rule	of	calculus

Neural	networks	– recap.	(from	perceptrons
to	DNNs)

Neural	networks	– recap.	(from	perceptrons
to	DNNs)
• We	aim	to	estimate

• Since	every	weight	influence	the	model	only	
through

• We	have:
The	chain	rule	of	calculus

Neural	networks	– recap.	(from	perceptrons
to	DNNs)
• Since	there	are	two	types	of	units,	we	have	to	estimate	the	gradient	
for	both	cases:

Neural	networks	– recap.	(from	perceptrons
to	DNNs)
• Since	there	are	two	types	of	units,	we	have	to	estimate	the	gradient	
for	both	cases:

Neural	networks	– recap.	(from	perceptrons
to	DNNs)
• Since	there	are	two	types	of	units,	we	have	to	estimate	the	gradient	
for	both	cases:

These	can	be	compared	
Directly	with	the	target	

Neural	networks	– recap.	(from	perceptrons
to	DNNs)
• Since	there	are	two	types	of	units,	we	have	to	estimate	the	gradient	
for	both	cases:

These	can	be	compared	
Directly	with	the	target	

Neural	networks	– recap.	(from	perceptrons
to	DNNs)
• Since	there	are	two	types	of	units,	we	have	to	estimate	the	gradient	
for	both	cases:

These	cannot	be	compared	
Directly	with	the	target	

These	can	be	compared	
Directly	with	the	target	

Neural	networks	– recap.	(from	perceptrons
to	DNNs)
• Output	units,	we	aim	to	estimate:

• We	notice	netj only	influences	the	model	via	the	outputs	of	the	model

Neural	networks	– recap.	(from	perceptrons
to	DNNs)
• Output	units,	we	aim	to	estimate:

• We	notice	netj only	influences	the	model	via	the	outputs	of	the	model

Neural	networks	– recap.	(from	perceptrons
to	DNNs)
• Output	units,	we	aim	to	estimate:

• We	notice	netj only	influences	the	model	via	the	outputs	of	the	model

Neural	networks	– recap.	(from	perceptrons
to	DNNs)
• Output	units,	we	aim	to	estimate:

• We	notice	netj only	influences	the	model	via	the	outputs	of	the	model

Neural	networks	– recap.	(from	perceptrons
to	DNNs)
• For		hidden	units,	we	aim	to	estimate	

• We		notice	that	hidden	units	only	influence	the	model	trough	the	
units	that	have	as	input	the	output	of	the	hidden	unit

Let	down(j)	denote	the	set	of	units	affected	by	j

Neural	networks	– recap.	(from	perceptrons
to	DNNs)
• For		hidden	units,	we	aim	to	estimate	

• We		notice	that	hidden	units	only	influence	the	model	trough	the	
units	that	have	as	input	the	output	of	the	hidden	unit

Let	down(j)	denote	the	set	of	units	affected	by	j

Neural	networks	– recap.	(from	perceptrons
to	DNNs)
• For		hidden	units,	we	aim	to	estimate	

• We		notice	that	hidden	units	only	influence	the	model	trough	the	
units	that	have	as	input	the	output	of	the	hidden	unit

Neural	networks	– recap.	(from	perceptrons
to	DNNs)
• For		hidden	units,	we	aim	to	estimate	

• We		notice	that	hidden	units	only	influence	the	model	trough	the	
units	that	have	as	input	the	output	of	the	hidden	unit

Neural	networks	– recap.	(from	perceptrons
to	DNNs)
• For		hidden	units,	we	aim	to	estimate	

• We		notice	that	hidden	units	only	influence	the	model	trough	the	
units	that	have	as	input	the	output	of	the	hidden	unit

Neural	networks	– recap.	(from	perceptrons
to	DNNs)
• For		hidden	units,	we	aim	to	estimate	

• We		notice	that	hidden	units	only	influence	the	model	trough	the	
units	that	have	as	input	the	output	of	the	hidden	unit

Neural	networks	– recap.	(from	perceptrons
to	DNNs)
• For		hidden	units,	we	aim	to	estimate	

• We		notice	that	hidden	units	only	influence	the	model	trough	the	
units	that	have	as	input	the	output	of	the	hidden	unit

Neural	networks	– recap.	(from	perceptrons
to	DNNs)

• The backprop + SGD
algorithm for training a
MLP

T. Mitchell.Machine Learning, McGrawHill 1997,

Neural	networks	– recap.	(from	perceptrons
to	DNNs)

• The backprop +
SGD algorithm for
training a MLP

Deep	neural	networks

• DNNs are nothing but neural network models with several hidden layers (the number of
layers indicating the depth of the model)

• They can be seen as composed functions of the form:
• !T(!TU-(!TU,(…!- (6)))

• The output layer is usually the direct link with the goal of the task

• Hidden/intermediate layers capture/learn particularities of data indirectly related to the
goal

• They usually have many (millions) of parameters to learn/optimize, still backpropagation
+SGD (++ a bunch of hints) make learning feasible

Deep	neural	networks

• Components	of	a	DNN	/	design	choices
• Architecture
• Output	units
• Hidden	units
• Learning	strategy	
• Cost	function

DNNs	– output	units

• The form of output units depends on the goal the DNN has to solve
(Output units can serve as hidden units as well)

• We will study three types of output units
• Linear units for Gaussian output distributions

• Sigmoid units for Bernoulli output distributions

• Softmax units for Multinomial output distributions

• Assuming their goal is to take as input the output of features from a hidden
unit and transform them to complete the task associated to the DNN
• V = !(6; Θ)

DNNs	– output	units

• Linear units for Gaussian output distributions

• Perform an affine transformation with no linearity	
• W∗ 	= YV + (

• They are commonly used to produce the mean of a conditional
Gaussian distribution
• Z W 6 = Ν(W; W

∗
, I)

DNNs	– output	units

• Sigmoid units for Bernoulli output distributions

• 0∗ 	= \($] + ()
• With: \ z =

-

-_`abcd

• Ideal units when one wants to predict the value of a binary variable y
(e.g., binary classification problems)

DNNs	– output	units

• Softmax units for Multinomial output distributions

• Used to represent a probability distribution over a discrete variable
with k possible values (e.g., the output of a multiclass classifier)

• First, a linear layer predicts un-normalized log probabilities
• e = YV + (, 			$ℎghg				i7 = logm

~
	(0 = B|6)

• Then: 			AG!qrs& e 7 	=
tuv	(wx)

∑ tuv	(wx)
�

x

• So, we have as output a vector of k probabilities

DNNs	– hidden	units

• The selection of hidden units is not straightforward, yet, we will
review the most common ones
• ReLU – Rectified	linear	units
• Logistic	and	hyperbolic	tangent

• We assume hidden units take as input a vector of inputs x and
perform an affine transformation and a nonlinear transformation that
is used as input by another unit
• V = C(Y6 + z)

DNNs	– hidden	units

• ReLU	– Rectified	linear	units	(the	de	facto	hidden	unit	
in	the	renaissance	era)
• C i = max 0, i , 		AG						V = max 0, Y6 + z

• Very	similar	to	linear	units	(except	it	outputs	0	across	
half	its	domain)

• Derivatives	are	large,	whenever	it	is	active	

• Several	variants/improvements	(yet	these	yield	little	
improvements)

DNNs	– hidden	units

• Logistic	and	hyperbolic	tangent	units:	prior	to	ReLU,	
most	NNs	used	these	units
• C i = \ z =

-

-_`abcd

• C i = qℎsDℎ(i)

• Their usage is discouraged nowadays, because they
saturate with extreme values

DNNs	– further	aspects	/	considerations

• Architecture	design:	an	art!	(stacked	layers,	reducing	the	number	of	
units	each	layer	is	standard,	the	deeper	the	better,	usually,	to	some	
extend)

• Training	DNNs: Backpropagation	with	SGD	is	the	common	choice

• Regularization: Dropout,	adversarial	training,	early	stopping,	

• Implementation:	GPU	– computing	is	necessary	

Deep	learning	variants

• Main	DL	models:
• Deep	neural	networks	(DNNs,	MLPs)
• Convolutional	neural	networks	(CNNs)
• LSTM
• Restricted	Boltzman machines	
• Deep	belief	networks
• Autoencoders

• New	paradigms
• Residual	DNNs
• Gated	recurrent	NNs
• Generative	adversarial	networks

Convolutional	neural	networks

• Type	of	neural	network	for	processing	data	having	grid-like	topology
• Time	series	(1D	grid)
• Images	(2D	grid)
• Video	(3D	grid)

• Components:	convolutional	layers,	activation	of	units,	pooling	layers,	
• Weights	are	learned	with	backpropagation

Convolutional	neural	networks

• These	networks	employ	the	mathematical	operation	called	
convolution
• CNNs	are	simply	NNs	that	use	convolution	in	place	of	matrix	multiplication	in	
at	least	one	of	their	layers	

Convolutional	neural	networks

• Convolution	in	NN	terminology:
• x	– the	input
• w	– the	kernel
• s	– the	feature	map	

• Discrete	convolution:

Convolutional	neural	networks

• 2D	convolution

• Convolution	is	commutative

Convolutional	neural	networks

• 2D	convolution

Convolutional	neural	networks

• 2D	convolution

https://developer.apple.com/library/content/documentation/Performance/Conceptual/vImage/ConvolutionOperations/ConvolutionOperations.html

Convolutional	neural	networks

• Typical	architecture	I

Convolutional	neural	networks

• Typical	architecture	II

Convolutional	neural	networks

• Typical	architecture	II

C.	Dong,	C.	C.	Loy,	K.	He,	and	X.	Tang,	“Image	super-resolution	using	deep	convolutional	networks,”	CoRR,	vol.	abs/1501.00092,	2015.

Convolutional	neural	networks
• Why	convolution	layers?			

• Sparse	connectivity:	less	weights/parameters	

Convolutional	neural	networks
• Why	convolution	layers?			

• Parameter	sharing:	less	weights/parameters	

Convolutional	neural	networks

• Pooling:	replaces	the	output	of	
a	net	at	a	certain	location	with	a	
summary	statistic	of	nearby	
outputs
• Makes	aprox.	Invariant	to	
translation

• Variants	include:	max,	sum,	avg.	
poolings

• Usually,	stride	is	considered

Convolutional	neural	networks

• Typical	architecture	of	a	layer

• Common	architectures

Convolutional	
neural	networks

Convolutional	neural	networks

Deep	learning	in	a	nutshell

• Going	deeper	(CNNs)

Convolutional	neural	networks

• How	do	the	filters	look	like?

Convolutional	
neural	networks
• How	do	the	filters	look	like?

Convolutional	neural	networks

• What	about	3D?

Maryam Asadi-Aghbolaghi, Albert Clapés, Marco Bellantonio, Hugo Jair Escalante, Víctor Ponce-López, Xavier Baró, Isabelle Guyon, Shohreh Kasaei, Sergio
Escalera. A survey on deep learning based approaches for action and gesture recognition in image sequences. Proceedings of the 12th IEEE Conference on
Automatic Face and Gesture Recognition, 2017

Convolutional	neural	networks

• What	about	3D?

Shuiwang Ji,	Wei Xu,	Ming	Yang,	Kai Yu.	3D	Convolutional Neural	Networks	for Human	Action Recognition.	TPAMI	Vol.	35(1):221-231,	2013	

Convolutional	neural	networks

• Transfer	learning: it is common to	re-use	pretrained architectures
(the weights)	trained with millions of	images
• Direct use:	use	them as	feature extractors
• Tailored models:	re-use	some layers and	perform a	fine	tuning for layers of	
interest

Yosinski J,	Clune J,	Bengio Y,	and	Lipson H.	How transferable are	features in	deep neural	networks?	In	Advances in	Neural	Information Processing Systems
27	(NIPS	’14),	NIPS	Foundation,	2014

Convolutional	neural	networks

• Commonly used pretrained-CNNs
• AlexNet
• VGG
• GoogleNet
• PlacesNet
• FaceNet

Convolutional	neural	networks

• Transfer	learning: it is common to	re-use	pretrained architectures
(the weights)	trained with millions of	images

Yosinski J,	Clune J,	Bengio Y,	and	Lipson H.	How transferable are	features in	deep neural	networks?	In	Advances in	Neural	Information Processing Systems
27	(NIPS	’14),	NIPS	Foundation,	2014

Convolutional	neural	networks

• Transfer	learning: it is common to	re-use	pretrained architectures
(the weights)	trained with millions of	images

Yosinski J,	Clune J,	Bengio Y,	and	Lipson H.	How transferable are	features in	deep neural	networks?	In	Advances in	Neural	Information Processing Systems
27	(NIPS	’14),	NIPS	Foundation,	2014

Convolutional	neural	networks

• The	ruling	models	for	CV&PR	
• (only	since	2012,	even	when	Lecun sucessfully used	CNNs	for	digit	recognition	in	the	
80s)

• Outstanding	results	in	a	number	of	tasks,	domains,	data	sets

• Designing	a	CNN	is	an	art,	lots	of	tricks,	improvements,	modifications		can	
be	performed	(deep	learning	engineering)

• Models	become	obsolete	extremely	fast,	it	is	difficult	to	be	aware	of	SOTA	

• Conferences	on	CNNs:	CVPR,	ICCV,	ECCV,	NIPS….

Deep	learning	variants

• Main	DL	models:
• Deep	neural	networks	(DNNs,	MLPs)
• Convolutional	neural	networks	(CNNs)
• LSTM
• Restricted	Boltzman machines	
• Deep	belief	networks
• Autoencoders

• New	paradigms
• Residual	DNNs
• Gated	recurrent	NNs
• Generative	adversarial	networks

Deep	generative	models

Deep	generative	models

• Boltzmann	machines.	An	energy	based	model	defined	over	a	d-
dimensional	random	binary	vector	6 ∈ {0,1}>

• The	joint	probability	distribution	is	given	by:

• where
Only	visible	units

Hidden	and	visible	
units

Deep	generative	models

• Restricted	Boltzmann	machines.	A	Boltzmann	machine	restricted	to:
• Have	two	layers:	one	of	visible	and	other	of	hidden	units
• There	are	no	connections	between	units	in	the			same	layer
• Units	are	typically	Bernoulli	activation	functions

• The	building	block	for	deep	generative	models

Deep	generative	models

• An	RBM	is	an	energy-based	model,	with	the	joint	probability	specified	
by	its	energy	function	as	follows:

Slide	from	G.	Hinton’s	tutorial	at	NIPS	2007

Deep	generative	models

• The	bipartite	graph	structure	of	the	RBM	has	the	special	property	that	
its	conditional	distributions	m(V|}) and	m } V are	factorial	and	
simple	to	compute	/	sample	from:

Slide	from	G.	Hinton’s	tutorial	at	NIPS	2007

Slide	from	G.	Hinton’s	tutorial	at	NIPS	2007

Slide	from	G.	Hinton’s	tutorial	at	NIPS	2007

Slide	from	G.	Hinton’s	tutorial	at	NIPS	2007

Deep	generative	models

• This	training	algorithm	lead	to	the	renaissance	of	NNs	in	2016:
• Key	idea:	to	train	deep	models	using	nested	layers	of	RBMs	
• Each	layer	is	pre-trained	independently	
• A	final	(fine	tuning)	stage	based	on	backprop is	commonly	used

Deep	generative	models

• Outstanding	results	at	that	time!

• Nice	movie	at:

• http://www.cs.toronto.edu/~hinto
n/digits.html

Hinton,	G.	E.,	Osindero,	S.	and	Teh,	Y.	(2006)	A	fast	learning	algorithm	for	deep	belief	nets.	Neural	Computation,	18,	pp	1527-1554.

Deep	generative	models

• Model	the	joint	probability	of	latent	and	observable	variables

• Efficient	learning	of	parameters

• Are	not	restricted	to	Bernoulli	units	

• Not	too	much	interest	from	the	ML	community	nowadays	(with	
respect,	e.g.,	to	CNNs)

Hinton,	G.	E.,	Osindero,	S.	and	Teh,	Y.	(2006)	A	fast	learning	algorithm	for	deep	belief	nets.	Neural	Computation,	18,	pp	1527-1554.

Deep	learning	variants

• Main	DL	models:
• Deep	neural	networks	(DNNs,	MLPs)
• Convolutional	neural	networks	(CNNs)
• LSTM
• Restricted	Boltzman machines	
• Deep	belief	networks
• Autoencoders

• New	paradigms
• Residual	DNNs
• Gated	recurrent	NNs
• Generative	adversarial	networks

Autoencoders
• Neural networks that are trained to attempt to copy its
input to its output

• A code layer is used as pivot, where there are codifying
and de codifying layers of parameters
• Encoder: V = ! 6

• Decoder: ~ = C(V)

• Usually the dimension of h is lower than that of x
(undercomplete AEs)

• They can be linear/ non linear, sparse, non sparse, and can
be used for representation learning, dimensionality
reduction and denoising

Autoencoders

• Deep	
autoencoders!	
(Hinton’s	science	
paper)
• Pretraining of	
layers	using	
RBMs
• Unfolding
• Fine	tunning
with	backprop

Autoencoders

• Deep	
autoencoders!	
(Hinton’s	science	
paper)

Deep	learning	variants

• Main	DL	models:
• Deep	neural	networks	(DNNs,	MLPs)
• Convolutional	neural	networks	(CNNs)
• LSTM
• Restricted	Boltzman machines	
• Deep	belief	networks
• Autoencoders

• New	paradigms
• Residual	DNNs
• Gated	recurrent	NNs
• Generative	adversarial	networks

Modeling	sequential	data

• Recurrent neural networks.
NNs that receive as input
information from their
outputs

• Hidden units can be
specified as

Modeling	sequential	data

• Types	of	RRNs	- 1

Modeling	sequential	data

• Types	of	RRNs	- 2

Modeling	sequential	data

• Training	RNNs
• BPTT:	Unfolding	+	backprop

Modeling	sequential	data

• Going	deep	with	RNNs

Modeling	sequential	data

• LSTM:	Long	short-term	memory

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Modeling	sequential	data

• LSTM:	Long	short-term	memory

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Modeling	sequential	data

• LSTM:	Long	short-term	memory

Gated	units Celllstate

Modeling	sequential	data

• LSTM:	Long	short-term	memory

How	much	to	take	from	the	previous	state?

Modeling	sequential	data

• LSTM:	Long	short-term	memory

What	can	be	added	to	the	new	state	and	how	much

Modeling	sequential	data

• LSTM:	Long	short-term	memory
Update	the	state

Modeling	sequential	data

• LSTM:	Long	short-term	memory
What	to	output?

Modeling	sequential	data

• LSTM:	Impressive	results	in	a	number	of	tasks	(speech	processing,	
machine	translation)	and	widely	used	nowadays:
• Image	captioning
• Natural	language	processing
• Multimodal	information	processing	

Deep	learning	variants

• Main	DL	models:
• Deep	neural	networks	(DNNs,	MLPs)
• Convolutional	neural	networks	(CNNs)
• LSTM
• Restricted	Boltzman machines	
• Deep	belief	networks
• Autoencoders

• New	paradigms
• Residual	DNNs
• Gated	recurrent	NNs
• Generative	adversarial	networks

DL	extensions,	enhancements

•Dropout
•Adversarial	training
•Multi	task	learning
•Multi	stream	architectures
• Inception
•…

Dropout

• Idea: to drop out (switch
off) non-output units with
certain probabilities;using
minibatches to update the
parameters of the whole
DNN under the different
masks

• Resembles bagging:

Nitish Srivastava,	Geoffrey	Hinton,	Alex	Krizhevsky,	Ilya	Sutskever,	Ruslan Salakhutdinov.	Dropout:	A	Simple	Way	to	Prevent	Neural	Networks	
from	Overfitting. 15(Jun):1929−1958,	2014.

Dropout

Nitish Srivastava,	Geoffrey	Hinton,	Alex	Krizhevsky,	Ilya	Sutskever,	Ruslan Salakhutdinov.	Dropout:	A	Simple	Way	to	Prevent	Neural	Networks	
from	Overfitting. 15(Jun):1929−1958,	2014.

• Idea: to drop out (switch
off) non-output units with
certain probabilities;using
minibatches to update the
parameters of the whole
DNN under the different
masks

Adversarial	training

• Idea:	introduce	adversarial	examples	during	training
• Adversarial	example:	an	instance	that	after	slight	modifications	cause	the	
DNN	to	make	a	mistake

Ian	J.	Goodfellow,	Jonathon	Shlens,	Christian	Szegedy.	Explaining	and	Harnessing	Adversarial	Examples	ArXic 1412.6572,	2014	

Multitask	learning

• Idea:	to	learn	models	that	share	
generic	layers	and	at	the	same	
time	learn	task	specific	layers

• Belief:	Among	the	factors	that	
explain	the	variations	observed	
in	the	data	associated	with	the	
different	tasks,	some	are	shared	
across	two	or	more	tasks

R.	Caruana.	Multitask	Connectionist	Learning.	Proc.	Connectionist	models	summer	school,	372--379,	1993

• E.g.,	
simultaneously	
predict:	gender,	
age,	race,	facial	
expression

J.	Wan,	S.	Zhou,	Z.	Tan,	H.J.	Escalante,	Y.	Liang,	Z.	Lei,	G.	Guo,	S.Z.	Li.	Deep	Nonholonomic Label	Information	Learning	for	Globally	Fine-grained	
Face	Attribute	Analysis,	Submitted	to	TPAMI,	2017

Multitask	learning

Multi	stream	models

• Idea: To have different
internal paths within the
model, that eventually
converge to the same
layer (same task)

Zuxuan Wu,	Yu-Gang	Jiang,	Xi	Wang,	Hao Ye,	Xiangyang Xue,	Jun	Wang.	Fusing	Multi-Stream	Deep	Networks	for	Video	Classification.	
arXiv:1509.06086,	2015	

Multi	stream	models

• E.g.,	multimodal	gesture	recognition

Natalia	Neverova,	Christian	Wolf,	Graham	Taylor,	Florian	Nebout.	ModDrop:	adaptive	multi-modal	gesture	recognition.	TPAMI,	Vol, 38(8):
1692--1706, 2016

Inception

Residual	DNNs

• Idea: To introduce
layers that can be used
or not, that copy the
output of other layers

Final	remarks

• Benefits
• Extremely	good	at	learning	representations	and	models	from	large	data	sets
• Efficient	training,	massive	parallelization	capabilities
• Outstanding	generalization	capabilities,	

• Limitations
• Require	of	extremely	large	data	sets	(big	data)
• Demanding	computational	resources
• Black	box	models,	no	interpretability,	explainability

Final	remarks

• A	very	introductory	tutorial	on	DL

• Deep	models	dominate	the	arenas	of	CV,	PR,	NLP,	SP,	and	in	shortly	
will	be	ruling	over	other	domains

• It	is	difficult	to	track	the	progress	in	DL

References

• P.	Loncomilla Deep	learning:	CNNS	
https://ccc.inaoep.mx/~pgomez/deep/presentations/2016Loncomilla
.pdf

