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Deep learning in a nutshell

* Deep learning is a machine learning methodology that aims at solvin
(modeling) problems by building layer-wise models with several (many
levels of increasing abstraction

. Layecrjs of these models capture discriminative/descriptive information from
raw data

* Can be used for: supervised/unsupervised learning, reinforcement
learning, feature extraction, ...

* Examples: multi-layer perceptrons, deep neural networks, convolutional
neural networks, deep belief nets, auto encoders, etc.



Deep learning in a nutshell

* Features of deep learning methods:
* Large number of parameters (on the ranges of millions)
* Require large amounts of data to be trained
* Can extract features automatically
e Can leverage unlabeled data
e Extremely complex models
* Require of specialized hardware for training them efficiently

 Dominate the arenas of machine learning applications (e.g., computer vision,
NLP)



Deep learning in a nutshell

* How does a non deep model looks like?

hidden layver

input layer
- output layer

N
fx)=we(x)+b fx) = Zaiyik(xi,x) +b



Deep learning in a nutshell

* How does a (not too deep) DL model looks like?

. hidden layer 1 hidden layer 2 hidden layer 3
input layer
NER

output layer

J

f(x) = W33 (W, (W11 (X) + b) + by) + by



Deep learning in a nutshell

* Going deeper (CNNs)

lax
pppppp

: Image input
Conv | : Convolutional layer
Pool : Max-pooling layer

FC : Fully-connected layer

Softmax  : Softmax layer
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The boom of DL: brief history

Deep Neural Network
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The boom of DL: noticeable achivements

Large scale image classification

Speech recognition

Face recognition

Deep reinforcement learning

Other achievements

* Image captioning

* Word embeddings
Gesture / action recognition
Super resolution




Breakthrough achievements | (ImageNET)

* In 2012, Krizhevsky et al. succeded at training a convolutional neural
network with about 1 million images, approaching the ImageNET

large scale classification challenge

(1000 of classes, millions of
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Alex Krizhevsky, llya Sutskever, Geoffrey E. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. Advances in

Neural Information Processing Systems 25 (NIPS 2012)



The ImageNET challenge

* ImageNET: A huge resource
comprising millions of
images.

* Images were downloaded
from the web using synsets
from WordNet

* The ImageNET challenge is
organized since 2011
* Classification
* Object detection
* Object localization

IMAGENET

Year Train images Val images Test images
(per class) (per class) (per class)
Image classification annotations (1000 object classes)
ILSVRC2010 1,261,406 (668-3047) 50,000 (50) 150,000 (150)
ILSVRC2011 1,229,413 (384-1300) 50,000 (50) 100,000 (100)
ILSVRC2012-14 1,281,167 (732-1300) 50,000 (50) 100,000 (100)

The numbers in parentheses correspond to (minimum per class—maximum per class). The 1000 classes change from year to year but are consistent
between image classification and single-object localization tasks in the same year. All images from the image classification task may be used for

single-object localization

PASCAL ILSVRC

birds

cats

dogs




Breakthrough achievements | (ImageNET)

* Performance improvement with solutions from those days was

impressive
 Key for success:

* GPU based training Model Top-1 | Top-5

e RELU activation functions Sparse coding [2] | 47.1% | 28.2%

° Dropout regularization SIFT + FVs [24] 45.7% 25.7%

: CNN 37.5% | 17.0%
 Big data / complex model
| Model | Top-1 (val) | Top-5 (val) | Top-5 (test) |

SIFT + FVs [7] — — 26.2%
1 CNN 40.7% 182% —
5 CNNs 38.1% 16.4% 16.4%

1 CNN* 39.0% 16.6%

I M A G E N E T 7 CNNs* 36.7% 15.4% 153%




Breakthrough achievements | (ImageNET)

» AlexNet is nowadays (perhaps) the most used architecture for image
classification and related tasks, it is included in most DL toolkits

* This success inspired other major achievements in computer vision
with DL (... Ultimately establishing DL as the de facto methodology in

CV)

Imagenet classification with deep convolutional neural networks

A Krizhevsky, | Sutskever, GE Hinton - Advances in neural ..., 2012 - papers.nips.cc
Abstract We trained a large, deep convolutional neural network to classify the 1.3 million
high-resolution images in the LSVRC-2010 ImageNet training set into the 1000 different
classes. On the test data, we achieved top-1 and top-5 error rates of 39.7\% and 18.9\%
which is considerably better than the previous state-of-the-art results. The neural network,
which has 60 million parameters and 500,000 neurons, consists of five convolutional ...
Cited by 12388 Related articles All 97 versions Cite Save

Showing the best result for this search. See all results

About Google Scholar Privacy Terms Provide feedback

[PDF] nips.cc

Checked, June 14
(one day after: 12437 citations, today?)



Breakthrough achievements Il (Speech
recognition)

* Around 2012, the most important IT companies converged to the use
of Restricted Boltzman Machines for Speech Recognition

* Key idea: RBM-pretraining + fine tunning + HMM

DBN-DNN

Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N. Sainath,
and Brian Kingsbury. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Processing

Magazine, Vol 29(6):82 - 97, 2012



Breakthrough achievements Il (Speech

recognition)

* Impressive results were attained by such type of models:

SPEAKER-INDEPENDENT (SI) PHONETIC RECO
ACCURACY RESULTS ON TIMIT CORE TEST SE
WITH 192 SENTENCES.

METHOD

CD-HMM [26]

AUGMENTED CONDITIONAL RANDOM FIELDS [26]

RANDOMLY INITIALIZED RECURRENT NEURAL NETS [27]

BAYESIAN TRIPHONE GMM-HMM [28]

MONOPHONE HTMS [29]

HETEROGENEOUS CLASSIFIERS [30]

MONOPHONE RANDOMLY INITIALIZED DNNSs (SIX LAYERS) [13]

MONOPHONE DBN-DNNSs (SIX LAYERS) [13]

MONOPHONE DBN-DNNs WITH MMI TRAINING [31]

TRIPHONE GMM-HMMs DT W/ BMMI [32]

MONOPHONE DBN-DNNs ON FBANK (EIGHT LAYERS) [13]

MONOPHONE MCRBM-DBN-DNNs ON FBANK (FIVE LAYERS) [33]

MONOPHONE CONVOLUTIONAL DNNs ON FBANK (THREE LAYERS)
(34]

[TABLE 1] COMI%&ISONS AMONG THE RE|

PER

27.3%
26.6%
26.1%
25.6%
24.8%
24.4%
23.4%
22.4%
22.1%
21.7%
20.7%
20.5%

20.0%

[TABLE 3] A COMPARISON OF THE PERCENTAGE WERs USING DNN-HMMs AND
GMM-HMMs ON FIVE DIFFERENT LARGE VOCABULARY TASKS.

TASK

SWITCHBOARD (TEST SET 1)
SWITCHBOARD (TEST SET 2)
ENGLISH BROADCAST NEWS

BING VOICE SEARCH
(SENTENCE ERROR RATES)

GOOGLE VOICE INPUT
YOUTUBE

HOURS OF

TRAINING DATA DNN-HMM

309
309
50

24
5,870
1,400

18.5
16.1
17.5

304
12.3
47.6

GMM-HMM
WITH SAME DATA

27.4
23.6
18.8

36.2

52.3

GMM-HMM
WITH MORE DATA

18.6 (2,000 H)
17.1 (2,000 H)

16.0 (>> 5,870 H)

Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N. Sainath,
and Brian Kingsbury. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Processing

Magazine, Vol 29(6):82 - 97, 2012



Breakthrough achievements ++: Deepface

* In 2014, it was announced deep face a deep neural net trained on
4.44 million images

-
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Marc Aurelio Ranzato, Lior Wolf. DeepFace: Closing the Gap to Human-Level Performance in Face Verification, CVPR 2014



Breakthrough achievements ++: Deepface

* Deepface achieved a 97.35% of recognition accuracy in the LFW data
set (human 97.5%) and 91.4% in the youtube faces data set.
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Breakthrough achievements ++: DeepRL

* In 2015, the deepmind team published their Deep-Q network: a DL
architecture that by "looking” at the pixels produced in videogames
and using game scores, was able to learn to play Atari
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Volodymyr Mnih, et al. Human-level Control through Deep Reinforcement Learning In Nature, 518: 529-533, 2015.



Breakthrough achievements ++: DeepRL

* DQ outperformed all previous :
solutions in a suite of 50 Atari i
games ) g

* Achieving human (expert)

level performance in alarge .
portion of the games iﬂiﬂl j!&i!i'ﬁgmm
%%’é:*“;;*Eﬁaaaﬂz’ggggggggégsdiéggﬁz"g";;;méﬂz;%%

https://deepmind.com/blog/deep-reinforcement-learning/




Breakthrough achievements ++: Image
Captioning

Vision Language

Deep CNN Generating RNN
.\ m A group of people

/.\ shopping at an outdoor
.\ /. market.

o —> —
~ There are many
vegetables at the

_® tables at th

® fruit stand.

https://pdollar.wordpress.com/2015/01/21/image-captioning/




Breakthrough achievements ++: Image
Captioning

A dog is standing on a hardwood floor. A stop sign is on a road with a
mountain in the background

A little girl sitting on a bed with a teddy bear. A group of people sitting on a boat in the water. A giraffe standing in a forest with
trees in the background.

https://pdollar.wordpress.com/2015/01/21/image-captioning/




Breakthrough achievements ++

* Image captioning https://pdollar.wordpress.com/2015/01/21/image-
captioning/

* Distributed representations for words

* Translation
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Deep learning in a nutshell

* Deep learning is a machine learning methodology that aims at solvin
(modeling) problems by building layer-wise models with several (many
levels of increasing abstraction

. Laye(rjs of these models capture discriminative/descriptive information from
raw data

* Can be used for: supervised/unsupervised learning, reinforcement
learning, feature extraction, ...

* |Examples: multi-layer perceptrons, deep neural networks, convolutional
neural networks, deep belief nets, auto encoders, etc.




Deep neural networks

* Deep feedforward networks are the "essential” deep learning models

e Conventionally, a neural network is said to be deep if it has at least 2
hidden layers

* Hence, feedforward neural networks comprise the fundamentals of
deep learning

* How much do you know about NNs?



Neural networks — recap.

A feedforward neural network is a model:
* That approximates functions of the formy = f(x; 0)
* |Is formed by multiple (nonlinear) functions arranged in layers
e Layers form a network
* In which information flows in a single (forward) direction



Neural networks — recap.

* Neuron analogy

Activation
of other
neurons

Slide from I. Guyon

Cell potential

X)
\
fix) /7,
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Activation function

1 \ Dendrites
Synapses



Neural networks — recap. (from perceptrons
to DNNs)

* In general neural networks are built of units that resemble the
perceptron (linear units activated by a differentiable function)

* We will revisit the perceptron, linear units and will arrive to MLPs or
DNNs



Neural networks — recap. (from perceptrons

to DNNs)

* Perceptron. A simple, linear classifier that can solve

linearly separable

classification

(grandparent of NNs and the SVM)

* Given:

* D ={(x4,yi)1,.n} Withx; € R%andy; € {-1,1}

problems
X2

W-X+b

e A perceptron learns a discriminative function of the

form:

« f(x) = sign(wx + b), withw € R?

* The fundamental unit of DNNs!

N Cancer w.x+H>0

E
S %*
<0 o

No Cancer

/
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Neural networks — recap. (from perceptrons
to DNNs)

* How to determine the weights w?

* The Perceptron learning algorithm

1. w < randomly initialize weights
2. Repeat until stop criterion meet
l. Foreachx; € D

a o0;,<WX;+b // estimate perceptron’s prediction L
b) Aw < n(y; —o;) // estimate the rate of change Intuition?
) wew+ Aw //Update w

3. Returnw

* Convergence guaranteed (linearly separable problems)

What if the problem is non linearly separable?



Neural networks — recap. (from perceptrons
to DNNs)

* For non-linearly separable problems, weights for a similar unit can be
optimized with gradient descent

* Suppose we want to learn weights for a perceptron without threshold
* f(x) = (Wx + b), withw € R4
¢ f(x) = (wx), if we augment the input space with a 1, and include b into w

* And suppose we want to minimize:
1
* E(W) =X, (i — 0))?

 How to learn these weights?



Neural networks — recap. (from perceptrons
to DNNs)

* Problem:
25
* Minimize E(w) =lZ’iV=1(yi—0i)2 w.rt w A\
’ AN ‘\‘“\"
NN uetiiusietiely
159 AT A
= NN RN OO
* |[dea: to explore the space of &, Q%W&:‘\:‘\\:}%
. R A\
possible values that w can take. S
Starting with an initial w and

updating it in the direction that
decreases the error

e (hint: the gradient of E(w) indicates
the direction that produces the
highest increase in E starting in w)




Neural networks — recap. (from perceptrons
to DNNs)

* The math: W W+ AW
AW = —-aVE
o0 = 53 >gepltd — 0q)?

—

=Y gen(td — 0a) gy (ta — W - Xg)
= > gep(td — 0a)(—Xi q)

Aw;=a ) (ty— 04)Xig
deD



Neural networks — recap. (from perceptrons
to DNNs)

* The delta rule learning algorithm (gradient descend)

1. w < randomly initialize weights

2. Repeat until stop criterion meet
. Aw & initialize to O
Il.  Foreachx; €D

a o0;<Wwx;+b // estimate perceptron’s prediction
b) For each weight j estimate
1. Aw; « Aw; +n(y; — 0;) X4 // estimate the rate of change
I, we<w+ Aw //Update w

3. Returnw



Neural networks — recap. (from perceptrons
to DNNs)

* SGD: in practice, a stochastic version of the algorithm is used, in
which weights are updated after processing each input

1. w < randomly initialize weights

2. Repeat until stop criterion meet
I Aw < initializeto O
Il.  Foreachx; €D
a) o0;,<wx;+b
b) For each weight j estimate
1. Aw; < Aw; +n(y; —0;) x; // estimate the rate of change
) wew+Aw //Update w
3. Returnw

// estimate perceptron’s prediction



Neural networks — recap. (from perceptrons
to DNNs)

* The problem with preceptrons et al.: They |
can only learn linear functions. When the .. %
data is not linearly separable the best one " = e
can do is to expect to have a good fit NV

e Solutions?

e To map the data into a non linear feature
space in which the problem can become
linearly separable

e How?




Neural networks — recap. (from perceptrons
to DNNs)

 What about stacking multiple layers
of linear units?

e Still will produce only linear functions

* |dea: stacking multiple layers of linear
units activated with non linear
functions




Neural networks — recap. (from perceptrons
to DNNs)

* Introducing non linearities in units

Cell potential
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Activation
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Neural networks — recap. (from perceptrons
to DNNs)

* Introducing non linearities in units

T. Mitchell. Machine Learning, McGrawHill 1997,



Neural networks — recap. (from perceptrons
to DNNs)

O
O

O OO 0O
OO0
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* Disentangling NNs



Neural networks — recap. (from perceptrons
to DNNs)
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* Disentangling NNs



Neural networks — recap. (from perceptrons
to DNNs)
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Input units

* Disentangling NNs



Neural networks — recap. (from perceptrons
to DNNs)

* Disentangling NNs



Neural networks — recap. (from perceptrons
to DNNs)

* Disentangling NNs



Neural networks — recap. (from perceptrons
to DNNs)

* Disentangling NNs



Neural networks — recap. (from perceptrons
to DNNs)
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* Disentangling NNs



Neural networks — recap. (from perceptrons
to DNNs)

Weight matrix (4x3)



Neural networks — recap. (from perceptrons
to DNNs)

Weight matrix (4x3)



Neural networks — recap. (from perceptrons
to DNNs)

Weight matrix (4x3)



Neural networks — recap. (from perceptrons
to DNNs)

Linear combination

lr“"‘b (perceptrén unit)

3(2"%

HE®E

Weight matrix (4x3)



Neural networks — recap. (from perceptrons
to DNNs)

Linear combination
> (perceptrén unit)

Non linear
activation

Weight matrix (4x3)



Neural networks — recap. (from perceptrons
to DNNs)

X ) Linear combination
:‘/_j""—b (perceptrén unit)
X |
> Nor'\ Im.ear
activation
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@

Weight matrix (4x3)



Neural networks — recap. (from perceptrons
to DNNs)

Linear combination
> (perceptrén unit)

» Non linear
activation

A-—-—<

Weight matrix (4x3) = Z



Neural networks — recap. (from perceptrons
to DNNs)

Linear combination
> (perceptrén unit)

» Non linear
activation

'L ’\

Weight matrix (4x3) = Z



Neural networks — recap. (from perceptrons
to DNNs)




Neural networks — recap. (from perceptrons
to DNNs)




Neural networks — recap. (from perceptrons
to DNNs)




Neural networks — recap. (from perceptrons
to DNNs)

Input units hidden units output units



Neural networks — recap. (from perceptrons
to DNNs)

* As other learning algorithms, NNs aim to learn a function mapping
inputs to outputs

* Training a NN reduces to learning the weights in the network that
minimize an error estimate
* How many parameters?
* How to adjust/determine their values?
* What criterion to adopt?



Neural networks — recap. (from perceptrons
to DNNs)




Neural networks — recap. (from perceptrons
to DNNs)

* The de facto algorithm for training NNs is backpropagation + gradient
descent

* Key idea:
* use gradient descent to learn the weights that best fit the data

* smartly using the chain rules of calculus, to dedicate the gradient of error
with respect to weights



Neural networks — recap. (from perceptrons
tO D N N S BACKPROPAGATION(training _examples, 1, Rin, Rout Rhidden)

Each training example is a pair of the form (3,1 ), where % is the vector of network input
values, and 1 is the vector of target network output values.

n is the learning rate (e.g., .05). nj, is the number of network inputs, nhiagen the number of
units in the hidden layer, and noy, the number of output units.

The input from unit i info unit j is denoted x;;, and the weight from unit i to unit j is denoted

* The backprop + SGD i

o Create a feed-forward network with n;, inputs, nyig4en hidden units, and n,,, output units.

a | go rlt h m fo r t r a i N | N g a o Initialize all network weights to small random numbers (e.g., between —.05 and .05).

o Until the termination condition is met, Do
IVI LP @ For each (%, ) in training_examples, Do

Propagate the input forward through the network:

1. Input the instance X to the network and compute the output o, of every unit u in
the network.

Propagate the errors backward through the network:

(5
e%ies
Nturepneesssiges

\\@\\\\\\\\\\\‘\‘\‘\‘\\\\\‘“\““

““\‘““““\\ 2. For each network output unit k, calculate its error term 8

8k < ox(1 — or)(tx — o) (T4.3)
5 . . .
SO 3. For each hidden unit 4, calculate its error term &
<>
0 X CRTOOL TS S SO SIS 27
2 N :;:::\\“\“3‘\‘&“‘:“:.::}:::::::’::‘:"""””’/ Sn — op(1 —op) E Wih Sk (T4.4)
= keoutputs

4. Update each network weight wj;
wji < wji + Awjj
where
T. Mitchell. Machine Learning, McGrawHill 1997, Awji = nd; xji ’ (T4.5)




Neural networks — recap. (from perceptrons
to DNNs) .,

a
|
z Az = Z—;Ay
oz :
y A=A
e o
Hﬁ az= B2 ax
‘ e 9z _ozoy
1 X X~ ay ax
* The backprop + input Hidden output
. (@) (2 sigmoid) (1 sigmoid)
SGD algorithm for
tra Ini ng d M LP c d Compare outputs with correct
answer to get error derivatives
yn=1(z)
4= z Wi Yk
ke H2
dE _ 9E
Ye=1z) & IFEOU:VM 9z,
%= 2 W/kY;
jeH1 9E _9E %y
9z, oYy 0z aE
y;=1(z) 92
z= 2 Wi X
i € Input

Input units . 0 .



Neural networks — recap. (from perceptrons
to DNNs)




Neural networks — recap. (from perceptrons
to DNNs)

* We want to obtain the set of weights that minimize

— Z —‘?'.’ ('\' e 03‘\1
EO( W‘ — é‘) Keovts !

* For a specific instance d

* Using stochastic gradient descent, we aim to update the weights with
each instance d as follows

: _ S
Wy Wyt Awg , wia Augs o %



Neural networks — recap. (from perceptrons

to DNNs)

* We aim to estimate  Awy=-N28  \L w;;
;w;,'.

* Since every weight influence the model only
through We cll s
B 2w )

weby

* We have: Jes _ JEd Juct

2w - _3"“;—3 Jwj!
= 2{:’,&- )(5\
J uh)

The chain rule of calculus

92/_287 5‘}

—

D% ;Jﬁ




Neural networks — recap. (from perceptrons
to DNNs)




Neural networks — recap. (from perceptrons

to DNNs)

* We aim to estimate  Awy=-N28  \L w;;
;w;,'.

* Since every weight influence the model only
through We cll s
B 2w )

weby

* We have: Jes _ JEd Juct

— —— —
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Neural networks — recap. (from perceptrons
to DNNs)

* Since there are two types of units, we have to estimate the gradient
for both cases:
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Neural networks — recap. (from perceptrons
to DNNs)

* Since there are two types of units, we have to estimate the gradient
for both cases:

These can be compared
v 8 ( Z‘ Wi X“i‘j Directly with the target

These cannot be compared

Directly with the target
%‘l >( g\\



Neural networks — recap. (from perceptrons
to DNNs)
3 Ed

* Output units, we aim to estimate: _5,_ wilt gy = Z Wy Xy
ll\clj

* We notice net; only influences the model via the outputs of the model
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Neural networks — recap. (from perceptrons
to DNNs)

* Output units, we aim to estimate: %Ef_ wilt gy = Z Wy Xy
ll\clj

* We notice net; only influences the model via the outputs of the model
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Neural networks — recap. (from perceptrons
to DNNs)
3 Ed

* Output units, we aim to estimate: 3 - Wit ek - Z‘ Wy; Xy
ll\clj

* We notice net; only influences the model via the outputs of the model
» 90“ = g 6'('\’\&5.)

6= 9 () XM ren
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Neural networks — recap. (from perceptrons
to DNNs)
3 Ed

* Output units, we aim to estimate: 3 - Wit ek - Z‘ Wy; Xy
ll\clj

* We notice net; only influences the model via the outputs of the model

6= 9 C aeh) Sty
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Neural networks — recap. (from perceptrons
to DNNs)

e For hidden units, we aim to estimate /) €&

2wk

* We notice that hidden units only influence the model trough the
units that have as input the output of the hidden unit

Let down(j) denote the set of units affected by j
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Neural networks — recap. (from perceptrons
to DNNs)

e For hidden units, we aim to estimate /) €&
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2wk

* We notice that hidden units only influence the model trough the
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Neural networks — recap. (from perceptrons
to DNNs)

e For hidden units, we aim to estimate /) €&

—

2wk

* We notice that hidden units only influence the model trough the

units that have as input the output of the hidden unit
D €d Z J€d }U\r}' % U g\( 5_9__%

.—5;-‘\';)’ —_ e AOQMLJ) BQ&K A“‘Ls a U\A’\<




Neural networks — recap. (from perceptrons
to DNNs)

e For hidden units, we aim to estimate /) €&

—

2wk

* We notice that hidden units only influence the model trough the
units that have as input the output of the hidden unit
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Neural networks — recap. (from perceptrons
to DNNs)

e For hidden units, we aim to estimate _’_3;3%_
2wk

* We notice that hidden units only influence the model trough the
units that have as input the output of the hidden unit

Jed s e dwbx o, 8 o 98

—_—97‘;‘; T kedoan (3) dud . Jney J aerk
- Z F} 7Y } % fém(ﬂ S \MY\) 90‘)
l(Léovw(D - SK ‘ a\ké
QV\A) —.Z f 6'(4'—"’))
- Z d ‘0) § Paaale 56 . kwl"““(})—skw"-’ J
W ©owq I<

3 0; }wvh



Neural networks — recap. (from perceptrons
to DNNs)

e For hidden units, we aim to estimate /) €&

—

2wk

* We notice that hidden units only influence the model trough the
units that have as input the output of the hidden unit
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Neural networks — recap. (from perceptrons
tO D N N S) BACKPROPAGATION(training _examples, 1, Rin, Rout Rhidden)

Each training example is a pair of the form (3,1 ), where % is the vector of network input
values, and 1 is the vector of target network output values.

n is the learning rate (e.g., .05). nj, is the number of network inputs, nhiagen the number of
units in the hidden layer, and noy, the number of output units.

The input from unit i into unit j is denoted xj;, and the weight from unit i to unit j is denoted

Wjj.
e Create a feed-forward network with n;, inputs, npiggen hidden units, and n,,, output units.
° T h e b a C k p I’O p + S G D o Initialize all network weights to small random numbers (e.g., between —.05 and .05).

algOrlthm for trainlng a o Until the termination condition is met, Do

@ For each (%, ) in training_examples, Do

M L P . Propagate the input forward through the network:

1. Input the instance X to the network and compute the output o, of every unit u in
the network.

Propagate the errors backward through the network:

2. For each network output unit k, calculate its error term ¢

8k < ox(1 — or)(tx — o) (T4.3)
3. For each hidden unit &, calculate its error term &
8 — op(1 —op) Z Wrhdk . (T4.4)
keoutputs

4. Update each network weight wj;
wji < wji + Awji
where

) . . ) Awji = n8j xj; 5
T. Mitchell. Machine Learning, McGrawHill 1997, =y . N




Neural networks — recap. (from perceptrons
to DNNs) .,

a
|
z Az = Z—;Ay
oz :
y A=A
e o
Hﬁ az= B2 ax
‘ e 9z _ozoy
1 X X~ ay ax
* The backprop + input Hidden output
. (@) (2 sigmoid) (1 sigmoid)
SGD algorithm for
tra Ini ng d M LP c d Compare outputs with correct
answer to get error derivatives
yn=1(z)
4= z Wi Yk
ke H2
dE _ 9E
Ye=1z) & IFEOU:VM 9z,
%= 2 W/kY;
jeH1 9E _9E %y
9z, oYy 0z aE
y;=1(z) 92
z= 2 Wi X
i € Input

Input units . 0 .



Deep neural networks

 DNNs are nothing but neural network models with several hidden layers (the number of
layers indicating the depth of the model)

* They can be seen as composed functions of the form:

* PPN (X))
* The output layer is usually the direct link with the goal of the task

. Hidclzlen/intermediate layers capture/learn particularities of data indirectly related to the
goa

* They usually have many (miIIions? of parameters to learn/optimize, still backpropagation
+SGD (++ a bunch of hints) make learning feasible



Deep neural networks

* Components of a DNN / design choices
* Architecture
Output units
Hidden units
Learning strategy
Cost function




DNNs — output units

* The form of output units depends on the goal the DNN has to solve
(Output units can serve as hidden units as weII?

* We will study three types of output units
* Linear units for Gaussian output distributions

e Sigmoid units for Bernoulli output distributions

e Softmax units for Multinomial output distributions

* Assuming their goal is to take as input the output of features from a hidden
unit and transform them to complete the task associated to the DNN

« h = f(x;0)



DNNs — output units

* Linear units for Gaussian output distributions

* Perform an affine transformation with no linearity
*y" =Wh+»>

* They are commonly used to produce the mean of a conditional
Gaussian distribution

- p(y[x) = N(y;¥%, D)



DNNs — output units

 Sigmoid units for Bernoulli output distributions

1
e y" =o(wh+Db)

£x) &

. 1
* With: 0(z) = r— _/

X

-

* |deal units when one wants to predict the value of a binary variable y

(e.g., binary classification problems)



DNNs — output units

e Softmax units for Multinomial output distributions

* Used to represent a probability distribution over a discrete variable
with k possible values (e.g., the output of a multiclass classifier)

* First, a linear layer predicts un-normalized log probabilities
*z=Wh+ b, where z; =logP™(y =i|x)
* Then: softmax(z); = _XPE)

' Zj exp(z;)

* So, we have as output a vector of k probabilities



DNNs — hidden units

* The selection of hidden units is not straightforward, yet, we will
review the most common ones
* ReLU — Rectified linear units
 Logistic and hyperbolic tangent

* We assume hidden units take as input a vector of inputs x and
perform an affine transformation and a nonlinear transformation that
is used as input by another unit

*h=g(Wx+Db)



DNNs — hidden units

e ReLU — Rectified linear units (the de facto hidden unit
in the renaissance era)

* g(z) =max{0,z}, so h=max{0,(Wx+b)} o Rectified Linear Unit (ReLU)

 Very similar to linear units (except it outputs O across
half its domain)

o N S [ =
T T T T

—21

—41

-6}

* Derivatives are large, whenever it is active e

 Several variants/improvements (yet these yield little
improvements)



DNNs — hidden units

* Logistic and hyperbolic tangent units: prior to RelLU,
most NNs used these units

¢ 9(2) = 0(z) = —

1+exp™?%

* g(z) = thanh(z)

* Their usage is discouraged nowadays, because they
saturate with extreme values




DNNs — further aspects / considerations

* Architecture design: an art! (stacked layers, reducing the number of
units each layer is standard, the deeper the better, usually, to some

extend)

* Training DNNs: Backpropagation with SGD is the common choice
* Regularization: Dropout, adversarial training, early stopping,

* Implementation: GPU — computing is necessary



Deep learning variants

* Main DL models:
* Deep neural networks (DNNs, MLPs

* Convolutional neural networks (CNNs)

* LSTM

* Restricted Boltzman machines
* Deep belief networks

* Autoencoders

* New paradigms
* Residual DNNs
e Gated recurrent NNs
* Generative adversarial networks



Convolutional neural networks

* Type of neural network for processing data having grid-like topology
* Time series (1D grid)
* Images (2D grid)
 Video (3D grid)

 Components: convolutional layers, activation of units, pooling layers,
* Weights are learned with backpropagation




Convolutional neural networks

* These networks employ the mathematical operation called
convolution

* CNNs are simply NNs that use convolution in place of matrix multiplication in
at least one of their layers

(f* )(t)—[ f(r)g(t —7)d s(t) = /w(a)w(t—a)da
- [ f-naryar s(t) = (z % w)(?)



Convolutional neural networks

e Convolution in NN terminology:

* x—theinput S(t) - (:1: * w)(t)
 w—the kernel
e s—the feature map s(t) = /a:(a)w(t —_ a)da

e Discrete convolution:

o0

s(t) = (x*xw)(t) = Z z(a)w(t — a)

a=—0C



Convolutional neural networks

e 2D convolution

S(i,7) = (I *x K)(i,]) ZZI(mnK(z—mJ—n)

m mn

 Convolution is commutative

S(i,7) = (K *I)(1,7) ZZI(z—m]—nK(m n).



Convolutional neural networks

e 2D convolution

Input
Kernel
d
w
g h
Y
J k l
v Output
aw + bz + bw + cz cw + dx
ey + fz fy + gz gy + hz
ew + fr + fw + gz gw + hz
iy +  jz Jjy + kz ky + Iz




Convolutional neural networks

Center element of the kernel is placed over the (0% 0)
source pixel. The source pixel is then replaced

. « A - : (0 x0)
® 2 D coO nVO| Ut ion with a weighted sum of itself and nearby pixels. ©0x1)
(0x1)
0x0
Source pixel zO X 1;
+ (-4x2)
-8
220 5
2 6 0 Convolution kernel
(emboss) / ¥ 3
0,00 ! i
New pixel value (destination pixel) T Lkl .

https://developer.apple.com/library/content/documentation/Performance/Conceptual/vimage/ConvolutionOperations/ConvolutionOperations.html




Convolutional neural networks

 Typical architecture |

Input Feature maps Feature maps Feature maps Feature maps Output
24x24 4@20x20 4@10x10 8@8x8 8@4x4 20@1x1

Convolution Subsampling Convolution  Subsampling Convolution



Convolutional neural networks

* Typical architecture |l

RGB Image

Convolutional Encoder-Decoder

Pooling Indices

B conv + Batch Normalisation + RelU
I Pooling I Upsampling Softmax

Output

Segmentation




Convolutional neural networks

* Typical architecture |l

1ty feature maps N2 feature maps
of low-resolution image of high-resolution image

Ja x fa fsx fs

Low-resolution § '-ql.: ittt L ) =
image (input) | I — i 1 E_‘

N High-resolution
i image (output)

Patch extraction

’ Non-linear mapping Reconstruction
and representation

C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using deep convolutional networks,” CoRR, vol. abs/1501.00092, 2015.



Convolutional neural networks

* Why convolution layers?
* Sparse connectivity: less weights/parameters




Convolutional neural networks

* Why convolution layers?
* Parameter sharing: less weights/parameters

O5O0X050
i OO

O OO
O OO
OOROR0



Convolutional neural networks

* Pooling: replaces the output of
a net at a certain location with a
summary statistic of nearby
outputs

* Makes aprox. Invariant to
translation

e Variants include: max, sum, avg.
poolings
* Usually, stride is considered Y

Single depth slice

¢ Il
4




Convolutional neural networks

 Typical architecture of a layer

Input Feature maps Feature maps Feature maps Feature maps Output
24x24 4@20x20 4@10x10 8@8x8 8@4x4 20@1x1

oSS

Convolution Subsampling Convolution ~ Subsampling  Convolution

Complex layer terminology

Next layer

Simple layer terminology

f

Next layer

Convolutional Layer

Pooling stage

Pooling layer

Detector stage:
Nonlinearity
e.g., rectified linear

)

A

Detector layer: Nonlinearity
e.g., rectified linear

Convolution stage:
Affine transform

A

A

Convolution layer:
Affine transform

Input to layer

f

Input to layers




Convolutional
neural networks

e Common architectures

Output oI soitmax:
1,000 class
probabilities

Output of soritmax:
1,000 class
probabilities

OUutput oI soitmax:
1,000 class
probabilities

¢

t

¢

Output of matrix
multiply: 1,000 units

Output of matrix
multiply: 1,000 units

Output of average
pooling: 1x1x1,000

Output of reshape to Output of reshape to Output of
vector: vector: convolution:
16,384 units 576 units 16x16x1,000

$

Output of pooling
with stride 4:

Output of pooling to
3x3 grid: 3x3x64

Uutput of pooling
with stride 4:

16x16x64 16x16x64
Output ot Output ot Output ot
convolution + convolution + convolution +
ReLU: 64x64x64 ReLU: 64x64x64 ReLU: 64x64x64

Output of pooling
with stride 4:

Output of pooling
with stride 4:

Output of pooling
with stride 4:

64x64x64 64x64x64 64x64x64
Output ot Output ot Output ot
convolution + convolution + convolution +

ReLU: 256x256x64

ReLU: 256x256x64

ReLU: 256x256x64

¢

¢

¢

Input image:
256x256x3

Input image:
256x256x3

Input image:
256x256x3




Convolutional neural networks

Samoyed (16); Papillon (5.7);

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Convolutions and RelLU
A S S N B L & S & s L LW F e o o o L e N S N 8 &

./ / AL L LT - - - '”"””'

Convolutions and RelLU
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Deep learning in a nutshell

* Going deeper (CNNs)

lax
pppppp

: Image input
Conv | : Convolutional layer
Pool : Max-pooling layer

FC : Fully-connected layer

Softmax  : Softmax layer

e

JULLGGH U R

Xewyos




Convolutional neural networks

e How do the filters look like?




Convolutional
neural networks

e How do the filters look like?

eeeeeeeeee

pooling




Convolutional neural networks

L —
 What about 3D
a a O u ? (a) 2D convolution
2D
convolution
)
§
-
=3
a
AclMly Net ODISI Cale(lm A(l'v ty Highfive (2010} HMD851 (2012) IXMAS (2006) E —
@
- ]
Q
3aD g
= .
é convolution -
J-HMDE (2013) KTH (2004) NTU RGB+D UCF-* é
(2016) o V
-
-
=
a
£

(b} 3D convolution

MSRDSByACtivty3D  N-UCLA M. Acticn3D
12012) (2014)

UTKinect-Action30 (2012)

Hollywoed 1 (2008)
Hollywoed 2 (2009)

Maryam Asadi-Aghbolaghi, Albert Clapés, Marco Bellantonio, Hugo Jair Escalante, Victor Ponce-Lopez, Xavier Bard, Isabelle Guyon, Shohreh Kasaei, Sergio
Escalera. A survey on deep learning based approaches for action and gesture recognition in image sequences. Proceedings of the 12th IEEE Conference on
Automatic Face and Gesture Recognition, 2017



Convolutional neural networks

* What about 3D?

Shuiwang Ji, Wei Xu, Ming Yang, Kai Yu. 3D Convolutional Neural Networks for Human Action Recognition. TPAMI Vol. 35(1):221-231, 2013



Convolutional neural networks

 Transfer learning: it is common to re-use pretrained architectures
(the weights) trained with millions of images
* Direct use: use them as feature extractors
* Tailored models: re-use some layers and perform a fine tuning for layers of

Interest
Input Feature maps Feature maps Feature maps  Feature maps Output
24x24 4@20x20 4@10x10 8@8x8 8@4x4 20@1x1 A L)
A\ 2% E E dense
13
1 dense [dense| _’]
1000
128 Max L) L]
pooling 204 04!
Convolution Subsampling Convolution  Subsampling  Convolution

Yosinski J, Clune J, Bengio Y, and Lipson H. How transferable are features in deep neural networks? In Advances in Neural Information Processing Systems
27 (NIPS "14), NIPS Foundation, 2014



Convolutional neural networks

* Commonly used pretrained-CNNs

* AlexNet T -
VGG ==
GoogleNet B Pl comedediarr

PlacesNet VGGNet

FaceNet g{ggHgF

Softmax  : Softmax layer

placesce@s &

THE SCENE RECOGNITION DATABASE i £




Convolutional neural networks

 Transfer learning: it is common to re-use pretrained architectures
(the weights) trained with millions of images

0.66,

®
o .l ¢ @ ® @
®
A 8 [ 4 ® ® @® “)
0.62f Y “» p ®
) °® @ z’ ®
0.60 .§ .
®

W o

@ 00D

Top-1 accuracy (higher is better)

0.56 O baseB
@ selffer BnB ®
@® selffer BnB*

0341 @ transfer AnB z
@ transfer AnB*

0.52—5 1 ) 3 a 5 3 7

Yosinski J, Clune J, Bengio Y, and Lipson H. How transferable are features in deep neural networks? In Advances in Neural Information Processing Systems
27 (NIPS "14), NIPS Foundation, 2014



Convolutional neural networks

 Transfer learning: it is common to re-use pretrained architectures
(the weights) trained with millions of images

5: Transfer + fine-tuning improves generalization

0.64
= 3: Fine-tuning recovers co-adapted interactions
R [Pt ey pepapmpeyer—
§ 0.62 2: Performance drops
S due to fragile
5 co-adaptation
= 0.60 4: Performance
> drops due to
o representation
S specifici
S 0.58} P ty
2
o
-

0.56

0345 1 2 3 4 5 6 7

Layer n at which network is chopped and retrained

Yosinski J, Clune J, Bengio Y, and Lipson H. How transferable are features in deep neural networks? In Advances in Neural Information Processing Systems
27 (NIPS "14), NIPS Foundation, 2014



Convolutional neural networks

* The ruling models for CV&PR

. g%nl)y since 2012, even when Lecun sucessfully used CNNs for digit recognition in the
S

e Qutstanding results in a number of tasks, domains, data sets

* Designing a CNN is an art, lots of tricks, improvements, modifications can
be performed (deep learning engineering)

* Models become obsolete extremely fast, it is difficult to be aware of SOTA

e Conferences on CNNs: CVPR, ICCV, ECCV, NIPS....



Deep learning variants

* Main DL models:
* Deep neural networks (DNNs, MLPs)

* Convolutional neural networks (CNNs)
* LSTM

* Restricted Boltzman machines D ti del
* Deep belief networks eep generative modadeis

* Autoencoders

* New paradigms
* Residual DNNs
e Gated recurrent NNs
* Generative adversarial networks



Deep generative models

* Boltzmann machines. An energy based model defined over a d-
dimensional random binary vector x € {0,1}¢

* The joint probability distribution is given by:

exp (—E(x))
Z b}

P(x) =

 where

Only visible units E(x) = —z' Uz - b'z,

Hiddenuanr;;jsvisible E(w,h)=—v Rv—v Wh—-h"Sh—-b"v—c'h.



Deep generative models

 Restricted Boltzmann machines. A Boltzmann machine restricted to:
* Have two layers: one of visible and other of hidden units
* There are no connections between units in the same layer
e Units are typically Bernoulli activation functions

* The building block for deep generative models




Deep generative models

 An RBM is an energy-based model, with the joint probability specified
by its energy function as follows:

P(v=vh=h)= iZexp (—E(v, h)).

E(w,h)=-b'v—c' h—v Wh,

Z = ZZexp {—E(v,h)}.
v h



The Energy of a joint configuration
(ignoring terms to do with biases)

binary state of binary state of
visible unit i hidden unit |

\ /
EWvh) = - Ev,.hjw,.j
/ o\

Energy with configuration weight between
v on the visible units and units i and |
h on the hidden units
0E(v,h)
— = v.h.
L
ow.,

y

Slide from G. Hinton’s tutorial at NIPS 2007



Deep generative models

* The bipartite graph structure of the RBM has the special property that
its conditional distributions P(h|v) and P(v|h) are factorial and
simple to compute / sample from:

p(h|v)=TIlp(h;|v) p(v | h) =ILp(v;| h).

/
,D(hl =1 |V; 9) =0 (Z W,'jV,' -+ aj)

i=1

J
p(vi=1h;0) =0 (Z wiih; + b,-)

=



A picture of the maximum likelihood learning
algorithm for an RBM

O ODO

ORO ORI |OD -
<v;h j7 \ / \ / coo >/ a}antasy
Jgo] [Fo] [Bo TO

t=0 t=1 t=2 t = infinity

Start with a training vector on the visible units.

Then alternate between updating all the hidden units in
parallel and updating all the visible units in parallel.

dlogp(v)

aWi,'
Slide from G. Hinton’s tutorial at NIPS 2007

<vl-hj>0 — <V,-hj>°°



A picture of the maximum likelihood learning
algorithm for an RBM

OOl [o@Qol[o®O ODO

<v;h j7 / \ / PP <vih; >7 axfantasy
do|] ol [[@o TO
t=0 =

t=1 t=2 t = infinity

Start with a training vector on the visible units.

Then alternate between updating all the hidden units in
parallel and updating all the visible units in parallel.

dlogp(v)

aWﬁ
Slide from G. Hinton’s tutorial at NIPS 2007

<vl-hj>0 — <vl-hj>°°



How to learn a set of features that are good for
reconstructing images of the digit 2

50 binary 50 binary
feature feature
neurons neurons

Increment weights Decrement weights
between an active between an active
pixel and an active pixel and an active

feature feature
16 x 16 16 x 16
pixel pixel
image image
data reconstruction
(reality) (better than reality)

Slide from G. Hinton’s tutorial at NIPS 2007



The final 50 x 256 weights

Each neuron grabs a different feature.

Slide from G. Hinton’s tutorial at NIPS 2007



Deep generative models

* This training algorithm lead to the renaissance of NNs in 2016:
* Key idea: to train deep models using nested layers of RBMs
e Each layer is pre-trained independently
* Afinal (fine tuning) stage based on backprop is commonly used

DBN-DNN

RBM DBN W,=0
RBM W, W, W,
Copy
| | = | L | |
GRBM W, W, W,




Deep generative models

e Qutstanding results at that time!

* Nice movie at:

e http://www.cs.toronto.edu/~hinto

n/digits.html

Version of MNIST Task Learning Algorithm Test Error %
Permutation invariant Our generative model: 1.25
784 — 500 — 500 < 2000 « 10
Permutation invariant Support vector machine: degree 9 14
polynomial kernel
Permutation invariant Backprop: 784 — 500 — 300 — 10 1.51
cross-entropy and weight-decay
Permutation invariant Backprop: 784 — 800 — 10 1.53
cross-entropy and early stopping
Permutation invariant Backprop: 784 — 500 — 150 — 10 2.95
squared error and on-line updates
Permutation invariant Nearest neighbor: all 60,000 examples 2.8
and L3 norm
Permutation invariant Nearest neighbor: all 60,000 examples 31
and L2 norm
Permutation invariant Nearest neighbor: 20,000 examples and 4.0
L3 norm
Permutation invariant Nearest neighbor: 20,000 examples and 44
L2 norm
Unpermuted images; extra Backprop: cross-entropy and 0.4
data from elastic early-stopping convolutional neural net
deformations
Unpermuted de-skewed Virtual SVM: degree 9 polynomial 0.56
images; extra data from 2 kernel
pixel translations
Unpermuted images Shape-context features: hand-coded 0.63
matching
Unpermuted images; extra Backprop in LeNet5: convolutional 0.8
data from affine neural net
transformations
Unpermuted images Backprop in LeNet5: convolutional 0.95

neural net

Hinton, G. E., Osindero, S. and Teh, Y. (2006) A fast learning algorithm for deep belief nets. Neural Computation, 18, pp 1527-1554.



Deep generative models

* Model the joint probability of latent and observable variables
* Efficient learning of parameters

* Are not restricted to Bernoulli units

* Not too much interest from the ML community nowadays (with
respect, e.g., to CNNs)

Hinton, G. E., Osindero, S. and Teh, Y. (2006) A fast learning algorithm for deep belief nets. Neural Computation, 18, pp 1527-1554.



Deep learning variants

* Main DL models:

* Deep neural networks (DNNs, MLPs)
Convolutional neural networks (CNNs)
LSTM
Restricted Boltzman machines

Deep belief networks

* New paradigms
* Residual DNNs
e Gated recurrent NNs
* Generative adversarial networks



Autoencoders

* Neural networks that are trained to attempt to copy its
input to its output

* A code layer is used as pivot, where there are codifying
and de codifying layers of parameters
* Encoder: h = f(x)
* Decoder:r = g(h)

e Usually the dimension of h is lower than that of x
(undercomplete AEs)

* They can be linear/ non linear, sparse, non sparse, and can
be used for representation learning, dimensionality
reduction and denoising



Autoencoders

* Deep
autoencoders!
(Hinton’s science
paper)

e Pretraining of

layers using
RBMs

* Unfolding

* Fine tunning
with backprop

Pretraining

Unrolling

Fine-tuning



Autoencoders

* Deep
autoencoders!
(Hinton’s science

o MR



Deep learning variants

* Main DL models:
* Deep neural networks (DNNs, MLPs)

o ("NNhvN onalneural netwarks (CNNS)
* LSTM
ReSLrICted BOortZmadan macnines

* Deep belief networks
e Autoencoders

* New paradigms
* Residual DNNs
e Gated recurrent NNs
* Generative adversarial networks



Modeling sequential data

* Recurrent neural networks.
NNs that receive as input
information from their
outputs

e Hidden units can be
specified as

Rt — f(h(t—l),m(t);g),

*y(t+l)

2%

x(1)

(a) Feedforward network

(b) Recurrent network



Modeling sequential data

* Types of RRNs - 1




Modeling sequential data

* Types of RRNs - 2




Modeling sequential data

* Training RNNs
 BPTT: Unfolding + backprop

0

O Ot—I Ot 0t+1

i PR

oy =) >0E 0O
Unfold T w T W T w

U U U U

X X X X

x(t-2) e(t-2)



Modeling sequential data

* Going deep with RNNs




Modeling sequential data

e LSTM: Long short-term memory

- N 4
AT A
\, J o\

® ® ©

http://colah.github.io/posts/2015-08-Understanding-LSTMs/




Modeling sequential data

e LSTM: Long short-term memory

| | 1

4 N\ N\ )

http://colah.github.io/posts/2015-08-Understanding-LSTMs/




Modeling sequential data

* LSTM: Long short-term memory

va

Gated units

?
o
|

®

@

Celllstate



Modeling sequential data

e LSTM: Long short-term memory

How much to take from the previous state?

ft ft =0 (Wf'[ht_1,$t] + bf)

ht—l

Tt



Modeling sequential data

* LSTM: Long short-term memory

What can be added to the new state and how much

it =0 (Wi-lhi—1,z¢] + b;)
ét :tanh(W(;-[ht_l,xt] + bc)




Modeling sequential data

* LSTM: Long short-term memory

Update the state

Cr= fe xCi_ +it*ét



Modeling sequential data

* LSTM: Long short-term memory

What to output?

Ot — U(Wo [ht—laxt] + bo)
hy = o4 * tanh (C})




Modeling sequential data

e LSTM: Impressive results in a number of tasks (speech processing,
machine translation) and widely used nowadays:
* Image captioning
* Natural language processing
* Multimodal information processing

Vision Language
Deep CNN Generating RNN
.\ m A group of people
/.\ shopping at an outdoor
.\ /. market.
® — —_—
—a There are many

/. vegetables at the
o fruit stand.




Deep learning variants

* Main DL models:

* Deep neural networks (DNNs, MLPs)
Convolutional neural networks (CNNs)
LSTM
Restricted Boltzman machines
Deep belief networks
Autoencoders

* New paradigms
e Residual DNNs

e Gated recurrent NNs
e Generative adversarial networks




DL extensions, enhancements

* Dropout

e Adversarial training

* Multi task learning

* Multi stream architectures
* Inception



Dropout

 |[dea: to drop out (switch
off) non-output units with
certain probabilities;using
minibatches to update the
parameters of the whole
DNN under the different
masks

* Resembles bagging:
71“22 P (y | ). zﬂ:p(u)p(y | @, p)

pLrcn
efo

Base network

dodgeh &
@@

©

Ensemble of subnetworks

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, llya Sutskever, Ruslan Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks

from Overfitting. 15(Jun):1929-1958, 2014.




Dropout

* [dea: to drop out (switch
off) non-output units with
certain probabilities;using
minibatches to update the
parameters of the whole
DNN under the different
masks

2.5

2.0

Classification Error %

1.0f

1‘5—’

H
200000

Witho@t dropoilt

With dropout

i i
400000 600000

d Al
A ."“ 4

(((((

Number of weight updates

L
800000 1000000

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, llya Sutskever, Ruslan Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks

from Overfitting. 15(Jun):1929-1958, 2014.



Adversarial training

* Idea: introduce adversarial examples during training

* Adversarial example: an instance that after slight modifications cause the
DNN to make a mistake

+ .007 x |

. T +
T sign(VgJ (0, x,y)) esign(VaJ (6, 2, 7))
y =“panda” “nematode” “gibbon”
w/ 57.7% w/ 8.2% w/ 99.3 %
confidence confidence confidence

lan J. Goodfellow, Jonathon Shlens, Christian Szegedy. Explaining and Harnessing Adversarial Examples ArXic 1412.6572, 2014



Multitask learning

* |dea: to learn models that share @ @
generic layers and at the same

time learn task specific layers

* Belief: Among the factors that
explain the variations observed
in the data associated with the

different tasks, some are shared f

across two or more tasks

R. Caruana. Multitask Connectionist Learning. Proc. Connectionist models summer school, 372--379, 1993



Multitask learning

* E.g,

256 e, S

simultaneously c s Sendepods Genders | |
predict: gender, RN AR T
age, race, facial - Is c i P
eXpreSSIOn Input I; T 256 RzaCGepodsRacefcﬁ ...... : |

Bottom Layers for Shared Feature
Representation (output: fiS )

256,
256 ExpressionPool5
| ExpressionConvs Expressionfcé

Middle Layers for Task- Top Layer for
specific Representation Loss Function

J. Wan, S. Zhou, Z. Tan, H.J. Escalante, Y. Liang, Z. Lei, G. Guo, S.Z. Li. Deep Nonholonomic Label Information Learning for Globally Fine-grained
Face Attribute Analysis, Submitted to TPAMI, 2017



Multi stream models

N
Individual o 1 1
frame Spatial ComvNet

* |[dea: To have different -
[lsn.}c{ .sm)—t -o{mH ISD->\

internal paths within the

model, that eventually ‘ |\
’ N 3=t with
converge to the same !x' }@

layer (same task)

Mation LSTM

4
Audlo ComvNet J

Zuxuan Wu, Yu-Gang Jiang, Xi Wang, Hao Ye, Xiangyang Xue, Jun Wang. Fusing Multi-Stream Deep Networks for Video Classification.
arXiv:1509.06086, 2015



Multi stream models

 E.g., multimodal gesture recognition

max pooling /— ConvD2

HLVI
PathVI: /_ -
depth video, A
right hand
PathV1: ConvDI
intensity video,
right hand
ConvC2 ConvD2
J Pathv2: ~ Convcl HLVI
right hand: left hand: depth video, F
video stream deo stream = [ ModDrop left hand
= | network
'

shared hidden layer
HLS

@

output layer

ConvDlI

Path V2:
label, intensity video,
start frame, left hand
left hand: end frame
depth stream t ConvCl ConvC2 HLM2

Gesture
spotting Path M:

mocap stream

right hand:
depth stream

articulated pose
pose feature

extractor

Path A:

) mel frequenc;
audio stream q 4

HLA2

histograms

ConvAl HLAI

Natalia Neverova, Christian Wolf, Graham Taylor, Florian Nebout. ModDrop: adaptive multi-modal gesture recognition. TPAMI, Vol, 38(8):
1692--1706, 2016



Inception



Residual DNNs

*|[dea: To introduce : a .
layers that can be used : .
or not, that copy the gl E E
output of other layers N 1R f"‘_"f AR AERN

&, s LR IENELIEL IRl (FIIEL el (R 1R) g

5 5 B PIE e PIE T e PIE eI I eI TIE A AT 2

£ 7 g momo;moo«ooomeouc\“
:<) o

3« 3 [ 13 BRG] R (R [ (R

X §§+;»§H§§v8+ b el N

F(x) X L] ______'_______ L)L

identity

1x1 conv, 256, /2

1x1 conv, 64, /2

[ 1x1conv 128,22 |

fc 5




Final remarks

* Benefits
* Extremely good at learning representations and models from large data sets
* Efficient training, massive parallelization capabilities
e Outstanding generalization capabilities,

* Limitations
e Require of extremely large data sets (big data)
* Demanding computational resources
* Black box models, no interpretability, explainability



Final remarks
* A very introductory tutorial on DL

* Deep models dominate the arenas of CV, PR, NLP, SP, and in shortly
will be ruling over other domains

* It is difficult to track the progress in DL
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