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1 Introduction

The need for data compression is growing day by day because of the fast development of data inten-
sive applications that place a heavy demand on information storage and to meet the high data rate re-
quirements of bandwidth hungry transmission systems such as multimedia. Compression techniques
remove the redundancy present in the data, keeping only sufficient information that can be effectively
utilised in the decompression phase to retrieve the original data. Data compression techniques can be
broadly categorised into two major families: (i) lossy and (ii) lossless. Lossy data compression is
slightly inaccurate, but in return results in greatly increased compression and is effective while com-
pressing graphics image files or digitised voice which possess enough redundancy. On the contrary,
lossless data compression techniques are guaranteed to generate an exact replica of the input file after
the decompression phase and find application when storing data base records, spreadsheets, computer
programs etc., where lossy compression techniques can not be applied indiscriminately.

The process of lossless data compression can be divided into two distinct classes: (i) dictionary based
and (ii) statistical. In dictionary based techniques, groups of consecutive symbols are replaced by a
corresponding code. Statistical methods, on the other hand, replace each symbol with a code based on
its probability of occurrence. It is convenient to further subdivide statistical methods of data compres-
sion into two separate tasks, namely modelling and coding. In the modelling phase, probabilities are
estimated for each symbol in the alphabet either statically or in an adaptive manner. In the coding
phase, these probabilities are translated into suitable codeword that represent the input symbols. Over
the years arithmetic coding [1, 2], has emerged as a versatile and efficient technique for lossless data
compression. It scores over the well-established Huffman coding [3] in that it does not need an inte-
gral number of bits to encode a symbol.

Arithmetic coding attempts to represent the source data with the minimal entropy. Instead of replacing
each bit with its corresponding code as done in traditional techniques, it represents a stream of input
symbols by a number in the half-open interval [0,1). At the beginning, the coding interval is set to [0-
1). As the encoding progresses, the interval needed to represent the input data stream becomes
smaller, needing more bits to represent it. The symbols having a higher probability reduce the range
by a smaller amount than a less probable symbol thereby adding fewer bits to the output. As each
subinterval attained by encoding a symbol is located within the previous interval, it represents all the
symbols encoded so far. Encoding continues recursively until all the input symbols are exhausted.
Thereafter, a pointer to the final interval is generated as the final codeword that represents the entire
message. In the decoding phase, a similar process is followed to retrieve the original message. It is
also possible to generate the code incrementally at the encoder and follow an incremental decoding
thereby permitting the operations to proceed on the fly, a feature significant in online data transmis-
sion.

As discussed above, arithmetic coding works by reducing the size of an interval proportionately to
successive symbol probabilities. This involves the expensive multiplication operation, which is rather
slow in both hardware and software. The attempts at replacing the multiplication operation by shifts
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and adds [4]-[5] may lead to a loss in compression efficiency. Attempts have also been made to par-
allelize the arithmetic coding process thereby resulting in faster implementation. As it has been men-
tioned in [7], it is possible to parallelize the encoding operation, but not the decoding. The decoding
operation involves much more complex data dependencies and generally has to be performed sequen-
tially. Although parallel decoding to a limited extent is demonstrated in [8), it is valid only for binary
alphabets.

In the current work, we have divided the multialphabet arithmetic coding operation into a number of
stages, each stage needing the encoding of a binary decision. The multiple stages can be executed in a
parallel pipelined manner to speedup the encoding operation. Following this scheme, it is possible to
parallelize both the encoding and decoding operations that turn out to be identical to each other.

Section 2, following the introductory section briefly discusses the arithmetic coding operation. The
structure of the modelling unit is outlined in Section 3, which also presents the overall implementation
scheme. Finally, Section 4 concludes this paper with some simulation results.

2 Arithmetic coding

In the following explanation we will directly use integer arithmetic, thereby gaining an insight into the
practical implementation of the arithmetic coding algorithm. We start by initialising the coding inter-
val to [O,N), where N depends on the amount of precision we desire. Afterwards, the following steps
are to be repeatedly executed to encode the input string.

1. Inputa symbol.

2. Subdivide the current interval into a number of subintervals, each corresponding to
a different symbol in the alphabet.

3. Select the subinterval corresponding to the symbol input as the new current interval.

4. Execute the normalisation procedure.

The normalisation procedure tests to see if the current interval lies entirely within any of the three
intervals: [0,N/2), [N/4,3N/4), or [N/2,N) and acts accordingly as outlined below:

o  If the current interval is completely within [0,N/2), 0 is output followed by any 1s left over
from earlier events and the current interval is doubled by linearly expanding the interval
[0.N/2) to [0,1).

e If the current interval is completely within [N/2,1), 1 is output followed by any Os left over
from earlier events and the current interval is doubled by linearly expanding the interval
[N/2,1) to {0,1).

o If the current interval is completely within [N/4,3N/4), this fact is recorded by incrementing a
follow count and the current interval is doubled by linearly expanding the interval [N/4,3N/4)
to [0,1).

The decoder in a sense recursively undoes the encoder’s recursion. It verifies the input bits to deter-
mine the interval pointed to by these and finds the symbol, which, when encoded, reduces the coding
interval to this interval.

3 The proposed implementation

3.1 Modelling

From discussions in the previous section it is clear that the modeller is required to keep track of the
cumulative frequency information and supply to the coder the counts corresponding to the symbol to
be coded. A major cost of data compression using adaptive arithmetic coding is to maintain and up-
date these cumulative frequency counts. In [1], Witten et. al. have used different arrays for keeping the
counts, recording the cumulative frequency counts and for reordering the counts. The reordering is
required to ensure that the frequency counts are in decreasing order so that the symbol being proc-
essed is more likely to be towards the left and would require relatively fewer increments of the cumu-
lative frequency counts. This implementation works well for files which have a skewed character us-
age. But, for others like object files where the character usage is less skewed, the method performs
poorly. Also, it is suitable for a relatively smaller alphabet, the running time becoming prohibitive for
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large alphabets. To overcome these shortcomings Moffat [6] has proposed an alternative implementa-
tion where the symbols are visualised as the nodes of a binary tree of | log, N +1 levels, where N is
the alphabet size. Each node is associated with a particular symbol and records its position in the tree
along with the current code space allocated to that symbol. Using this structure the cumulative counts
can be obtained for any symbol in order O(log, N) time. Two pointers are used in this implementation
to keep the nodes arranged in decreasing order of occurrence counts. Although this algorithm has a
linear complexity in terms of the output code length, it may prove expensive for hardware realisation
due to the excessive storage space it requires.

In the proposed implementation, we use a slightly different approach to store, retrieve, and update the
model related information. The data structure used is still a complete binary tree, but now symbols are
assigned only to the leaf nodes. Let C(s) denotes the cumulative frequency count for symbol ‘s’. The
model related information is now implicitly stored in a single variable at each node. The information
stored in node j at level i of the tree (node N(i,j)) is given by:

D(i,/)=C[(2/+1)2" " 1-C[(2/)2 "], O<i<n-1, 0gj<2” -1. '6))

One such binary tree for 16 symbols is depicted in Figure 1. In addition to the information stored in
each of the nodes, the model requires one more information, i.e., the total count T that is stored in a
separate register.
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Adaptive modification of the model related information is easy to perform. When any symbol is en-
countered, the information stored in a node N(i,j) along the path from the root to the symbol is in-

Figure 1 Coding tree for 16 symbols

cremented only if the ith bit b, is zero. This achieves the necessary adaptation in the code space.

3.2 Coding

The manner in which the cumulative frequency information is stored has a direct bearing on the pro-
posed encoding algorithm. The principal idea behind the algorithm is that here the multialphabet
arithmetic coding is performed with the help of multiple binary coders, each at a different level of a
binary tree. We move downwards from the root of the tree and the coding information supplied at
each level depends on the information stored at the nodes in the path leading to the symbol. The en-
coding algorithm is as follows:

Algorithm 1

1. To start with, initialise the cumulative frequency C(i)=i and the other nodes accordingly.
2. The total count T enters the root (node N(0,0)) as the top value T(0,0).

3. Fori=0 to n-1, the following steps are repeatedly executed in a node N(i,j) along the path.

1 Ifb; =0, send the value D(i,j) to the left child, i.e., to node N(i+1,2j) as the top value.
1i. Else, send the value T(i,j)-D(i,j) to the right child, i.e., to node N(i+1,2j+1) as the top
value.
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1il. Send the values (D(i,j),T(i,j)) as the coding information to the coder corresponding to
that level. Update D(i,j)=D(i,j)+(1-b; ).

3.3 Implementation
As far as the modelling unit is concerned, it can be implemented as a linear array of systolic units

(Figure 2). Each unit stores all the nodes at the corresponding level of the tree, i.e., M, stores the

root, M, stores the two nodes in level 1 of the tree and so on. For encoding an alphabet involving 256

symbols, the modeller will have a total of 8 different units that are linearly interconnected as shown. It
is clear that the memory requirements of the nodes will be skewed in nature. Each unit in the modeller

delivers the coding information to an arithmetic coder. So, there are a total of 8 coders (Qoto Q5),
each encoding the information given out by the corresponding modelling unit.
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Figure-2 Parallel arithmetic encoder
The encoding of the input symbols proceeds as outlined in Algorithm 2.

Algorithm 2
1. The symbols enter the encoding unit from the left. As it is observed the symbols go through both
the modelling units and the coding units.

2. Asasymbol s moves from M, to M ,, each unit M ; performs the following operations:

i It reads the bit b, in s to determine what operation to perform (Algorithm 1).

il It then transfers the necessary coding information to the corresponding coder.

iii. It updates the differential cumulative frequency count corresponding to the first i-1 bits
in the symbol, depending on b, .

iv. It transfers the symbol to the next modelling unit.

3. Each of the coder Q; performs the following operations:
L It receives the coding information from the corresponding modeller and encodes either

the left or the right half of the coding interval according to the bit b; of the symbol. The

coding information received gives the middle and right extreme of the coding interval. It
uses 0 as the left extreme.

ii. The resulting code bits if any are shifted into an 8 bit temporary buffer. When this 8 bit
buffer becomes full, its content is transferred to a second 8 bit output buffer. When the
output buffer of each of the coding units is full, these are sent out together as the coded
information.

The above algorithm can be executed in a pipelined manner to encode all the symbols in the input data
stream.

At the decoder side we have the same array structure for both the decoding and the modelling units
(Figure 3). The encoded bits are segregated into 8 bit bytes and given to corresponding decoding
units. Each unit decodes a sequence of left and right decisions or 0 and 1 bits. Combination of the cor-
responding decisions at all the units gives the decoded symbol. It is clear that decoding can also be
performed in a parallel pipelined manner.
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Figure 3 Parallel arithmetic decoder

4. Conclusion

This paper presents the parallel pipelined implementation of a multialphabet arithmetic coding algo-
rithm. Unlike the existing implementations, here, the encoding of any symbol is performed at multiple
levels of a binary tree representing the symbol and thus it is possible to parallelize both the encoding
and decoding operations with multiple coders or decoders working at different levels of the tree. The
proposed scheme also eases the hardware realisation of the entire module.

Table 1 enlists the simulation results for different types of files in the Canterbury Corpus benchmark
set of programs. In this, a comparison is made between the compression efficiencies obtained while
compressing these files using a sequential arithmetic coder and the proposed arithmetic coder in 4kB
blocks. Though a slight degradation is observed in the compression efficiency, this may be attributed
to the use of approximations in arithmetic coding and can be further reduced by increasing the preci-
sion of the arithmetic operations.

Table 1. Simulation results.

File Size, bytes| Compression Efficiency
Seq. Coder] Proposed Coder|% Degradation
Text 152,089 [ 0.6132 0.6186 0.88
HTML 252481 0.7003 0.7049 0.65
Play 129,301 (0.6494 0.6542 0.74
Sparc Exec.| 38,240 [0.6105 0.6128 0.38
Src. Prog. 11,581 |0.6632 0.6685 0.80
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